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Abstract

Agricultural technology adoption is often a sequential process. Farmers may adopt

a new technology in part of their land first and then adjust in later years based on what

they learn from the earlier partial adoption. This paper presents a dynamic adoption

model with Bayesian learning, in which forward-looking farmers learn from their own

experience and from their neighbors about the new technology. The model is compared

to that of a myopic model, in which farmers only maximize their current benefits. We

apply the analysis to a sample of U.S. soybean farmers from year 2000 to 2004 to

examine their adoption pattern of a newly developed genetically modified (GM) seed

technology. We show that the myopic model predicts lower adoption rates in early

years than the dynamic model does, implying that myopic farmers underestimate the

value of early adoption. My results suggest that farmers in my sample are more likely

to be forward-looking decision makers and they tend to rely more on learning from

their own experience than learning from their neighbors.
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1 Introduction

Many researchers model agricultural technology adoption as a binary choice problem: farmers

choose to either adopt a new technology or not at all (e.g. Cameron, 1999; Barham et al.,

2004; Useche, Barham and Foltz, 2009). This assumption allows researchers to use the Logit

or multinomial Logit model to analyze the adoption process. However, in reality farmers may

behave in a sequential or “stepwise” fashion. They may choose to apply the new technology

on part of their land first, and then adjust their adoption in later years after observing the

outcome from the partial adoption, or, if applicable, farmers may adopt selected components

of the new technology package first and then adjust later upon learning (Leathers and

Smale, 1991). For example, during the “Green Revolution” the new agricultural technologies

included new seed varieties, optimal fertilizer usage and other cultivation requirements.

“Farmers. . . experiment with recommendations, often adopting them in stages rather than

as a complete package” (Cummings, 1975, p.24). A similar pattern is observed in farmers’

adoption path of the newly developed genetically modified (GM) seeds since the mid-1990s.

Farmers rarely switch all their land from conventionally bred seeds to GM seeds immediately.

Rather, the adoption process follows a gradual transition pattern and farmers end up with

full adoption, partial adoption or no adoption after about 15 years since the inception of the

new technology. 1

What factors have driven such an adoption pattern? Indeed, technology adoption is likely

a dynamic process, as it involves risk management, learning behavior as well as investment

adjustment (Griliches, 1957; Barham et al., 2004). Such a dynamic process essentially implies

that farmers are forward-looking, i.e., they take account of the possible future benefits or

costs when making current adoption decisions. If the new technology entails uncertainty

1Note the difference between sequential adoption and partial adoption in equilibrium. Partial adoption
in equilibrium is due to the heterogeneity in farmers’ land, such that part of their land may not be suitable
for the new technology. Sequential adoption focuses on the process, i.e., why it takes several years to reach
the “equilibrium” level of adoption.
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and high potential risk in yield or profitability, one possible future benefit of farmers’

experimenting with partial adoption today could be their updated knowledge about the

new technology through learning. With the potential future benefits in mind, it is possible

that farmers adopt a new technology in part of their land even when it appears less profitable

than the traditional technology during the initial periods. If farmers are not forward-looking,

i.e. being “myopic”, then they will only adopt a new technology if it generates greater current

benefit than that of the traditional technology. The myopic farmers will then exhibit a lower

rate of early adoption compared to the forward-looking farmers because they underestimate

the value of early adoption by ignoring the potential future benefits. Or the myopic farmers

may over-adopt in the early periods if they ignore the future costs associated with the

technology, therefore overestimate the value of early adoption of the new technology. It is

possible to observe both types of farmers in the real world. For example, a family farm with

a long history may be likely a forward-looking farmer, while a farmer with a short-run land

tenure contract may be likely a myopic farmer.

Researchers have worked hard in trying to understand the technology adoption process in

agriculture. Following Griliches (1957), early adoption literature on agricultural technology

focus on how heterogeneity in farm land and the characteristics of farmers affect adoption

decisions. For example, Feder, Just and Zilberman (1985) conduct a survey of the literature

on agricultural technology adoption and suggest that farm size, risk and uncertainty, human

capital, labor availability and the credit constraint contribute to differences in the adoption

process. A recent work by Useche, Barham and Foltz (2009) employs a mixed multinominal

Logit model to investigate the effect of heterogeneity in both farmers and the GM corn seeds

on farmers’ adoption decisions. Their results show that farmers adopt different types of GM

seeds according to their preferences on different traits embedded in the seeds.

Recent literature has started to recognize the dynamic nature of the adoption process

and to incorporate the learning component into the adoption model (e.g. Besley and Case,
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1994; Foster and Rosenzweig, 1995; Baerenklau, 2005). Both Besley and Case (1994) and

Foster and Rosenzweig (1995) model the adoption of high-yielding seed varieties (HYVs)

with learning in India during the Green Revolution era. Besley and Case (1994) find that

the cooperative learning model fits their data the best while the myopic model the worst.

