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Thresholds for Carcinogens: A Review of the Relevant Science
and Its Implications for Regulatory Policy

James D. Wilson

Abstract

Regulation of carcinogens in the United States has been based on a "no threshold" policy.  This
makes the assumption there exists no level of exposure for which the possibility of causing harm is truly
zero.  The alternative "threshold" policy assumes that there exists some level of exposure at which no
harm will come to anyone in a population so exposed.  The no-threshold policy made sense when
adopted, thirty or more years ago, since the science then available was not able to distinguish between
these two opposing hypotheses, and "no threshold" provides more margin of safety.  Since then, our
understanding of biological processes related to birth and growth of cancer has greatly expanded.  We
now understand that two different biological processes can enlarge cancer risk.  Increasing the rate at
which cells divide is one of these; increasing the rate at which mutations occur, independently of cell
division (mitotic) rate, is another.

It is known that mitotic rate is under close physiologic control, operated through a complex
system including a variety of intercellular messenger molecules.  Functions controlled so as to be kept
within certain limits in the face of external stressors must by definition exhibit a threshold in their
response to small changes in such external stress.  It is only necessary to demonstrate the existence of
physiologic control to show that the threshold must exist. Thus there will be a threshold in the response
to any nonmutagenic ("mitogenic") carcinogens.

For classical mutagenesis as well, the weight of evidence favors the conclusion that thresholds
exist.  Evidence for "no threshold" has almost no weight, either because of  the limits on our ability to
measure response at very low levels of mutagenic stimulus, or because it springs from an
unacknowledged tautology.  Conversely, there is evidence of moderate weight, primarily that cancer
rates are not elevated in areas of high background radiation flux, that the mutation rate is under active
physiologic control.

This expanded knowledge allows more reliable guidance for policy makers.  First, policy should
distinguish between "mitogenic" and "mutagenic" carcinogens, those that act predominantly by
increasing the rate at which cells in certain tissues divide, and those that act directly on DNA.
Mitogenic carcinogens should receive the same treatment as "noncarcinogens."  At EPA, at least,
policies are changing to reflect this understanding.  Mutagenic carcinogens should be regulated using
the "de minimus" approach FDA and EPA use for all cases other than direct food additives and
pesticide residues.  This approach relies on the concept of a "practical threshold," and provides very
adequate protection of public health.
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Thresholds for Carcinogens: A Review of the Relevant Science
and Its Implications for Regulatory Policy

James D. Wilson1

INTRODUCTION

This paper is intended to examine the scientific basis for choosing between two

opposing theories about the process by which cancers start, and the public policy implications

of that choice.  For policy purposes, it is important to understand this process and how it is

affected by human activities, particularly by the new chemical substances whose use has

transformed modern civilization.  People come into contact with and absorb these substances,

frequently at levels that are very small compared to amounts that cause discernible harm.  The

tools available to science only very rarely permit a direct determination of the likelihood that

injury will occur from such very small levels of exposure.  Thus policy makers must rely on

scientists' judgment of that likelihood, a judgment that is heavily influenced by prevailing

theories of cancer and carcinogenesis.  Over the past twenty-five years the consensus on these

has evolved, and with that evolution comes a change in recommendations for policy.

The two opposing theories concern the behavior of cancer "dose-response"

relationships.  These relationships are expressed in terms of mathematical functions that

describe how cancer incidence ("response") changes with levels of exposure ("dose") to

                                               

1 Senior Fellow, Center for Risk Management, Resources for the Future.  Acknowledgments:  I am very much
indebted to Bob Barnard, Dan Byrd, Gail Charnley, Sam Cohen, R. A. "Randy" Freeman, Mike Gough , Dick
Hill, Alfred Knudson, Suresh Moolgavkar, Allan Poland, Bob Scheuplein, Beth Silverstein, and Curtis Travis
for their contributions over many years to my education and thus to the ideas I have tried to describe here, and
patient review of earlier versions of this paper.  The work was started while I was employed by Monsanto
Company; I appreciate that support, and support from Washington Technical Information, Inc.
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carcinogens.  In technical terms, the proposition we wish to examine concerns the behavior of

these functions as exposure becomes "arbitrarily small" -- but not zero.2  One of these, the

"threshold" theory, holds that increased incidence (over background) becomes zero at some

nonzero exposure.  The other, "no threshold," holds that increased incidence becomes zero

only at zero exposure.  Until very recently public policy has officially been based on the "no

threshold" theory.

Until the 1950s it was a well-established tenet of toxicology that for any poison there

exists a threshold dose below which exposure poses no risk.  Late in that decade, regulatory

scientists proclaimed that for carcinogens, "no safe dose exists" [Fleming, 1959; Mider, 1960].

This proclamation occurred near the beginning of three decades' worth of laws and regulations

intended to protect human health and our environment.  Now we are engaged in a great

reconsideration of the policy edifice built in those decades, asking whether those laws and

regulations should endure.  As part of this reconsideration it is appropriate to examine the

scientific basis for the laws and regulations, to ascertain which parts are well founded and

which stand on sand.

The "no threshold" policy has always been controversial.  Biologists almost universally

believe that thresholds always exist.  Mathematicians point out, correctly, that the curves

biologists use to represent reality, for relationships such as that between exposure and

response, are uniformly continuous, infinite, monotonically increasing functions that do not

                                               

2 "Arbitrarily small" means that we are allowed to choose a level of exposure that is as small as we wish,
approaching very near to zero but not reaching that absolute value.  In this case, we are interested in exposure
values that are less than what can be measured experimentally, but not in any specific exposure value.
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admit a discontinuity such as a threshold.  Further, the uncertainties in ascertainment of

exposure and response are large enough to prevent any direct experimental test:  the "noise" is

large compared to the "signal" one hopes to detect.  At the time the "no threshold" policy was

established, scientific theory could provide little guidance to policy makers.  The "threshold"

and "no threshold" options were equally plausible.  Thus, sensibly, regulatory scientists urged

adoption of the more protective policy, that based on the "no threshold" theory [Mider, 1960;

OSHA, 1980].

Over the last twenty years the situation has changed.  We now understand much better

both how cancers start and grow and how biological functions are regulated.  There is now a

consensus that thresholds exist for some kinds of carcinogenic processes [EPA, 1996].  We

suggest here that the weight of evidence favors the view that thresholds exist for all such

processes.  Policies should be adjusted accordingly.  Doing so need make no change in the

degree of health protection.

This Discussion Paper is intended as a contribution to science policy.  Thus the argument

flows from a review of the current situation -- recapitulating the meaning of "threshold" and

policies that depend on its interpretation -- followed by a summary of the new science relevant to

these policies and then some conclusions about policies.  The discussion is based on a theory of

how science contributes to policy formation, provided as an Appendix to this paper.

Situations such as the "threshold" debate provide a rigorous test of science.  Whether

or not a threshold exists cannot be answered by direct test.  It is beyond reach of the kind of

experiment or study that provides scientists with the strongest support for their beliefs.  We

cannot know how the dose-response curve actually behaves as it approaches arbitrarily close to
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zero effect.  ("To know" something should be understood to mean "to have great confidence

in" some conclusion.)  Because the conclusion is intended to inform public policy in which

individual scientists may well have a stake, it becomes very important that all the evidence be

reviewed, discussed, and weighed as fairly as can be done.  It is equally important that any

conclusion be accompanied by a frank discussion of the uncertainties:  if the uncertainty is

large and the confidence not high, public policy may best be served by a choice that does not

reflect the current scientific consensus.

THE  MEANING  OF  "THRESHOLD"  AND  CURRENT  APPLICATION  TO  POLICY

Like many useful concepts, "threshold" carries somewhat different meanings to

different specialties within science and the public health profession.  To pharmacologists (with

whom it appears to have originated) the idea is straightforward:  there are always doses (levels

of treatment) that are without discernible effect on those being given drugs.  In this application,

the theory of a threshold for activity is not controversial.  It is, in fact, universally accepted and

applied.  Centuries of observation support the idea.

It is useful to refer to the pharmacologists' concept as a "practical threshold."3  It

implies that responses which cannot be observed have no practical significance.  Theory may

admit the possibility of some response at low exposure, or predict an undetectably small one

yet for practical purposes these may be neglected.  Much of our current policy edifice for

dealing with carcinogens actually stands on this concept.  It is, for instance, consistent with the

                                               

3 The terms "effective threshold" and "threshold of regulation" are used to refer to essentially the same concept.
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"no significant risk" standards common in environmental statutes [Byrd and Lave, 1987;

Barnard, 1990; Cross et al., 1991].

To people dealing with public health policy, "threshold" carries a more stringent

implication: at some nonzero exposure the response not only passes below the limit of

detection, and not only approaches zero as a limit, but becomes exactly, identically zero.4

Biologists appear to believe that the thresholds they observe are absolute, but the question  has

not been one of much interest; and for them the "practical threshold" concept suffices.

There have been circumstances where, for public health officials, the practical threshold

has not sufficed.  These officials are charged to provide the public with credible advice

regarding safety.  Their credibility depends on their confidence that they understand the

hazards facing the public.  They can confidently declare exposures safe when no adverse effect

can be identified, if a threshold exists.  However, if they believe no threshold exists, their

confidence may be much less.  The practical threshold states only that no harm can be

detected; such a prediction may well not be acceptable, because the ability to detect such harm

is not very sensitive.  Detectability is set by the year-to-year variability in cancer death rates5;

for most this is at least 2-3% of the annual rate. For the more common cancers, these annual

rates fall in the range of tens to thousands to hundreds of thousands of deaths per year.  Thus

                                               

4 We will leave aside the issues posed by essential nutrients such as selenium, and the complications introduced
into analysis of dose-response curves by competing causes of mortality.  It can be taken as given for policy
purposes that for truly essential nutrients, a threshold has to be assumed.  There has been considerable
discussion, not yet resolved, of this issue in the instance of a drinking-water standard for arsenic.
5  Because most cancers result in death, public health professionals have generally used the death rate as a
measure of or surrogate for the harm cancer causes.
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exposure to some specific chemical might cause thousands of deaths without detection.6  Half

a century ago, as we began to give serious consideration to protecting against radiation and

chemicals that cause cancer, it was regarded as not acceptable to the public that such a

situation might be regarded as "safe."  At that time theory suggested that there might not be a

threshold for exposure to substances that may cause this dread disease.  So the profession

recommended basing policy on the assumption that no threshold exists.  From this came the

phrase, "There is no safe exposure to a carcinogen" [Mider, 1960].7

The "no safe exposure" dogma reflects the paradigm of carcinogenesis that was current

through the 1960s.  This theory implied that all cancer occurs as a consequence of the reaction

of "carcinogens" with DNA. [Olin et al., 1995].  The typical carcinogens then recognized react

with DNA in much the same way as related low-molecular-weight model compounds react.

Almost all such carcinogens come from the chemical family of "electrophiles."  DNA-like

molecules react with these in a way that gives rise to a direct proportionality between dose and

effect.  Given this theory, a no-threshold, linear relation between very small chemical exposure

and cancer risk is quite reasonable.

                                               

6  For example, for adult men in the United States, the death rate from bladder cancer varies randomly between
55 and 65 per hundred thousand per year.  With close to 100 million adult men in the U.S. population, between
55,000 and 65,000 deaths occur every year from this cause. Year-to-year increases (and decreases) of two or
even three thousand deaths (5% of the mean rate) occur frequently.   It is not possible to identify a change of
this magnitude that may be due to some particular cause, in the face of random fluctuations of similar
magnitude, unless it were to continue for many years.   Note, however, that for rare cancers such as that caused
by exposure to vinyl chloride, the detection limit is only a few deaths per year.
7 Also contributing to this slogan was a lack of confidence among professionals in what should be considered
"safe".  They worried about absolutes.  Lowrance [1976] has since shown that "safe" is not an absolute, but
relates to a notion of acceptable risk.  In the 1960s the public health profession was not certain that any degree
of cancer risk would be acceptable.  Today we have a better understanding of people's tolerance for different
kinds of risks, in different situations.  (For instance, we know that more risk is tolerated when those at risk feel
able to exert some control over their own fates.)
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The idea that any exposure to a carcinogen produces some risk to those exposed

became widely established in policies of regulatory agencies in the United States between the

late 1950s and the mid 1970s.  Its first and most enduring formal expression was in the famous

"Delaney Clause" enacted as part of the 1958 amendments to the Food, Drug, and Cosmetic

Act (FDCA).  This clause prohibits approval and thus use of intentional ("direct") food

additives that "induce cancer".  Although symbolically this language has great weight, in

practice it has seen almost no use by FDA [Prival and Scheuplein, 1990].8  The Food and Drug

Administration already had the duty to keep all harmful substances from food.  It can and has

used its general authority from FDCA to ban carcinogens from the food supply.

FDA is also charged to assure that the food supply is adequate to our needs.  This

responsibility sometimes conflicts with the requirement that food be safe; FDA commonly

balances these contradictory objectives by recognizing the ancient dictum "the dose makes the

poison," i.e., that sufficiently small amounts of the most deadly poison will do no harm.  That

is, FDA trades off certainty of safety for certainty of sufficiency to reach the needed balance.

Under the general provisions of  FDCA, FDA also can recognize the limitations of inferences

for human response from experiments in animals, weighing the utility of such data in the

regulatory balance.  But with Delaney, Congress instructed FDA to adopt a different policy,

assuming rigorously that safety could not be achieved with any amount of carcinogenic

substance in food and taking at face value any results from animal experiments.

                                               

8 However, it may now force EPA to cancel certain pesticide registrations.  See below, pp. 34-35.
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Beyond extending Delaney to food colors and animal drugs during the 1960s, Congress

has not written the "no threshold" idea into any of the many other health and safety laws.9

Nevertheless, it has pervaded regulatory approaches to carcinogens, and extension to

developmental toxicity has been proposed [Rai and Van Ryzin, 1985].10  Notable examples of

its impact include EPA's adoption of the "linearized multistage" procedure for evaluating cancer

risks,11 and the "Risk-specific Dose" hazard indices used for environmental regulations, the

distinction that that  agency makes between "carcinogens" and "noncarcinogens" in drinking

water standards, and so on.  It underlay the OSHA "Cancer Policy" proposed in 1977 (which

has been neither withdrawn nor implemented) [OSHA, 1980], and continues to influence both

OSHA's and FDA's regulatory approaches to substances called "carcinogens".  It also is seen

frequently in state laws and regulations, particularly California's "Proposition 65."12

Over the years, FDA has whittled down the applicability of Delaney, especially for

"indirect" food additives [Merrill, 1988].  For these and for "contaminants" FDA's charge to

maintain an abundant and healthful food supply has led it to adopt a de minimus policy [Prival

and Scheuplein, 1990].  Most foods are now known to contain insignificantly small amounts of

                                               

9 The authority to ban production of non-food substances was given to EPA in the Toxic Substances Control
Act and to the Consumer Product Safety Commission.  However these differ in being risk-based and not "no
risk" [Lave, 1981].
10 Note that no regulations based on a "no threshold" assumption for endpoints other than cancer have been
implemented.
11 This procedure assumes that the response is zero only at zero exposure, and calculates an "upper bound" on
that response equal to the steepest straight line that can be said to be statistically consistent with observed dose-
response in animals.  It is used to set "no significant risk" standards, and sometimes misused to estimate
responses [Wilson, 1991].
12 The Proposition itself is based on a "no significant risk" standard, recognizing the practical threshold.
However, the California EPA implements it by means of "safe harbor" guidance developed using the linearized-
no threshold dose-response methods.
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naturally-occurring carcinogens [NRC, 1996]; banning all carcinogen-containing foods would

mean we would have nothing to eat!  Thus FDA has moved to the "practical threshold" to

regulate carcinogens whenever it can.  EPA once proposed to do likewise for pesticide

residues [EPA, 1988]; that policy was struck down by the courts, and the Agency and affected

and interested parties are trying to work out an alternative.

SCIENTIFIC  CASE  FOR  A  "NO  THRESHOLD"  ASSUMPTION

Three lines of argument have been used to support the "no threshold" policy.  First, many

sets of observations fit a nonthreshold mathematical model.  Second, a theory that exposure to

carcinogens adds to background processes implies that added exposure increases risk linearly.

Third, if the underlying physical processes are either stochastic or otherwise are describable by

statistical methods, mathematics requires that any nonzero exposure implies a nonzero added

risk.  These have some validity, and need weighing in a science-based conclusion.

Evidence from Curve-fitting

The first justification for assuming no threshold for carcinogenicity exists came from an

observation on the effect of radiation treatment on single cells.  The dose-response was fit by a

straight line that passed through the origin.  Subsequently, the theory of mutation-caused

cancer supplied a theoretical basis for analyzing dose-response in this way.  Still later, a second

argument, based on treatment adding a small increment to an ongoing process, was raised

[Crump et al., 1976], to justify the assumption.  Yet these arguments at best permit the

interpretation that no threshold exists; they permit equally well the contrary argument.
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Categorically, the fact that a curve with zero intercept "fits" a particular data set does

not imply that a curve with nonzero intercept will not also yield an acceptable fit, especially to

the kinds of data sets available in this field.  Uncertainties are very large, compared to the

intercepts expected on biological grounds.  The original curve-fitting was done with pencil and

graph paper.  To anyone who has done such manipulation, it is obvious that such a procedure

can equally well produce a line that supports a "threshold" interpretation.  Such data that can

be fit to a line of the form, y = mx will also fit y = mx + b, with b ≠ 0.13  These data are simply

too uncertain to allow distinguishing between "threshold" and "no threshold" hypotheses.  [Cf.,

for example, Figures 1 and 2 in Land, 1995 and Kitchin and Brown, 1994.]  At best, the data

permit setting a bound on the magnitude of a threshold.

Observations of dose-response from radiation-induced cancer do fit reasonably well to

non-threshold curves[NRC, 1990].  Yet recent re-evaluations of some of the best of these data

sets, including Hiroshima/Nagasaki [Delpla, 1988; Shimizu et al., 1993; Alvarez and Seiler,

1996] and the "radium dial painters" [Thomas, 1995], using methods that allow the intercept to

vary, have found better-quality fits are obtained with nonzero intercepts.

Additivity to Background

Crump and co-workers proposed that because background processes lead to cancer,

exposures to carcinogens should be considered to supplement these processes, giving non-

threshold, linear exposure-response functions [Crump et al., 1976; Krewski et al., 1995].  A

                                               

13 In fact, if b is permitted to vary the uncertainty in the data sets available is such that computer-generated fits
to this data will usually return b ≠ 0, just by chance, even if the true value of b were zero.
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similar argument has been made by Crawford and Wilson [1995] for common adverse effects

other than cancer, and in fact their case is stronger than that possible to be made for cancer.

These arguments assume that dose-response curves increase uniformly from a zero response.

"Additivity to background," as this is called, does imply a linear dependence of response on

exposure.  However, if the fundamental assumption that response begins at any added extra

exposure is not correct, the straight lines will not pass through the origin.  If no response

occurs at some exposure, i.e.,a threshold exists for the effect, the intercept will be nonzero.