Foster and Rosenzweig (1995) explicitly model farmers’ learning of the optimal target input

and focus on the effect of self-learning versus learning from neighbors. Both papers confirm

that imperfect knowledge of the new technology inhibits adoption and farmers’ learning can

reduce uncertainty significantly. Baerenklau (2005) builds a similar adoption model with a

focus on risk preference, learning and peer-group influences. He applies his model to a group

of Wisconsin dairy farmers and finds that risk preference and learning are the key factors in

driving technology adoption, and that peer-group influence plays a less important role than

self learning.

In this paper we construct a continuous choice dynamic model where forward-looking

farmers learn the profitability and the risk of a new technology by experimenting on part of

their land. Based on their Bayesian beliefs regarding the risk of the new technology, farmers

solve a finite period dynamic programming problem to choose the amount of land to allocate

to the new technology in each time period. Unlike the previous literature that focus on the

learning of the mean profit (e.g. Foster and Rosenzweig, 1995; Besley and Case, 1994), my

model focuses on the learning of the variance, or the risk associated with the new technology.

Moreover, in my structural model estimation, all the parameters in the dynamic model are

recovered by searching within the whole parameter space, which differs from the previous

dynamic adoption literature that either rely on reduced form estimation recovering only part

of the parameters (e.g., Foster and Rosenzweig, 1995) or conduct the parameter searching

within limited parameter space only (e.g. Besley and Case, 1994; Baerenklau, 2005).

My model is applied to a panel of U.S. soybean farmers from year 2000 to 2004. Two

types of seed technologies are present in the U.S. soybean seed market: the conventionally
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bred seeds and the GM herbicide tolerance seeds. For the same sample of farmers, we

estimate both a myopic model and a dynamic model and compare results from both models.

We find that the myopic model estimation predicts lower adoption rates during early years

than the dynamic model estimation, which is consistent with the belief that myopic farmers

underestimate the value of early adoption. The predicted adoption pattern from the dynamic

model fits the observed adoption path better than that from the myopic model, suggesting

that these farmers are more likely to be forward looking. My results also show that for these

farmers, self learning affects adoption decisions more than the learning from their neighbors

does, which confirms findings regarding the role of social learning in the existing literature

(e.g. Besley and Case, 1994; Foster and Rosenzweig, 1995; Baerenklau, 2005).

The rest of the paper is organized as follows. Section 2 presents the model, where

we specify the distribution of returns from two technologies: a conventional technology

and a new technology, and construct farmers’ Bayesian learning process accordingly. We

describe the data in Section 3. In Section 4 we explain the estimation strategies for both

the myopic model and the dynamic model. Section 5 presents the estimation results and the

interpretation. The last section concludes.

2 An Adoption Model with Bayesian Learning

Suppose farmers face with two technologies: an existing conventional technology (old) and

a newly developed technology (new). We assume that the profits of both technologies are

random, i.e., both technologies are risky assets for farmers. If farmers are myopic, they

will choose the adoption rate of each technology only to maximize their current benefits.

However, if farmers are forward-looking, they will choose a sequence of adoption rates to

maximize their total discounted benefits across time.
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2.1 A Mean Variance Framework

Suppose for each farmer the total profit π is normally distributed, then the expected utility

u(π) can be expressed as a function of the mean and variance of the profit (Huang and

Litzenberger, 1988, p.61) , so for farmer i

ui(π) = f(E[π], σ2(π)) ,

where E[π] and σ2(π) are the expectation and the variance of total profit respectively.

Assume function f(·) to be linear as

f(E[π], σ2(π)) = E[π]− 1

2
βi σ

2(π) ,

where βi is a measure of the degree of farmer i’s risk aversion and is specified as

βi = β0 +
β1

Ai

,

with Ai the farm size of farmer i, and β0, βi the corresponding parameters. Then, we can

write the expected utility of farmer i as:

ui(π) = E[π]− 1

2
βi σ

2(π) = E[π]− 1

2

(

β0 +
β1

Ai

)

σ2(π) . (1)

The distributions of profits from the old and the new technology are specified as follows.

2.1.1 Distribution of Returns

Assume both technologies being seed technology: the old one being the conventional seed

and the new one being the GM seed. The profit per unit of land is assumed to be normally

distributed. For conventional seed, since it has been planted for many years, we assume the

6



distribution is known to farmers:

Conventional πc ∼ N(µc, σ
2

c ) .