Stochastic Processes

Many of the biochemical processes involved in the chain of events between exposure to

a carcinogen and the start of a cancer are of a sort usually described by the techniques of

statistical mechanics.  Using these techniques one can calculate quantities such as the fraction

of molecules from a particular dose of reactive carcinogen that will reach cellular nuclei.

These techniques were originally developed to understand nonequilibrium properties of gases;

the typical problem involved estimating the probability that a fast-moving elastic ball bouncing

around inside a box would pass through a small hole into an adjacent box in some period of

time.  This probability was found to depend on the speed with which the ball is moving and the

size of the hole:  the faster the speed (the higher its energy) and the larger the hole, the more

likely it is that the ball will pass through into the next box.  With an assembly of such balls and

knowledge of the distributions of their energies, one can calculate such things as the numbers

of balls found in the adjacent box during successive periods, and thus understand the rate at

which equilibrium is attained and suchlike.  In effect, the size of the hole can be equated to a

barrier which the ball must surmount in order to pass from one "state" to another.
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Entry of toxicants into the system (inhalation, ingestion, absorption, etc.) is describable

by statistical mechanics; the rate depends on such measurable parameters as adsorption

coefficient, partition coefficients between blood and air, etc.  Once into the blood, molecules

are transported everywhere, some to be altered by chemical reactions; all of this is describable

by statistical-mechanical methods.  At the molecular level, the reaction of a mutagen and DNA

leading to a carcinogenic transformation is best thought of as one in which the attacking

mutagen is hindered by a series of barriers that are not infinitely high, not infinitely efficient at

disarming this invader.

Chemists and engineers commonly use statistical methods to analyze this kind of

process.  These very successful methods make a fundamental assumption that the probability of

overcoming all the barriers is random, or "stochastic" and thus may become very small but

never identically zero.

There are several of these barriers.  One is metabolic transformation to an inactive

substance, which includes reaction with protective elements such as the mucus of the

respiratory tract and chemicals such as glutathione.14  A second line of defense is DNA repair.

Since DNA is constantly being damaged by various natural processes (mostly through

oxidation), we have evolved very efficient enzymes that monitor the status of our DNA and

repair it as necessary.15  Work by Ames and his collaborators suggests an impressively high

                                               

14 It was puzzling, at first, that the chemicals that react most avidly with DNA components have relatively
little carcinogenic or mutagenic potency in vivo.  This was rationalized by noting that these chemicals are so
indiscriminately reactive that at small doses they react with something else before reaching the cell nucleus,
and at high doses they kill.
15 Recently several genetic defects in DNA repair enzymes have been observed to be associated with an
increased risk of cancer.
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rate of repair going on constantly:  they find excreted in urine oxidative degradation products

of DNA bases that imply repair of ca. 104 defects per cell per day [Ames and Saul, 1986].

A third "barrier" arises from the relatively small number of effective target sites for a

mutagen, compared to the total sites available.  To give rise to a cancerous cell, mutagens must

attack one of the few (~103/~107) genes that code for proteins involved in regulation of cell

division and differentiation [Bradshaw and Prentis, 1987; Knudson, 1985] or in DNA repair,

and do so in a cell that is capable of division.  (Terminally differentiated cells, for example,

don't reproduce, so any mutations that may occur in them are not passed along to other cells.)

Viewed in conventional terms, and demonstrably true with treatments that produce

observable effects, each of these processes is stochastic.  One can readily estimate the

probability that a molecule of a mutagen will get past each of these barriers and cause an

effective mutation in a critical gene.  At exposures leading to observable effects, these

estimates account for the effects observed.

The probability that any one molecule will effect a cancerous transition in a cell capable

of starting a cancer is vanishingly small, 10-18 or less.  Yet even this unimaginably small number

is overwhelmed by the numbers of molecules that take part in an exposure capable of causing

cancer.  Because we can carry out experiments in mice, we know these numbers more

precisely for these animals.  Typically, for a moderately active mutagenic carcinogen in a

mouse, cancers will be caused by single doses of  ~50 mg/kg body mass.  This corresponds to

the order of 1019 molecules per mouse, or about 1010 per cell.  Doses of this size usually result

in a one or a few tumors, the results of attacks on DNA from the ~106 cells capable of



-14- James D. Wilson

developing into a cancer that exist at any one time.  Thus the "yield" of tumors per molecule of

carcinogen is the order of 10-19.

Because "effect" doses appear to scale with body mass, we infer that similar numbers of

active molecules per cell are necessary for a single dose to cause cancer in humans.  When the

numbers of molecules are this large, stochastic models describe the process very well.  We can

readily account for differences in potencies among mutagenic substances by differences in

metabolism, etc., that make them more or less capable of overcoming these barriers.

However, for most "environmental" issues policy makers are concerned about rather

different conditions, with exposures measured not in tens of milligrams per kilogram, but

micrograms or nanograms or femtograms, not billions of molecules per cell but thousands or

even less than one.  For strong mutagenic carcinogens, the likelihood that a dose constituting

some number of molecules will cause a cancer is less than the fraction it represents of the

number known to cause cancer.  From this it follows that at exposures totaling, say, a millionth

of the number required for observation of tumors in a single-dose experiment, the likelihood of

a cancer becomes vanishingly small. So if 50 mg / kg of a carcinogen causes tumors in any

mouse examined, total exposures less than 50 nanograms / kg16 will cause tumors in (many)

fewer than one mouse in a million.  This line of reasoning supplies very strong support for the

"practical threshold" policies described above.  If the likelihood of an exposure causing a

cancer can be said to be negligibly small, the exposure can be considered safe [Lowrance,

                                               

16 A "nanogram" equals one one-millionth of a milligram.  For a typically potent mutagenic carcinogen, such
as benzo[a]pyrene, 50 nanograms / kg in a mouse works out to about 2500 molecules per cell, compared to the
2.5 billion per cell employed in single-dose experiments.
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1976].17  At such small exposures, no effects can or will be observed.  (In fact, as we note

below, the likelihood of cancer will be much smaller than this upper bound, because these

carcinogens act as mitogens as well as mutagens, and their "potency" is much less than

proportional to dose, with decreasing dose.)

This straightforward reasoning underlies the initial application of "quantitative risk

assessment" to a health-regulatory situation, FDA's implementation of the "DES proviso" from

the early 1970s [Olin et al., 1995].  The risk from extremely small exposures to the undoubted

carcinogen DES was held to be negligible, and thus acceptable.

Mathematicians, however, correctly note that "small" -- even "negligible" -- is not the

same as "zero."  If the statistical-mechanical representation of the process is correct at these

small exposures, some nonzero risk will remain.  The question now becomes, is this

representation exact, so that projections into the "tails" of the underlying distributions are

appropriate, or is it only an excellent representation of measurable reality?  We have noted that

the uncertainties are too large to permit discrimination between threshold and nonthreshold

behavior on the basis of quantitative measurements.  To examine this issue of low-level

behavior, we must take leave of mathematics and reconsider biology.

The evidence suggests that low-level behavior differs.  No known biological process is

infinite; all are truncated by limits imposed by the physical world.  Although the heights of men

                                               

17 "Safe," that is, from cancer.  Some have asserted that this conclusion tells us nothing about safety, generally,
because other possible adverse effects have not been considered.  Yet for most substances all adverse effects
occur at very similar exposure levels, and the very large "margin of safety" required for carcinogens can usually
be taken to imply that no other adverse effects will occur if cancer does not.  However, exceptions that test this
rule are known.
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can be well represented by a normal distribution, and thus we can predict the frequency of 19-

footers, in fact men the height of giraffes can't live.  Our arteries won't stand the pressure

required to pump blood to a brain so far from the ground.  Similarly, no adult humans are

smaller than about thirty inches.  The distribution of heights is truncated, not infinite.  As we

argue below, the science of biological control suggests that these apparently stochastic

processes are not really random but truncate at small exposures.

The proposition is made that stochastic processes require that dose-response curves

describing such processes have no threshold.  But we find that this proposition actually stands

on an assumption that is not consistent with our other observations of nature.  It assumes that

mathematical formulas that describe what can be observed will correctly describe what cannot

be observed.  The choice of mathematical models used to extrapolate from the observable

region into the void is ultimately arbitrary.  Without a strongly supportable underlying theory,

we can have little confidence that the extrapolation represents reality.  In this case, there is no

such theory.

There exists no reliable scientific evidence that supports the "no threshold" theory to

the exclusion of the "threshold" theory.

SCIENTIFIC  EVIDENCE  FOR  THE  EXISTENCE  OF  A  THRESHOLD

In the previous section we examined the arguments supporting the "no threshold"

proposition, concluding that the evidence is equivocal and that support for the proposition is

based on arbitrary, insupportable assumptions.  Here we turn attention to conclusions that can

be drawn from modern biological theory.  We review first the major change in the theory of

carcinogenesis that occurred about 1980, and its implications.  Next we review findings from
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biological control theory that have emerged in this same time period.  Together these two

theories strongly constrain the mathematics used to model dose-response for cancer and other

kinds of injuries.

• • The current theory of carcinogenesis holds that two kinds of processes can be
involved in the development of cancers

In 1981, Moolgavkar and Knudson described a theory of cancer that is capable of

rationalizing essentially all that is known about this disease.  (Greenfield, Cohen, and Ellwein

[1984] independently developed essentially this same theory at the same time; the mathematical

formulations of the two are different, and complementary.)  This new theory unified the two

long-contending theories of carcinogenesis, somatic mutation and uncontrolled growth, into a

coherent whole.  It recognizes the requirement that heritable change in a cell's genotype must

occur for a carcinogenic transformation to occur, and also recognizes the importance

accelerated cell division (mitosis) has for increases in the rate at which such mutations occur.

Cancer is much more likely to develop in tissues undergoing rapid growth, both because

division must occur to "fix" DNA damage as a mutation, and because a shorter interval

between divisions may increase the likelihood that DNA damage will go unrepaired.  Thus we

can understand why cancers that occur only in childhood (e.g., retinoblastoma) are found in

tissues that stop dividing early in life, why rates of sex-organ cancers exhibit an age-

dependence that follows growth and development of these organs (rates increase dramatically

following puberty), and why "promoters" that do not affect mutation rates can nevertheless

greatly speed the development of cancers.  The classical somatic-mutation theory cannot by
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itself rationalize any of these observations [Moolgavkar and Venzon, 1979; Moolgavkar, 1983;

Wilson, 1989; Preston-Martin et al., 1990].

In the last decade there has been an extensive exploration of the implications of this

theory, mainly by groups associated with Suresh Moolgavkar at the Fred Hutchinson Cancer

Center, Sam Cohen at the University of Nebraska, and Curtis Travis at Oak Ridge National

Laboratory.  They have used mathematical modeling to explore the relative impact of

mutagenic and mitogenic (cell-division rate) effects on the development of cancers, using data

from both human experience (e.g., uranium miners) and animal experiment (e.g., saccharin,

liver-tumor-promotion) [Moolgavkar et al., 1990, 1993; Ellwein and Cohen, 1988; Cohen and

Ellwein, 1990; Travis et al., 1991].  They have consistently found that, unaided, exposure to

purely mutagenic conditions does not accelerate tumor formation very much.  Purely mitogenic

stimuli can significantly accelerate tumor formation, acting most strongly on the mutant,

partially transformed cells that exist in all animals by the time of birth [Cohen and Ellwein,

1990].  However, the two kinds of effects act multiplicatively:  tumor response rates increase

dramatically in exposure regimes where both mitogenesis and mutagenesis occurs.  These

findings have a number of other interesting implications for public policy (notably concerning

how chemicals should be tested).  Important for this present discussion is that there are two

different physiologic processes, interference with which can increase cancer risk. 18  Of the

                                               

18 Strictly speaking, at exposure levels capable of causing observable increases in cancer incidence, these two
effects interact, with increasing mitotic rate leading to an increased mutation rate (because of less effective
DNA repair.)  However, at "environmental" exposures, the two effects can be distinguished.
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two, speeding up cell division is quantitatively much more important than increasing the

mutation rate [Cohen et al., 1991].

• • Mitogenesis is under strict biological control.  The DNA damage repair rate appears
also to be under close control.  This implies that both cancer-causing processes have
thresholds.

In this section we argue that the threshold in exposure-response curves arises from the

existence of biological controls on both cell division and DNA repair rates.  The mechanism by

which mitogenesis is controlled comes primarily from outside individual cells (and thus cannot

be understood from studies confined to the cellular level).  The control on DNA repair is

poorly understood; the existence of such control is inferred from several observations.  We

start with a few observations on control systems, noting the characteristics that necessarily

imply the existence of a threshold in the "controlled parameter".  This is followed by

descriptions of the control systems for mitogenesis and DNA repair, that lead to conclusions

about their exhibition of thresholds.

Characteristics of Control Systems

Control systems strive to maintain some parameter or variable within "control limits"

that are set externally to the system.  (The simplest control systems employ only one limit,

often called a "set point.")  Parameters commonly controlled are temperature, pressure, and

chemical composition or concentration.  Three features are characteristic of this kind of control

system:  some means by which an actuator can affect the parameter to be controlled; a means

by which a controller can sense the state of the system (usually by measuring the controlled

parameter) and compare it to the control range or set point; and a means of signaling the
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actuator to take action to bring an out-of-control situation back within the control range.  The

means of sensing the state of the system, which involves the transfer of information from the

system to the controller, is called a "feedback loop."

To aid understanding these characteristics, consider the commonplace system that we

use to keep our living spaces warm in cold weather.  We employ some sort of heater that is

cycled on and off by a controller called "thermostat."  We identify  the air temperature we wish

to maintain -- the set point -- and adjust the thermostat so that when the air temperature drops

below this point, the device signals the heater to turn on.  When the air temperature is warmed

above this point, the controller turns the heater off, returning the actuator to its normal state.  In

this example, the thermostat includes a means to sense when the air temperature needs

correcting, by comparing it with the set point, and also a means to convey that information to

the heater (in the form of an electrical signal); the source of corrective action is, of course, the

heater.  In this case, the feedback to the controlling thermostat occurs in the form of an increase

in the air temperature.19

Note that the heater has some limit on its capacity to add heat to the living space:  its

"full blast" rate.  As long as the heat loss rate is less than the maximum output of the heater,

                                               

19 Note that this system is not capable of precise control of temperature.  It is a one-way system:  as long as the
inside air temperature is above the set point, the controller does nothing.  (If we want to cool the inside, we turn
on an air conditioner, and typically use another one-way controller to manage against a maximum set point
instead of a minimum.)  The common furnace/thermostat system relies on passive heat loss to a cold outside to
provide a gradient against which it can work to control the temperature.  In houses, this loss rate varies too
much from place to place and time to time to allow precise control, but we don't pay much heed to the
variability.  In situations that require precise temperature control, the systems must provide both a two-set-point
controller and ways to regulate both heat input and withdrawal from the environment being controlled.
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this system will maintain a constant air temperature.  But should the weather turn very

cold and windy, and the rate of heat loss exceed the

capacity of the heater, the air temperature will begin to

drop below the set point.  Were we to plot, say, the

outside air temperature (holding wind speed constant)

against the interior air temperature, the resulting curve

would describe a threshold:  a straight line of zero

slope to that point where the heat loss rate equals the

capacity of the heater, after which the interior temperature would decrease proportionately to

any further decrease in the outside temperature (Fig. 1).

Threshold behavior is intrinsic to and necessary for a system that controls some function or
parameter within limits and has capacity to accommodate to external conditions.  As long as
the external stress is less than that capacity, the controlled parameter will remain constant;
when stress exceeds adaptive capacity, adverse effects will begin to occur.  Demonstrating
that a system is under physiological control is sufficient to show that a threshold will exist in
any relationship between measures of its state and measures of external stress.

Biological Control Systems

Biological control systems work in almost exactly the same way as the mechanical

system just described.  For instance, the central controller of body temperature (thought to be

in the hypothalamus) responds to an increase in internal temperature by causing surface blood

vessels to expand and by causing sweat to be released, both of which increase the rate at which

heat is lost from the body.  Instead of electrical signals, the body's central controller uses

changes in the concentration of regulatory chemicals (many of them hormones) to signal the

need to expand or contract capillaries, etc.  (Excepting temperature, all biochemical signaling

Outside air temperature
Figure 1

Set point

T
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occurs by means of gradients in the concentrations of various chemicals.)  We maintain a near-

constant body temperature (within limits) with this system, but it can be overcome:  there are

limits on the heat load any individual can tolerate before body temperature rises, with

consequent adverse effects.  This limit is the threshold.

Note that control of body temperature is quite precise.  The hypothalamus must contain

some sort of two-way controller.  The rate at which we produce heat is variable, controlled by

the amount of circulating thyroxin, the thyroid hormone.  Our capacity to adjust to the external

environment is obviously limited in both temperature directions:

there exist two thresholds in the curve that relates internal body

temperature to the external environment temperature (Fig. 2).

There exist regulatory systems that do not act to

maintain a controlled parameter within specified limits.  For

instance, a system might alter a parameter by some specified ratio

or proportion.  In industrial practice, such a device could be used for

sampling, for instance, taking one can of beer out of every

thousand that pass through a packing line.  An example from

electronics would be a device that takes an incoming signal

and reduces its amplitude by some fraction before passing it

on.  Clearly such a system will have a capacity limitation,

similar to that of a typical control system.  An inflection point
Exposure
Figure 3
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analogous to a threshold could be observed.  However, the dose-response expected for a

toxicant acting by perturbing such a system would be a "hockey stick," with a nonzero slope

below the inflection point followed by a steeper straight line until saturation begins to set in

(Fig. 3).

Hormonal control

Our bodies include control systems, that act on every physiologic function.  Most if not

all involves hormones, the specialized chemicals synthesized in the "endocrine" organs

(pancreas, thyroid, hypothalamus, etc.) and released directly to the blood.  None of these

systems is understood completely, and evolution has ensured that complex interactions among

them are the norm.  Typically control does not reside solely within a single organ, but is

shared.  For instance, the pancreas increases the rate of insulin release in response to an

increase in blood glucose, a decrease in blood insulin, and also in response to poorly-

understood signals coming from the intestines by way of the hypothalamus.  (Insulin release

increases in response to food, just before blood glucose begins to rise.)  Control precision is

increased by the liver; blood flowing through the liver exits containing less of all hormones

than when it entered.  Since signals consist of concentration gradients, this creates a constant

"sink," comparable to the heat sink of a precise temperature control system, permitting fine

control.  As a consequence, hormones are continuously released to the blood stream.

Some mitogenic carcinogens act by perturbing hormonal control systems.  For instance,

they may act by increasing the rate of hormone destruction by stimulating enzyme activity.