For GM seed, the profit at time t for farmer i is assumed to be

πigt = µg + εigt ,

where µg is the average profit of GM seed, and εigt is an independently and identically

distributed normal random variable with mean zero and variance σ2
ε . The error term εigt may

include the effect of rain fall, soil conditions, unobserved individual farmer characteristics,

etc., on the average GM profit across farmers and time, thus it is known to farmers but

unobservable to econometricians. Farmers, however, can only perceive the average profit of

GM seed µg with uncertainty, and their beliefs follow a normal distribution µg ∼ N(µigt, σ
2
igt),

which can be updated over time based on their own experience and the information they

may obtain from neighbors.

Specifically, the learning process is: at time zero, farmer i receives exogenous information

on µig0, for which farmer i believes its accuracy can be measured as σ2
ig0; At time 1, if it is

profitable, farmer i may experiment with the GM seed on part of his or her land, and then

update his or her beliefs on both parameters as µig1 and σ2
ig1, based on learning from the

field experiment. Meanwhile, farmer i observes his or her neighbors’ behavior and may also

learn from that information to update µig1 and σ2
ig1. This learning process keeps going until

it reaches the steady state.
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2.1.2 Update the Variance σ2
igt of the Perceived GM Average Profit µg

So for farmer i at time t, the total variance of the profit from planting GM seed is

σ2(πigt) = σ2(µg) + σ2(εigt) = σ2

igt + σ2

ε . (2)

The profit variance induced by the disturbance εigt, σ
2
ε , cannot be reduced by farmers’ effort

of learning. σ2
igt, however, can be reduced by learning from experiments. The term σ2

igt can be

interpreted as farmer i’s perceived variance of the GM profit or the uncertainty associated

with adopting the GM seed. Since GM is a new technology, the uncertainty is high and

farmers may perceive a high variance with its profitability initially. This perceived variance

may decrease over time if farmers learn about this new technology by experimenting on

part of their lands and/or by communicating with their neighbors. For example, Figure 1

illustrates a possible path of the perceived variance of GM profit over time with a constant

belief on the mean: at time 0, farmers’ perceived variance of µg is high; With experiments

over time, farmers become less uncertain about µg and the perceived variance σ2
igt become

lower as time t increases.

If the learning process of each farmer follows a Bayesian setup, then farmer i updates his

or her perceived profit variance of GM seed in the following way 2

σ2

igt+1 =
1

1

σ2
igt

+ Git

σ2
ε
+ G−it

σ2
ε+σ2

ξ

, (3)

where Git is farmer i’s total adopted units of land of the GM seed at time t, G−it is the

average adopted total units of land of his or her neighbors, σ2
ξ is the additional variance in

farmer i’s learning from neighbors. This formula implies that if farmer i does not adopt any

GM seed at time t, and does not obtain any information from his or her neighbors, his or her

2See Appendix A for details.
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Figure 1: Perceived Variance of GM Profit

belief toward the variance of the GM profit stays the same as it was at time t− 1. If farmer

i experiments the GM seed on part of his or her land at time t, the more he or she plants

the GM seeds (increase in Git), the more he or she will learn about µg (decrease in σ2
igt+1);

And if this farmer lives in a region with high adoption rates of his or her neighbors (increase

in G−it), he or she will also have a better knowledge of the GM technology (decrease in

σ2
igt+1). However, the information farmer i could get from neighbors may carry additional

noise comparing to information obtained from his or her own experience (|∂σ
2
igt+1

∂Git
| > |∂σ

2
igt+1

∂G−it
|).

The noise in neighborhood information may come from two sources: 1) some information

may get lost during the communication; and 2), if the average GM profit depends on farmers’

individual characteristics, as argued by Manski (1993) and Mushi (2004), the information

from the neighbors may be biased and not applicable to his or her own case.

For the variance of profit from planting conventional seed, because the conventional seed

may be vulnerable to some uncertain events such as pest infestations, we assume its variance

depends on a random state variable zt which follows an AR(1) process. So for farmer i at
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time t, the variance of the profit from planting conventional seed, σ2
ict, is

σ2

ict = σ2

ict(zt) where

zt = λ zt−1 + νt νt ∼ N(0, σ2) .

To be specific, we assume σ2
ict to be a linear function of zt

σ2

ict = σ2

ict(zit) = γ0 + γ1zt = γ0 + γ1(λzt−1 + νt) . (4)

Assume γ1 positive, a higher infestation rate brings a higher variance of the profit from the

conventional seed, therefore a lower expected utility. It also suggests that if farmer i knows

that the value of the random state variable zt will be very low at time t, then a low enough

σ2
ict would lead to a low adoption of GM seed even he or she knows that GM seed is overall

better than conventional seed.