"Dioxin" and many other chlorinated hydrocarbons increase the activity of a mixed-function

oxidase that destroys thyroid hormone, leading, at high enough exposures in rats, to
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enlargement of the thyroid (goiter).  In rodents, goiter predisposes to thyroid follicular cell

cancer (people question whether it does so in humans.)  Other chemicals act by interfering with

hormone synthesis:  thiourea and its analogues act by tying up one of the key enzymes in the

synthesis of thyroid hormone, which also leads to goiter and thus thyroid cancer in rodents.

"F.D.&C. Red Dye #3" causes the same response by interfering with a different enzyme [Olin

et al., 1995].  Estrogen mimics increase endometrial and breast cancer risk by directly

stimulating cell division [Preston-Martin et al., 1990].  A progesterone antagonist might have

the same effect, at least in the endometrium, since this hormone counteracts the growth-

promoting effects of estrogen in this tissue.

Elsewhere [Wilson, 1995] I have derived from basic biochemistry and physical

chemistry the nature of the dose-response for these effects; the typical curve is illustrated in

Figure 4.  This work showed that the equations

describing the effects of chronic treatment with any

substance that acts by perturbing a hormonal control

system include a variable that does not depend on the

toxicant dose, generally related to the variable on which

the control system works.  (For example, in the case of an

insulin mimic the effect of which would be reduced blood glucose, the rate at which glucose

enters the blood stream is independent of treatment.)  The magnitude of this independent term

determines the magnitude of the threshold.  This work demonstrates that the existence of a

Exposure
Figure 4

     T
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threshold is independent of the mathematics of receptor binding, and that it is a consequence of

the existence of control itself.

Control of mitogenesis

The system that regulates cell division and differentiation is now becoming reasonably

well understood.  The research leading to this understanding has been driven by the discovery

that mutations in the genes that code for the many proteins involved in intercellular signaling --

"proto-oncogenes" -- lead to cancer [Weinberg, 1989].  A theory of the control system has

been described by Freeman and Wilson [1990].  We know that the key features of control

systems exist:  a means to sense if control action is needed, a means to transmit this

information to a source of the needed action, and a capacity to act.

This control system is very complex, including two separate kinds of signaling

pathways, one of which signals "divide," the other signaling "stop."  In addition, each pathway

includes redundancy and modulation possibilities.  For instance, in cells programmed to divide

throughout life, such as the stem cells of skin and intestinal lining and of the blood system, both

pathways are at least doubly redundant, and three mutations are necessary to convert a normal

cell into a first-stage cancer cell [Moolgavkar and Luebeck, 1992].  The primary signal

transmitters come from a group of loosely similar large proteins called "growth factors" (e.g.,

"epidermal growth factor" and "transforming growth factor-beta," or TGF-ß), some dozens of

which exist.  Other substances, including estrogen, progesterone, insulin, and thyroid

hormones, cyclic adenosine monophosphate (cAMP), the Vitamin A derivative retinoic acid,
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and many others modulate the signals carried by these growth factors.20  An increase in

estrogen concentration increases the likelihood that certain breast cells and the cells of the

endometrium will divide; increase in retinoic acid decreases that likelihood.  However, control

of mitogenesis appears to differ from the temperature control examples above in not having a

central controller analogous to the thermostat/hypothalamus.  This may be a system best

characterized as having "distributed control," in which many system components independently

possess the ability to sense a deviation from the control limit and act to restore the system to

normality.  Individual cells capable of division possess the capacity to sense when division is

required.  At least some of the growth factors, including TGF-ß, also form part of this

surveillance system [Freeman and Wilson, 1990].

Mitogenic carcinogens can increase the cancer rate either by directly increasing mitotic

rate in an affected tissue, or indirectly, by suppressing normal growth and thus providing an

environment in which mutant cells can then grow.  Included in the first category are estrogen

and its mimics; classical "promoters" such as phorbol ester, that mimic natural intracellular

messenger molecules; and substances that kill cells (e.g., chloroform.)21  "Indirect" mitogens

include "dioxin," which stops the growth of skin and related tissues, and phenobarbital, N-2-

fluorenylacetamide ("2-AAF") and many other chemicals that stop division of rodent liver cells;

continuous exposure to these kinds of carcinogens permits growth of mutant cells that do not

respond to "stop" signals and thus are already one step along the road to cancer.

                                               

20 Both the "growth factors" and modulators can be tissue-specific.  Thus estrogen and progesterone act
primarily on reproductive-system tissues such as breast and endometrium.
21 Tumors have long been known to be associated with scars:  the cell division essential to healing provides an
increased opportunity for the mutation needed to start a cancer.
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Thus mitogenesis fulfills all the conditions of a control system:  there exist a controller

(in this case, "distributed" among all cells capable of division), means of sensing the state of the

system (i.e., whether to divide or not), means of transmitting signals, and means to effect

desired changes.  We know from a wide variety of observations that cell growth is strictly

regulated.  Thus it follows that all dose-response curves for mitogenesis exhibit a threshold.

Recall that the threshold question concerns the response of the control system to small

externally-derived stresses.  For mitogenesis such stresses would consist of influx of a

chemicals that influence internal signal transmission, such as phorbol ester or TCDD, or of the

proteins that are released when another cell dies, which increase the propensity to divide

[Freeman and Wilson, 1990].  We showed above that dose-response data are themselves too

noisy to permit discrimination between "threshold" and "no threshold" models.  The biological

theory just recounted conclusively demonstrates that for carcinogens which act by increasing

the rate at which certain cells divide, robust and redundant control mechanisms require a

threshold.  For such substances, scientific theory now recommends a policy that treats them in

the same way that other serious toxicants are treated.  As noted, EPA has begun to do so

[EPA, 1996].

Control of DNA Repair

We postulate the existence of a system that controls DNA repair mainly from indirect

evidence, of three kinds.  First, some of the components necessary for a control system are

known.  For instance, the enzymes that sense DNA defects and repair them provide a

mechanism by which such control can be effected; defects in the proteins involved are observed

to be associated with an increased risk of cancer.  Second, interspecies comparisons show that
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efficiency of DNA repair varies, with longer-lived species (e.g., sea turtles) having very efficient

repair while short-lived species (e.g., mice) tolerating much more DNA damage.  That we do

not protect and repair DNA as effectively as turtles suggests there is an evolutionary advantage

to maintaining some level of DNA alteration in the population.  If so, there must be some means

of controlling the rate.  Finally, cancer rates are not sensitive to the altitude at which people live,

even though DNA damage rates increase with altitude due to increased cosmic-ray flux.  This

suggests existence of some constant-rate control system for this parameter.

The existence of a DNA repair system capable of exercising control is necessary but

not sufficient to demonstrate existence of a control system.  That is, we know that DNA repair

enzymes can both sense "out of control" situations and effect a return to the set point.  There

exists "reserve capacity" to repair damage that can be induced when the DNA-damage rate

increases, also a necessary part of a control system.  However, not enough is known to

understand these processes in control-system terms:  in particular, we don't seem to know the

location of a controller for DNA repair, and we don't seem to understand what signals the need

to mobilize the reserve DNA damage repair capacity.

Not knowing how DNA repair is controlled also means that it is not at all clear how this

system may function to permit a constant rate of DNA damage to persist in cells that enter

mitosis.  There clearly exists "fractional regulation":  in humans, it includes the antioxidant

systems, such as uric acid, Vitamin C, etc., that protect against DNA oxidation [Ames and Saul,

1985]; enzyme systems generally perform this kind function.  Regulation of this sort might

satisfy the needs of long-lived animals to minimize DNA damage (during reproductive years).
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However, fractional regulation of this kind is not consistent with the very reliable

observation that cancer rates are not a function of the altitude at which people live.  In

particular, leukemia, generally regarded as the cancer most susceptible to initiation by radiation,

appears to be randomly distributed across the United States.  People living at high altitude, e.g.,

in Denver, are subject to a significantly higher flux of ionizing radiation from cosmic rays and

other extraterrestrial sources than are those of us who live near sea level.  If repair were not

absolutely controlled to a constant background rate, Denverites should exhibit a higher mutation

frequency than, say, Philadelphians,22 and a higher rate of leukemia.  Yet death rates for

leukemia are the same, on average, in the Rocky Mountain states as elsewhere, even though

these states have overall the lowest death rates for all cancers [Milller et al., 1990].

The weight of evidence now available favors the proposition that mutation rates are

under physiologic control, via control on DNA repair.  We observed that evidence for the "no

threshold" proposition for mutagenic carcinogens was vanishingly weak:  that derived from study

of exposure-response curves is limited by ability to distinguish between "threshold" and "no

threshold" behavior at low exposure levels; arguments based on "additivity of exposure" are

tautologous, while those based on statistical considerations rest on an assumption that the

available evidence contradicts.  The evidence favoring the "threshold" proposition is noisy and

not terribly strong, deriving primarily from observations consistent with DNA repair being under

physiologic control.  We might express our confidence in the correctness of the "threshold"

theory in terms of odds in its favor; if so, these odds would probably be no better than 3:1.

                                               

22 Information on mutation frequencies in humans is beginning to become available from different parts of the
country.  When enough has been done, a more direct test of the postulate can be carried out.
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Nevertheless, available science provides more support for threshold-based policies for

dealing with mutagenic carcinogens than for policies based on the "no threshold" assumption.

IMPLICATIONS  FOR  POLICY

In this section, we examine policy implications of the scientific theories described

above.  Note that the context for this discussion remains small exposures to carcinogens, the

arena in which scientific uncertainty is relatively high.  Where exposure to carcinogenic

chemicals is large enough to expect directly-observable increases in cancer rates, there is no

need to resort to extrapolation away from the observable range in order to understand the

implications of policy choices.  We have noted that few "no threshold" policies are actually

followed; the Delaney Clause for food additives and colors, and certain pesticide residues, and

the dormant OSHA "cancer policy" are the most prominent among these exceptions, at least in

this country.  Although in principle they are based on the "no threshold" theory, in reality most

regulatory policies rely on the "practical threshold" -- the basis for "de minimus risk," "no

significant risk," and "negligible risk" decision criteria.  We noted that EPA has begun to

implement threshold-based policies for some mitogenic carcinogens [EPA, 1996].

1. At low exposures, mitogenic (nonmutagenic) carcinogens should be treated the same as
other systemic toxicants.

EPA's evolving policy is fully supported by current scientific understanding of how

exposure to mitogenic substances increases cancer risk; it follows from cell replication being

under robust biological control.  This policy is now limited to a few well-studied cases; it

should be generalized to apply routinely to all chemicals that do not exhibit mutagenic activity

in a standard test battery.
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It should be noted that tests for mutagenic activity are not absolute, in that these tests

have a characteristic detection limit.  Substances that do not exhibit activity in these tests could

actually affect DNA, but have an undetectably small specific activity or potency.  Some may

argue that because we can't be absolutely sure that substances are not mutagenic, policies

should not assume that no activity exists.  However, we noted above that mutagenic activity

contributes much less to cancer potency than does the mitogenic activity.  For those substances

that have undetectably small mutagenic activity, neglecting this contribution will make no

change in our confidence that sufficiently small exposures cause no harm.

2. At low exposures, risks from exposure to mutagenic carcinogens should be managed
based on a "practical threshold" assumption.

Protectiveness of "practical threshold" based standards

Most risks from exposure to carcinogenic substances are now managed using some

"practical threshold" approach.  It is important to ask two questions of this kind of approach.

One concerns the degree of protection actually afforded by this kind of approach.  The other

concerns what we actually receive from absolute, Delaney-style bans versus the practical

threshold. We suggest that the benefit from a ban comes from reducing uncertainty that the

control measures will actually prevent any injury.  Yet there are costs associated with choosing

absolute policies.  Because "no significant risk" and similar approaches can reduce this

uncertainty to extremely small values, policy makers need to give very careful consideration to

these costs, especially the indirect ones.

We concluded above that the weight of evidence favors a threshold for all cancer-

causing processes, but that there is considerable uncertainty in this conclusion.  We noted also
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that under the conditions of concern in "environmental" regulation, the very small numbers of

active molecules available to attack susceptible cells becomes so small that we can be quite

certain no cancer will result, even from a lifetime of exposure.  Crudely, the "one in a million"

standards conventionally set for exposures to mutagenic carcinogens represent >99%

confidence of no injury occurring in populations numbering tens of millions of people, even if

there is no threshold. Our confidence in "no injury" is then further increased by the likelihood

that a threshold exists.23

A ban presumably gives us 100% confidence that no injury will occur from exposure to

the banned substance.  The practical-threshold approaches provide a >99% confidence that no

injury will occur.  Thus the difference between the two policies lies in this small (and not

accurately measurable) difference in confidence that no one will be hurt.

Considerations on the value of bans:  the case of Delaney

The utility or value of the reduction in uncertainty obtained thereby can be judged only

by comparison with the benefits that may be foregone by a ban.  This is clearly a societal value

judgment, not science.

Taking pronouncements of Congress to represent the values of the American public,

we can confidently conclude that for many substances and circumstances, the losses that would

accompany a ban are considered to exceed the value of the uncertainty thus reduced.  For

instance, wastes from industrial production that become air and water pollutants must meet the

                                               

23 These "plausible upper bound" standards calculate a 95% upper confidence limit on response, so, because
these are very small numbers, the nominal likelihood of injury in a single representative individual is <2 x 10-8.
Taking 2:1 odds against "no threshold," the likelihood drops to < 10-8 .  At such odds, likelihood that no cancer
will occur even in a population of 100 million people is more than 99%.
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negligible risk standard; carcinogenic animal drugs must meet a similar standard.  Industrial

chemicals regulated under TSCA are regulated under a different kind of standard in which

"unreasonable risk" is the operative term; this standard requires comparing the costs and

benefits of a ban with other management alternatives, and may be more or less stringent than

the "negligible risk" standards.  Since the mid-1960s Congress has considered the benefits of

only one class of substances so low as to deserve a ban -- PCBs -- and has excepted saccharin

from the Delaney ban.

From all accounts the understandable dread of  cancer played a large role in passage of

Representative Delaney's successive amendments to the Food, Drug, and Cosmetic Act.  At

the time these bits of legislation passed, there existed a widespread sentiment that carcinogens

"just should not be part of the food supply" [Fleming, 1960].  This sentiment presupposed that

carcinogens were rare; now we know that they are common.  Combined with public health

professionals' belief that no level of exposure could be considered safe, Delaney appears quite a

rational policy.  Dread of cancer remains.  (The supposition that carcinogens were few

supported the view that little of value would be lost from a ban on all carcinogenic additives.)

Yet the food additive and food color Delaney standards impose some rather high

societal costs.  These costs occur as a result of agencies flouting laws that make no sense (to

those who staff these agencies).  We noted that Delaney represented an unnecessary addition

to the food additive laws that removed policy discretion from FDA and EPA and seriously

curtailed their scientific discretion.  This has caused considerable difficulty as more and more

substances have been subjected to tests for carcinogenicity, and found "positive."  Many

otherwise innocuous natural chemicals are found to "induce cancer," in the strict interpretation
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of that phrase.  Some of these are used as food additives.  One such is a principal component

of the oil of oranges and lemons, d-limonene; if ingested by male rats in sufficient quantity,

kidney cancers develop.  D-limonene becomes a direct food additive by virtue of the process

used in reconstituted orange juice, and it was recently approved by EPA as a food-use

pesticide [EPA, 1994].  The scientific community is very confident that these male rat kidney

tumors are not predictive of a response in humans, that their appearance means nothing for the

safety of d-limonene [Olin et al., 1995].  That confidence was cited by EPA in its approval of

the petition to sell the substance as a pesticide.  Nevertheless, it seems that, prima facie, use of

d-limonene as a direct food additive and a food-use pesticide both violate the Delaney Clause.

Pesticidal use of the chemical is minor, but reconstituted orange juice is a very important

product. It should be excusable to suspect that FDA has taken no action, having no wish to

provoke a public outcry by banning orange juice.

The d-limonene situation provides the most direct confrontation between science and

Delaney, but by no means the only one.  Several minerals and complex sugars induce cancers in

animals, and derivatives of all the essential amino acids and chemicals such as Vitamin C would

do so if tested according to the protocol that showed saccharin to be "carcinogenic".24

It was not until EPA was challenged over its authority to approve tolerances for

"carcinogenic" pesticide residues did Delaney cause more than discomfort among the scientists

                                               

24 Strictly speaking, most of these have only been tested in a experiment that produces changes in the male rat
bladder that are cancer precursors.  These precursors are necessary to the subsequent development of tumors,
and continued treatment with appropriate test agents has always led to the development of such tumors.
Scientists expert in this field, however, are extremely confident that were these to be subject to tests of the
design that produces bladder tumors in male rats with saccharin, tumors would be induced.
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and policy advisers who had to work around it to satisfy FDA's other responsibilities.  In 1986

a National Academy of Sciences committee had criticized EPA for allowing certain old

pesticides to remain on the market, even if animal tests showed they may induce cancer, while

failing to approve newer, apparently safer ones that were also "possibly carcinogenic" [NRC,

1986].  EPA responded by enunciating a "de minimus" risk policy, very similar to FDA's, that

would allow it to achieve consistency in pesticide registrations [EPA, 1988].  A California

group sued to overturn this policy, successfully, with the result that EPA has moved to cancel

many registrations, some of them for pesticides whose absence will harm American agriculture.

A clear consensus exists in the scientific community that use of natural "carcinogens" in

food poses negligible or no risk to the public [NRC, 1996].  Nevertheless, strict interpretation

of Delaney would seem to prohibit use of any "natural carcinogen" as a "direct" food

additive.25  FDA has not taken action to halt their use, appearing to deal with the dilemma by

ignoring the existence of this information.  Scientists would approve if FDA has concluded that

strict application of the law would harm public health and do no good.  However admirable

this practice may be, it would seem to have doubtful legality.  One might speculate that it has

not been challenged because doing so would expose the contradictions in Delaney and its clear

obsolescence as policy.

                                               

25 Since usual food processing techniques seldom cause these to be isolated and then returned to food, as is the
case for d-limonene in orange juice, these natural carcinogens are considered food "constituents" and not
"additives."  The Delaney provision then does not apply.
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3. "Linear models" for setting numerical exposure standards should be replaced with an
equally protective, more transparent procedure.

Both Federal and state regulatory agencies commonly make use of a "linear

extrapolation" procedure to derive exposure standards for carcinogens from results of animal

tests.  These make the assumption that a "plausible upper bound" on the real dose-response

function can be approximated by a straight line from test data to the origin.  Justification for

this approach has been the "no safe exposure to a carcinogen" idea and the somatic mutation

theory.  As we have seen, this justification is now scientifically very weak, and at least the

Federal agencies have begun to use other approaches [EPA, 1996].