2.1.3 Mean Profit

I assume that farmers’ beliefs on the mean of the GM profit µigt to be constant, i.e., farmers

receive an unbiased estimator of the mean on perceived profit of GM seed initially, and only

update their beliefs on its accuracy (the variance σ2
igt) in the later time periods. 3 Moreover,

we assume that there is heterogeneity in farm land and that a farmer can conceptually

arrange all his or her lands in such an order that the suitability of the land for planting GM

seeds is decreasing. This suitability for GM seeds may be related with soil conditions, land

quality, infestation vulnerability, or other factors of the land. Suppose farmer i owns a total

of Ai units of land plots, we assume that the difference between the unbiased belief of GM

3In reality, farmers may update their beliefs on the mean of the average GM profit too. See Appendix
A for the Bayesian updating of the mean. We impose this restriction in order to facilitate my empirical
analysis later for the U.S. soybean market. Moreover, my assumption may not be overly restrictive. As some
agronomists point out (Hurley, Mitchell, and Rice, 2004), in general the GM technology does not increase
but insure the potential yield, therefore GM seed does not necessarily bring a higher revenue.
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mean profit and the conventional mean profit for the kth plot, ∆µk
i , is

∆µk
i = µ̄k

i − ηc = ηig(Xi)− ηgc
k

Ai
where k = 1, 2, . . . , Ai.

where µ̄k
i is farmer i’ s belief of GM profit, ηc is the mean profit of the conventional seed, ηig

is the highest possible profit difference, which is specified to be a linear function of farmer i’s

characteristics Xi as ηig = ηg + cXi. And we assume ηgc > 0, i.e., the mean profit difference

between GM and conventional seed is decreasing in k.

Figure 2: Difference in Mean Profits

If farmers’ adoption decisions are made on comparing mean profits only, without forward

looking, the optimal adoption rate is then determined by the intercept ηig and the slope ηgc of

the mean profit difference of conventional seed and GM seed. Figure 2 plots scenarios where

the optimal adoption rate αit can be zero (line C: no adoption), 1 (line A: full adoption) or

between 0 and 1 (line B: partial adoption).

Suppose farmer i adopted a total of Git plots of GM seed at time t, the total mean profit
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he or she could get is

E[πit] =

Git
∑

k=1

(

ηc + ηig − ηgc
k

Ait

)

+

Ait
∑

k=Git+1

(ηc0)

=

(

ηc + ηigαit −
1

2
ηgcα

2

it

)

Ait

where αit ≡ Git

Ai
, i.e., the adoption rate of GM seeds by farmer i at time t.

2.2 Adoption Process

The problem for farmer i in time t is to choose an adoption rate αit in order to maximize

his or her total discounted expected utility. Assume independence between profits from land

plots, the total mean and variance of the profit for farmer i at time t is

E[πit] =

(

ηc + ηigαit −
1

2
ηgcα

2

it

)

Ait (5)

σ2(πit) = A2

it

(

α2

it(σ
2

igt + σ2

ε ) + (1− αit)
2σ2

ict

)

, (6)

where σ2
igt and σ2

ict are specified in Equation (3) and (4). The current payoff at time t for

farmer i is

uit = E[πit]−
1

2
βiσ

2(πit)

=

(

ηc + ηigαit −
1

2
ηgcα

2

it

)

Ait −
1

2
βiA

2

it

(

α2

it(σ
2

igt + σ2

ε ) + (1− αit)
2σ2

ict

)

(7)

= uit

(

α2

it, σ
2

igt

(

Git−1, G−it−1|σ2

ε , σ
2

ξ

)

, σ2

ict (zt, νt|γ0, γ1) , Ait|ηc, ηig, ηgc, βi

)

≡ uit (αit, Sit|Θ) ,

where Sit is the state variable, which includes the current belief of the GM profit variance

σ2
igt, the profit variance of conventional seeds σ2

ict, and the total soybean acreage Ait. Θ is
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the parameter space of the model Θ ≡ {σ2
ε , σ

2
ξ , γ0, γ1, ηc, ηig, ηgc, βi}.

It is commonly observed that the technology diffusion follows a pattern of S-curve, i.e.,

the new technology spreads at an increasing rate during the early period, then its adoption

slows down gradually and eventually maintains at a rather constant level. This adoption

pattern also holds for the GM soybean seeds in US: after the introduction of GM soybean

seeds in the mid-1990s, it spreads across the U.S. rapidly, but after about 10 years, especially

after year 2004, its momentum is lost and the adoption rate becomes flat. Motivated by this

fact, we model the dynamic adoption problem as a finite period model, i.e., farmer i chooses

a sequence of acts {αil}l=t,t+1,...,T to maximize his or her total discounted expected utility

from time t to the steady state time period T ,

Vit = max
{αil}

T
l=t

Et

T
∑

l=t

δT−luil(αil). (8)

With current payoff defined as in Equation (7), the Bellman Equation is

Vit(Sit) = max
αit

{uit (αit, Sit |Θ) + δ EVit+1(Sit+1|Sit)} . (9)

3 Data

In the empirical application, we apply the model developed in Section 2 to the U.S. soybean

market. The soybean market is chosen for two reasons: first, it comprises two technologies,

the conventionally bred seed and the GM seed designed to control weed, which fits the

theoretical model developed for two technologies in Section 2; second, the adoption of GM

soybean seed in the U.S. has been stabilized after year 2004, which justifies the finite period

assumption in this model.