At the same time, scientists have shown [Gaylor, 1989a; Krewski et al., 1993] that

numerically identical exposure standards can be obtained from the same test data by a much

simpler procedure, dividing the estimated 10% response exposure in animals by a factor of

100,000.  This parallels exactly the procedure used for "noncarcinogens," the only significant

difference being that for noncarcinogens a divisor of 100 is normally employed [Dourson and

Barnes, 1988].26

This arbitrary divisor is a risk management tool, intended to assure that exposures will

be small enough to protect the most sensitive people.  Technically, justification for this comes

from the irreducible uncertainty of predicting how humans will respond when only information

on animal responses is available.  It can serve other ends, as well, including policy makers'

                                               

26 Traditionally, the "no observed adverse effect" exposure is employed as the basis for standard setting for
noncarcinogens.  The actual response to which this exposure corresponds will vary from test to test, but it is
believed usually to be <5%. [Gaylor, 1989b].  Because of the variability in this response, a modified procedure
called "benchmark," first proposed by Crump [1984], is now being considered; at least one variant is exactly
the same as this one.
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judgments that the public wants or needs a greater degree of protection from a particularly

dreaded disease such as cancer [cf., Dourson and Barnes, 1988].  Thus the use of a very large

"safety factor" can be justified as appropriate policy.27

Setting standards by this method, instead of the way they are now set, would have two

advantages.  First, the process would be much more transparent.  Current procedures involve

use of a "black box" -- a computer program that very, very few people truly understand or can

explain.  If essentially the same result can be obtained by a simple, easily understood

procedure, public understanding and regulatory agency credibility is served by the simpler one.

Second, it would return to policy makers the ability to trade off uncertainty against

other factors that enter into public policy decisions.  At present, the decision on how much

uncertainty to tolerate lies almost exclusively in the hands of agency technical staff, often

isolated from the political process.  Science is almost always unable to specify exactly what

levels of exposure will be truly "safe," or what disease will occur from particular exposure

scenarios.  The uncertainties are much too large to allow highly confident statements about

these matters.  Yet typically policy makers have no way of knowing how large the uncertainties

may be.  Were it to be recognized that the use of this enormous "safety factor" were

convention and not science, an ability to modify it as necessary would flow to risk managers.

The regulatory agencies should give very serious consideration to abandoning their use

of these "linear extrapolation" methods in favor of this more honest risk management practice.

                                               

27 The term "margin of exposure" is sometimes used to express this concept.  As this is explicated in the
recently revised EPA "cancer guidelines" [EPA, 1996], the practice intended is a comparison between levels of
exposure and levels expected to cause harm.  Decision makers are expected to decide if this "margin of
exposure" is large enough to serve the desired policy ends.
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In doing so, however, they should be cognizant of the fact that the risk management practices

are the result of a social contract, not managerial whim, and that deliberation about the use and

magnitude of these divisors should take place before any final use occurs.  Some sort of

deliberation including interested and affected parties, informed by input from experts, would

greatly increase the likelihood of success.

SOME  SCIENCE  POLICY  ISSUES

The Question of Population Thresholds

So far this discussion has centered on the response of an individual to exposure to a

carcinogen.  Not all individuals will respond in the same way, and that raises a policy issue for

risk management to which we now turn.  However, note that because populations are made up

of individuals each of whom possesses a threshold of response to any carcinogenic agent, it

follows that for any finite population a threshold will exist.

Consider first the case of mitogenic carcinogens.  Adaptive capacity in the control

mechanism for cell replication gives rise to a threshold in the response to any agent that acts

only by affecting this rate.  Obviously, different individuals will differ in their adaptive capacity.

For a population, the spectrum of differences will be describable in terms of a frequency

distribution.  There will always exist individuals who are, at any particular time, extremely

susceptible to the effects of any stress.  We need to ask nontrivial questions:  how many of

these individuals exist, and how exquisite is their susceptibility?  Is there a significant number

of individuals in the general population who respond to infinitesimal increases?

Note that the distribution of susceptibilities in the population is likely to be

approximately lognormal (number normally distributed as the logarithm of dose)  This is
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commonly the case for other physiologic functions, and we know nothing to suggest that

mitogenic effects may be a special case.   If so, the traditional dose-response function will be a

probit or other logistic curve [Seabaugh et al., 1991].  This curve, describing the fraction of

responders at any particular exposure, drops off very rapidly with decreasing exposure.

Further, the question of perfect versus truncated distributions arises here.  As noted

above, many biological phenomena can be practically described by a normal or lognormal

distribution but the distributions are in fact truncated by physiological constraints.  Because real

distributions are almost always truncated, it is more plausible than not that the distribution of

susceptibilities will also be truncated, and that an absolute threshold will exist in any finite

population.

It is also worth noting that there exist processes which, in effect, remove the most

sensitive individuals from consideration.  Studies of mitogenic carcinogens have consistently

shown that mitotic rates must be increased for long periods for any significant risk of cancer to

occur [Moolgavkar et al., 1990, 1993; Ellwein and Cohen, 1988; Cohen and Ellwein, 1990;

Preston-Martin et al., 1990].  Thus the extremely sensitive individuals must remain in a state in

which their reserve control capacity is infinitesimal for a long time.  Any individuals for whom

this is true must be under severe stress.  They must be chronically very ill or very severely

malnourished.  Practically speaking, most such individuals are either at high risk of death from

other causes or their risks from the normal environment are managed by means of

hospitalization, or nursing-home care, or other institutional means.  The risk management

situations that require these very special individuals to be the focus of the kind of analysis
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normally intended to apply to the general public will be rare.  This does not mean that the

possibility can be ignored, but that usually it will not remain as a factor in the policy decision.

Mutagenic carcinogens pose a much more difficult set of policy issues that have not

been given the attention they deserve.  Two sources of heightened susceptibility exist.

First, it is plausible that the association observed between poor nutritional status (or,

more properly, its surrogates, low income or socioeconomic status) and higher rates of cancer

death arise from the impact of this condition on the barriers to mutational change discussed

above.  There exists evidence that these people suffer higher rates of mutation than richer

individuals [Jones, 1995].28  This raises a very thorny issue for policy makers facing site-

specific decisions such as air permits for industrial facilities or cleanup levels for a Superfund

site near very poor neighborhoods.  Should the cleanup levels be reduced to offset their

possibly increased susceptibility?  This increase is not limited to cancer but relates to all causes

of death.  Clearly, increasing their income and thus improving nutrition represents the best

policy means to improve their health, for stresses arising from site-related exposures are likely

to be but a fraction of their total.  It is not hard to imagine circumstances in which, given a

particular level of expenditure, benefits to the community would be maximized by a minimal

cleanup coupled with investments to improve their income.  It is beyond the scope of this

paper to explore these issues, but further exploration would be useful.

A second group with increased susceptibility to cancer consists of subpopulations

whose susceptibility is increased by virtue of inheriting diminished DNA repair capacity.  These

                                               

28 However, results reported by Shaddock, et al. [1993] suggest that restricted caloric intake, by itself, does not
diminish DNA repair capability.
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include some small subpopulations very deficient in one or more kinds of DNA repair (e.g.,

people with xeroderma pigmentosum, ataxia telangisia, and "fragile X syndrome"), but

predominately the (apparently larger) fraction of the population that appears to have somewhat

reduced repair effectiveness.  These people may bear a high proportion of human cancer

[Knudson, 1977, 1995].29

Those who are highly repair-deficient cannot be considered part of the normal

population because specific risk-management measures must be taken or they die very young.

For instance, people with xeroderma pigmentosum inevitably develop malignant melanoma

very young unless they absolutely avoid sunlight.

At issue is the larger group, many of whom die of cancer in their 50s and 60s.  It is not

known if in these people DNA repair capacity is diminished, or their repair effectiveness is just

less than normal.  If it is that their repair effectiveness is reduced but their capacity is normal,

minimally elevated exposures to mutagens will not significantly increase their risk.  The normal

control on mutation-rate will operate.  But if capacity is diminished, any extra exposure will

increase risk.  (More properly, it will tend to increase risk of dying from cancer earlier rather

than later.)  In principle, this issue can be addressed through research; such research should be

given a high priority as this subpopulation is better identified and studied.

                                               

29 Knudson [1977] states that 70-80% of cancer has some genetic component; about 2% is due to inheritance
of certain specific genetic anomalies (such as the "DCC" gene that causes colon cancer) that confer a very high
relative risk (100-fold or greater) to developing cancer, either as a child (e.g., inherited retinoblastoma) or a
young adult.  The remainder may well come from genetic differences that increase susceptibility perhaps 3-fold.
If this is so, and about 10% of the population inherits these differences (that are not yet defined or understood),
then since about 25% of the population eventually dies from cancer -- a rate that would have changed little this
century, were it not for cigarette smoking -- these people comprise most of the cancer deaths [Knudson, 1995].
It seems likely that this more common inheritance occurs as less-effective DNA repair alleles [Loeb, 1991].
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"Noncancer" Effects

This paper has focused on cancer but many of the conclusions hold for other kinds of

adverse effects.  We showed that if toxic substances act by interfering with some physiological

process that is closely regulated, such as cell replication, biological control implies a threshold

determined by the capacity of the control system to compensate.  This conclusion holds

specifically for effects caused by substances that mimic or antagonize hormones and related

chemical messengers.  We note that estrogens and the other sex hormones fall into this class;

thresholds exist for the actions of "environmental estrogens."  Thresholds will also exist for

developmental toxins that act by slowing cell division, as retinoic acid does.

Substances that act by straightforward cell killing also will exhibit threshold dose-

response curves.  These include strong acids and bases, and also organ-specific toxins such as

carbon tetrachloride (liver) and cadmium salts (kidney).  There will always exist some ability

for tissues to resist these agents, some capacity to absorb damage without killing the cells.  In

addition, studies on dose-response of substances that accumulate in susceptible tissues, such as

lead in nerve cells, may give the appearance of acting by "no threshold" mechanisms.  Lead, in

particular, interferes with enzymes that play a role in development (among other things).