The empirical analysis is based on a large, extensive survey data collected by dmrkynetec
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(hereafter DMR). The DMR data comes from a stratified sample of US soybean farmers

surveyed annually. It provides detailed farm-level information on seed purchases, acreage,

seed types, and seed prices. We identify a panel of 432 farmers who have been surveyed from

2000 to 2004 out of a total of 11,060 farmers in the DMR data. Figure 3 shows the average

adoption rate of GM soybean seeds of these 432 farmers over the five years, and the average

adoption rate of GM soybean seeds from the whole DMR data and from USDA NASS data

during this time period 4. The sample average adoption rate follows the same pattern as

in both the DMR population and the USDA NASS population. It suggests that farmers in

my sample may not differ from farmers in the population in terms of adoption behavior. To

avoid the complication caused by farmers’ switching between soybean and other crops across

years, we focus on farmers with relatively constant soybean acreage over time. 5 After the

screening, 348 farmers left in my sample. Figure 4 shows the locations of these 348 farmers.

Most of whom are scattered in the Midwest area.

.5
.6

.7
.8

.9

2000 2001 2002 2003 2004
year

population: from DMR USDA_national_adoption
sample farmers

Figure 3: Average Adoption Rates: Sample vs. Population

4Data is collected from the website of USDA at http://www.nass.usda.gov/. Please refer to the report
on “acreage” from year 2000 to 2004.

5In practice we construct a measure which is the standard deviation of the farm size divided by its mean,
and we dropped those farmers whose farm size variation is greater than 30%.
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Figure 4: The Location of Selected Farmers

For the neighborhood adoption rate, we define the “neighborhood” at the Crop Report

District(CRD) level, and construct the CRD adoption rate using the DMR population data.

And we use the average individual soybean acreage and the average CRD soybean acreage

over years for Ai and A−i in the empirical analysis. Other farmer characteristics include the

latitude and longitude of the center of the county where the sample farms locate.

4 Estimation

In the empirical application, we estimate two models, a myopic model for farmers without

forward-looking and a dynamic model in which farmers take account of future benefits or

costs when making adoption decisions. For both models, the simulated generalized method

of moment (GMM) is used to search the set of parameters that minimize a weighted distance

between the predicted adoption path and the observed adoption path.
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4.1 Myopic Model

Without forward-looking, farmers only maximize their current payoff in each period. Thus

for given time t, farmer i choose the optimal αit to maximize his or her payoff uit, which is

defined as in Equation (7), i.e.,

max
αit

uit =

(

ηc + ηigαit −
1

2
ηgcα

2

it

)

Ait −
1

2
βiA

2

it

(

α2

it(σ
2

igt + σ2

ε ) + (1− αit)
2σ2

ict

)

.

The first order condition gives

α∗
it(σ

2

igt|Θ) =
ηig + Aiβiσ

2
ict

ηgc + Aiβi

(

σ2
igt + σ2

ε + σ2
ict

) , (10)

where Θ is the parameter space as defined before. And the second order condition is

u
′′

it = −ηgc − Aiβi

(

σ2

igt + σ2

ε + σ2

ict

)

< 0.

Equation (10) suggests that for any set of parameters there is a one-to-one correspondence

between σ2
igt and α∗

it. Since the actual adoption rate in the first period (year 2000) is known,

we obtain the perceived GM variance for year 2000 σ2
ig0 by solving the inverse function of

α∗
it(σ

2
igt|Θ), which is

σ2

ig0(αi0|Θ) =
ηig − ηgcαi0 + Aiβiσ

2
ic0

Aiβiαi0
− σ2

ε − σ2

ic0. (11)

I then update σ2
igt for all the following years according to the Bayesian rule in Equation (3),

and compute the predicted adoption rate for each farmer in all the following years according

to Equation (10).
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4.2 Dynamic model

In the dynamic model, farmers will take account of all the future benefits when they are

making adoption decisions. In order to compute the predicted adoption path, we make

assumptions on the transition probabilities of state variables, value function of the last

period and the priors of Bayesian beliefs.