Enzyme systems include spare capacity, and can adjust to stress.  Low clearance rates may

imply that low exposures cause adverse effects.  Observing effects at low exposures simply

does not imply that effects will occur at any exposure.

Yet not all toxic responses are of this kind.  Some time-sensitive processes, such as

mutations in critical control genes, probably are not controllable in the sense we have been

using.  Mutation-caused developmental toxicity should not be assumed to exhibit threshold
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behavior, even though the incidence of such effects is too small to be observed in most cases.30

Nevertheless, this possibility should not be ignored in evaluating the health risks posed by

mutagenic compounds.

CONCLUSIONS

Although "no threshold" has been the accepted policy basis for regulating carcinogens

for some forty years, it is based on scientific theories that have been supplanted.  Newer

theories and results support policies based on the "threshold" theory.  The weight of scientific

evidence supports the conclusion that there exists an absolute threshold of activity for

carcinogens.  The only credible evidence arguing that thresholds do not exist, at least for

mutagenic carcinogens, relies on an assumption that all the processes that act as barriers to

attack by mutagens act as probabilistic barriers, and that the probability distributions are

infinite.  It is more likely that they are truncated, and that the extra probability of a "hit"

resulting in a carcinogenic mutant cell does go to zero at some nonzero exposure.  For

nonmutagenic carcinogens, there is no credible argument supporting the "no threshold"

position that does not also support the "threshold" theory, and a strong basis for concluding

that thresholds exist.

There exists a policy question concerning the variability of susceptibility to substances

that increase mutation or cell replication rates; if some people have infinitesimal reserve

                                               

30 Perhaps a quarter of cleft palate cases may be the consequence of mutations occurring in a fraction of the
population that carries a defective gene for the growth factors, TGF-α.  Inhibiting this growth factor results in
cleft palate in mice; the fraction of births in the susceptible subpopulation that results in cleft palate is about
that predicted on the basis of background mutation rates [J. D. Wilson, unpublished results].
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capacity, it could be concluded that, at the population level, the actual thresholds may occur at

very small exposures. Such people must be remembered in doing risk analyses, but managing

their risks separately from those of the general population may prove most satisfactory.

We observed that the "no threshold" policy has been largely supplanted by a "negligible

risk" policy and see here that the ends implied by the combination of these two ideas can be

achieved without making the "no threshold" assumption.  Thus this assumption has no remaining

policy utility.  Since it is not supported by science, it should disappear as a basis for public policy.

Some policy makers may believe that the "no threshold" policy seems to offer them

benefits:  it makes certain kinds of regulatory decisions almost automatic, or at least much

easier to decide than if the risk manager had to engage in the political act of balancing many

interests against the uncertainty in analyses of risk.  Accompanying this is a cost, borne, as is

customary, not by the beneficiaries.  It is borne by the scientific community.  If policy makers

claim that science -- clearly obsolete science -- drives them to make decisions desired on other

grounds, science loses credibility.  If for no other reason, we in the scientific community should

urge that this "no threshold" policy be abandoned.  Yet decision makers and the public should

also support a policy that can be shown to be based very firmly in well-supported science.

Doing so removes a source of confusion that advocates use as a smokescreen to hide their

objectives, which are usually value-based.  Bringing these out into the open leads to more

satisfactory, more accepted, and better public policies.
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APPENDIX:  HOW  SCIENCE  CONTRIBUTES  TO  POLICY  FORMATION

One observation made in the course of reviewing this "threshold" / "no threshold"

debate is the apparent difficulty people have in separating scientific inferences from policy

conclusions  This author believes that the difficulty stems in part from scientists' neglect of

uncertainty.  Science only informs, it does not dictate to policy.  Policy makers are perfectly

free to ignore scientists' views of the world if they so choose.  (Of course, they may look silly

having done so, but that's their risk to choose.)  Effective policy comes about as a consequence

of deliberation among those interested and affected, deliberation informed by analysis of

relevant scientific and other information.  We distinguish "scientific" information here because

Western society has found that it provides a reliable basis for making decisions [Ziman, 1978].

The three distinguishing features of science -- making results public, competition among

researchers, and testing theories against sensible reality -- serve to produce knowledge that is

more dependable than that produced any other way.31

Yet the utterances of scientists, however reliable, should not be mistaken for absolute

truth.  Scientific conclusions may be the closest approximation to reality available at any one

time, but they need always to be regarded as uncertain.  Early in this century the logical

positivists conferred on science a rarefied status close to absolute truth, but we see things

differently today:  science is recognized as very much a human activity, with all the limitations

that implies.  Notwithstanding their usual mode of discourse with nonscientists, among

                                               

31 We also note that decision makers need knowledge that is beyond the power of science to inform, knowledge
concerning values, sentiments, and political realities.  These do not fall within the sensible physical world that
is the domain of science.
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themselves scientists admit the uncertainties that always surround their conclusions.  The data

on which conclusions are based is always uncertain, the theories used to organize this data are

always approximations.32

It is very important for policy makers to understand the limits of science in addressing

any policy issue.  It should be clearly understood that the utterances of scientists are really

belief statements:  they describe what scientists believe to be the best description of nature

available at the particular moment.

There exists a very solid basis for having confidence in the practical utility of these

beliefs.  Over the last four centuries scientists have explored, tested, and hypothesized about all

of the physical world that is accessible to study.  The fundamental learnings from this study are

embedded in and supported by an astonishingly intricate and strong web of observation and

theory.  At bottom, every strongly supported statement of science relies on thorough checks

against physical reality:  the more numerous these tests, the stronger the confidence that can be

placed in any conclusion.  Not all scientific statements are amenable to direct testing (although

ingenious experimenters can often find ways to test ones that others think impossible).  Our

confidence in both those directly testable and those not depends strongly upon the weight of

evidence supporting each proposition.  A substantial quantity of inferential or indirect evidence

can add up to a strongly supportable conclusion.

Perhaps contrary to expectation, confidence in a conclusion is not necessarily the

inverse of uncertainty surrounding that conclusion.  Scientists may well be highly confident that

                                               

32 In fact, as Shlyakhter [1994] has shown, even the most careful of physicists tend to underestimate
uncertainties.
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something is correct within some range --  a "confidence interval."  For instance, suppose that

some policy decision were to depend on the rate at which white men die from bladder cancer

for the next five years.  Suppose further that NCI has been measuring this rate for more than

thirty years, and that it varies randomly around an average of 60 ± 5 deaths per year per

100,000 adult white males, where the "± 5" corresponds to two standard deviations of the

year-to-year variability over the three decades.  It is obviously impossible to know what the

bladder cancer death rate will be a year or two hence, but we can make a prediction of what is

likely to be from the NCI data, and making one prior assumption.  That assumption is that no

influence will alter the underlying rate for the next several years, i.e., that the past predicts the

future.  This assumption is consistent with everything that is known about causes of bladder

cancer.  The policy-relevant scientific prediction would then be that the "best estimate" is

60/100,000 deaths per year, with a >95% confidence that the rate will between 55 and 65 per

100,000.  Because the year-to-year variability appears to be random, this prediction is

uncertain; confidence that it will turn out to be exactly 60/100,000 will be only moderate, but

confidence that it will fall within this range will be very high.

The policy options available may not be sensitive to this ~8% uncertainty in the bladder

cancer rate.  If so, the impact on the decision to be made will be negligible. For instance, in the

early 1960s there was very real uncertainty in our measurement of the distance between the

surfaces of the Earth and Moon.  Yet it was not at all important to the decision to proceed

with the Apollo program, and would not have been important even had that uncertainty had

been one hundred times larger.  At the other extreme the uncertainties may be large enough

that any of several policy options would be consistent with the scientific knowledge.
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Conclusions from the social sciences are seldom precise enough to constrain very much

decisions concerning such important social issues as the increasing rate of teenage pregnancies.

Both the theories and observations that can be made include uncertainties so large that they

provide little basis for informing choice among policy options.

The science which underlies this "health risk assessment" field ranges from very certain,

from the point of view of policy, to quite uncertain.  Predictions based on fundamental

chemistry and biochemistry are very precise:  for instance, all cells are destroyed by strong

acids and strong bases.  Conversely, predictions based on comparative toxicology may be very

uncertain:  knowledge of the dose at which any particular chemical causes, say, kidney failure

in male rats will not necessarily predict even whether humans will suffer the same effect, let

alone at the same dose.  (Nevertheless, there are means by which reasonably reliable

predictions can be made, for specific decision circumstances.)

Scientists often speak of "weight of the evidence" regarding opposing scientific

propositions.  This phrase usually conjures up in people's minds the image of the scales of

justice, an apt parallel.  Howson and Urbach [1989] have convincingly demonstrated that the

process of scientific induction can best be described as Bayesian, with evidence for and against

any particular proposition translating into greater or smaller confidence in it.  Scientists learn

this mode of reasoning informally, by apprenticeship, and few understand or apply the

underlying theory.  Nonetheless, if a fair presentation of the policy-relevant science is to be

made, the justification for the way the evidence was weighed needs to be included.

If uncertainty is not acknowledged, as is often the case, we may be presented with

"dueling scientists."  When the uncertainty bounds do not constrain policy choices, advocates for
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one or another of the choices may, often do, select the evidence that favors their preferred option

and present it as though there were no uncertainty.  Their opponents, not surprisingly, commonly

employ the same tactic, selecting information and theory supporting their position.  It becomes

exceedingly important for scientists to be candid and for policy makers to understand the

limitations on scientists' pronouncements. Realistically characterizing uncertainty will not banish

the "dueling scientists" phenomenon, but it will empower those who wish to understand the

underlying science and the degree to which it can inform a particular decision.
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