Assumption on transition probability

Since we focus my analysis to those farmers with relatively constant soybean acreage over

time, and the data suggest that the total soybean acreage in their neighborhood (CRDs)

remains rather stable during my study period, we can rewrite Ait as Ai and A−it as A−i.

The state variables can be transformed to Sit = {αit−1, α−it−1, zt, Ai, A−i} according to the

specification of σ2
igt and σ2

ict. So the transition probability of the states is

P (Sit+1|Sit) = P (αit, α−it, zit+1|αit−1, α−it−1, zit) = P (zt+1|zt) ,

because αit is determined by farmers’ maximization behavior and the pair of {αit, α−it} is a

solution of the Markov perfect equilibrium as argued by Foster and Rosenzweig (1995) and

Besley and Case (1994). For P (zt+1|zt), we follow Tauchen (1986) to discretize the space of

zt to 9 equispaced points and compute their transition probabilities. See Appendix B for

details.

Assumption on the last period

The data suggests that toward the end of my study period (year 2004), change in adoption

rate becomes flatten out (See Figure 3). Indeed most farmers stop adjusting their adoption

rate of the GM soybean seeds after three or four years since they start the field experiment

with GM seeds. Therefore we assume that in the last period the dynamic learning process
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is already in steady state, i.e., EViT+1 = EViT for T ≥ 5. Therefore the Bellman equation

for the last period is

EViT = Emax
αiT

{uiT + δ EViT+1},

and

EViT+1 = EViT =
1

1− δ
max
αiT

uiT (SiT |Θ) .

Based on the value of the last year, we compute the value function for all the previous years

for each farmer according to the Bellman Equation.

Assumption on the prior of Bayesian beliefs

To update the Bayesian beliefs we need the prior for the first period for each farmer. In the

myopic case, we infer the prior belief of each farmer from their adoption rates in year 2000.

However, in the dynamic model, the relationship between the Bayesian belief and farmers’

adoption rate is no longer a one-to-one correspondence. Therefore, we use the beliefs of

year 2000 in the myopic case as starting values for the Bayesian beliefs in the dynamic

case. However, there might be a systematic error as the belief for a myopic farmer may

be different from a forwarding-looking farmer in 2000. To account for this potential bias,

we add a parameter b to all the myopic beliefs in 2000 and use them as the priors for the

dynamic case.

Compute the predicted adoption rate

The following algorithm is used to compute the predicted adoption rate:

1. Discretize the state/control space;
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The state variables are Sit = {αit−1, α−it−1, zit, Ai, A−i}, and adoption rate αit is

the control variable. we discretize all the adoption rates αit, αit−1, α−it−1 to be 51

equal-spaced points in [0, 1]. For the random state variable zt, as suggested by Tauchen

(1986), we discretize it into 9 equal-spaced points in an interval [z, z̄], where z̄ = −z =

3σ2 and they are the lower bound and upper bound of z.

2. Simulate the infestation rate zt for each period;

We assume zt is at its invariant state in the first period, and simulate 9 initial points

according to its invariant probability. Then for each initial point we simulate a sequence

for the next four years according to its transition probability.

3. Compute the Bayesian beliefs;

We compute the priors as described and update the Bayesian beliefs according to the

updating rule in Equation (3).

4. Compute the value function and the policy function, i.e., the optimal adoption rate

under each possible state, of the last period;

5. Compute the value function and the policy function for all the previous years by

backward induction according to the Bellman equation in (9);

6. Trace out the adoption path for each farmer based on the policy function.

4.3 Simulated GMM

Given the random state variable zt, simulated GMM is used to estimate the parameters. For

the myopic case, we solve the model for all the simulated states zt and take the average. For

the dynamic case, we compute the optimal adoption path for each simulated zt and then

take the average value. In both cases, we try to find a set of parameters that minimize the

weighted distance between the predicted adoption rate and the actual adoption rate.
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Define the prediction error as e(θ) = α∗
it(θ)− αs

it, where α∗
it(θ) is the predicted adoption

rate, αs
it is actual adoption rate, and let D be all the data available, i.e., D = {αit, α−it,

Ai, A−i, Xi}. Following Hansen and Singleton (1982), we assume that at the true parameter

value θ0,

E(e|D, θ0) = 0 . (12)

Then for any function of data D, T (D),

E(T (D)e(θ0)) = 0 . (13)

This fact is used to construct moments to estimate the parameters by generalized method of

moments(GMM). Let k be the dimension of the parameters, and l be the dimension of the

moments, l ≥ k due to identification requirement. Let gi(θ) ≡ Ti(D) e(θ), then the GMM

objective function is

J(θ) = n · ḡn(θ) ·Wn · ḡn(θ) , (14)

where

ḡn(θ) =
1

n

n
∑

i=1

gi(θ) ,

and the efficient weight matrix is

Wn =

(

1

n

n
∑

i=1

ĝiĝi
′ − ḡnḡ

′
n

)−1

,

with ĝi = ĝi(θ̃) obtained from a preliminary estimation of θ with W = I, where I is the

identity matrix. The asymptotic distribution of the estimates θ̂ is

√
n(θ̂ − θ) → N

(

0, (G′ΣG)−1
)

, (15)
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where Σ = (E(gig
′
i))

−1 and G = E ∂
∂θ′

gi(θ).

5 Empirical Results

Both the myopic model and the dynamic model are estimated. According to the discussion in

Section 4.3, we chose the following instruments to facilitate the GMM estimation: previous

adoption rate of farmer i and his or her neighbors’ (αit−1 and α−it−1), total soybean acreage

Ai and A−i, farm characteristics Xi, i.e., the longitude and latitude , plus the prices of GM

and conventional seed from individual farmers and their neighborhoods (average price at

CRD level). In total there are 17 moments and 15 parameters for the dynamic model and

14 parameters for the myopic model. The discount factor δ is set to be 0.96 for the dynamic

model, following the practice in the literature (e.g. Rust, 1987; Pakes, 1986; Crawford and

Shum, 2005). The starting value for the myopic model is chosen based on the result of

a non-linear reduced form estimation as in Foster and Rosenweig (1995), and we use the

estimated parameter from the myopic model as the starting value for the dynamic model.

The Nelder-Mead simplex method is used to minimize the GMM objective function for both

models. Results are shown in Table 1. Figure 5 plots the predicted average adoption paths

from the myopic model and the dynamic model as well as the observed average adoption

path.

Myopic vs. Dynamic

The mean squared error (MSE) of the dynamic model is much smaller than that of the

myopic model, implying that overall the predictions from the dynamic model fit the data

better, which suggests that soybean farmers in my sample are likely to be forward looking

rather than myopic. This result suggests the myopic model underestimates the value of early

adoption and therefore predicts lower adoption rates at early years. Figure 5 shows that the
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Table 1: Estimation Results

Myopic Model Dynamic Model Initial Values
ηg 0.7911 1.1059 1
ηgc 0.421 0.5615 0.5
σ2
ε 0.3496 0.4413 1

σ2
ξ 217.5944 32.724 10

β0 1.3375 1.3961 1
β1 0.0949 0.1578 0
λ 0.1252 0.1502 0.202
σ2 0.2571 0.2021 0.236
γ0 3.6317 4.3158 5
γ1 0.7002 0.3725 1

c1 lat -2.9913 -2.9389 -2.148
c2 lat2 2.9658 3.0147 2.506
c3 lon 2.2546 2.6878 1.529
c4 lon2 -0.6557 -0.4542 -0.795

b 0.3208 0

J test 104.629 91.7459
MSE 1537.4541 91.7992

predicted adoption rate for year 2001 and 2002 from the myopic model is lower than the

observed data.

The parameter b, i.e., the difference of the Bayesian belief towards the profit variance of

GM seed between the myopic model and the dynamic model, is positive. It suggests that

the initial perceived profit risk of the GM seed is higher in the dynamic model. However,

since the dynamic model accounts for the future benefits of early adoption, forward looking

behavior still generates higher early adoption rates which are closer to the observed data

than the myopic model predicts.

Self learning vs. Learning from neighbors

Table 1 shows that the estimated parameter σ2
ξ , the noise during learning from neighbors,

is larger than the converged profit variance of the GM seed (σ2
ε), or the base line profit
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Figure 5: Observed Adoption Path vs. Predicted Adoption Paths

variance of conventional seed (γ0). It suggests that during the adoption process, farmers

rely more on their self experience than the information obtained from from their neighbors’

experience. This is consistent with the findings of other related literature (e.g. Munshi,

2004; Baerenklau, 2005; Conley and Udry, 2010).

Mean Profit

Overall, the estimated mean profit parameters (ηg, ηgc, and the parameters for latitude and

longitude) are consistent with the theoretical model, i.e., the marginal profit from adoption

GM soybean seeds is decreasing, with the exact mean profits differ across farms. Comparing

to the myopic model, the mean profit from GM seed is higher and with a smaller decreasing

marginal profit. This suggests that overall the GM soybean seed is even more profitable if

accounting for the future benefit.

The estimated parameters with respect to farm characteristics suggest that the mean

23



profit of GM soybean seed is higher if the farm is located in the south and east area, but

with a reversed second order effect in both directions.

Other Results

The estimated parameter γ1 is much lower in the dynamic model, which implies that comparing

to the myopic model, the random state variable zt has a smaller effect on the profit variance

of the conventional seed. This might happen as a forward-looking farmer could neutralize

the risk caused by random events across time.

The estimated β1 is positive, suggesting that farmers with larger total soybean acreage

are less risk-averse and more willing to adopt the GM seed. This may be driven by the

fact that a farmer with more total soybean acreage has more farm land, which indicates his

or her wealth status, and that wealthy people are less risk-averse as commonly observed in

literature.

6 Conclusion

As Besley and Case (1993) rightly put: a key factor in modeling the technology adoption is

“the extent to which empirical estimation is consistent with an underlying theoretical model

of optimization behavior”. In this paper we construct a dynamic adoption model which

models farmers’ learning behavior during the process of adopting a new technology. Using

the data from a panel of 348 U.S. soybean farmers, we estimate both a myopic model and

a dynamic model for their adoption decision on a newly developed GM soybean seed. The

results suggest that the myopic model underestimates the value of early adoption, therefore

predicts lower adoption rates at early years. Moreover, the dynamic model fits the data better

than the myopic model does, suggesting that farmers in my sample behave more likely to be

forward-looking. This finding highlights the importance of estimating an empirical adoption
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model that is consistent with the underlying decision process. It confirms that the technology

adoption process in agriculture is likely to be a dynamic process (Griliches, 1957; Barham

et al., 2004).

I also find that farmers learn both from their own experience and from the information

they obtain from their neighbors’ experience. However, the neighborhood effect we find in

this case is much smaller than the self learning effect. This result, as suggested by Mushi

(2004), may be because that the GM technology in soybean is sensitive to individual farm

characteristics, therefore experience from one farmer is not applicable to others and the

true distribution of the return of GM soybean seed can only be learned by farmers’ own

experience. In reality the social learning mechanism may be much more complicated, so a

refined social learning mechanism and access to more information on farmers’ communication

will certainly enrich the model.

Overall, my empirical results underline the importance of dynamics in estimating the

technology adoption. The model could also be applied to other topics where the dynamic

setup is essential to the problem, such as pest management or irrigation management.
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Appendix

A Bayesian Learning

A.1 Self-learning

Suppose at time 0 a farmer has a prior of πg as N(µg0, σ
2
g0). If he or she only tries GM seed

on one plot in time 0 and gets a realized profit πg0, then according to Bayesian rule, the

posterior N(µg1, σ
2
g1) is updated as

µg1 =

πg0

σ2
g
+

µg0

σ2
g0

1

σ2
g0

+ 1

σ2
g

σg1 =
1

1

σ2
g0

+ 1

σ2
g

.

If he or she planted GM seeds on G0 plots at time 0 and get an average profit on each

plot as π̄g0, then

µg1 =
π̄g0

G0

σ2
g
+

µg0

σ2
g0

1

σ2
g0

+ G0

σ2
g

σ2

g1 =
1

1

σ2
g0

+ G0

σ2
g

.

So the more plots this farmer tries, the more the weight of the posterior mean will goes

to π̄g0, which converges to the true mean θ according to the Law of Large Number as the

number of plots goes to infinity.

Following Foster and Rosenzweig (1995), we define ρg1 = 1

σ2
g1

as the precision of his or

her perceive posterior mean, and similarly ρ = 1

σ2
g0

, ρg0 =
1

σ2
g
, then

ρg1 = ρg +G0 ρg0.
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we can see that the more plots he or she tries with GM seeds, the more weights of the

precision of his perceived posterior mean shifts to the true precision.

A.2 Learning from neighbors

Suppose a farmer may observe the profits of his or her neighbors, but with an additional

noise ξ, whose variance σ2
ξ is assumed to be known for all farmers. Suppose the neighbors

grow H0 in average at time 0 and he observed an average profit as π̄h0 from the neighbors,

follow the same logic of learning from himself, we can rewrite the posterior as

µg1 =
π̄g0

G0

σ2
g
+ π̄h0

H0

σ2
g+σ2

ξ

+
µg0

σ2
g0

1

σ2
g0

+ G0

σ2
g
+ H0

σ2
g+σ2

ξ

σ2

g1 =
1

1

σ2
g0

+ G0

σ2
g
+ H0

σ2
g+σ2

ξ

.

So the information from his or her neighborhood will accelerate the process for the posterior

mean converging to the true mean. And we can similarly define ρh0 =
1

σ2
g+σ2

ξ

, then

ρg1 = ρg +G0 ρg0 +H0 ρh0.

A.3 Bayesian Updating

Notice that after time 0, the posterior N(µg1, σ
2
g1) becomes prior for time 1, and farmers keep

updating their beliefs as they did in time 0. So for a typical farmer, the Bayesian updating

at time t is

µgt+1 =
π̄gt

Gt

σ2
g
+ π̄ht

Ht

σ2
g+σ2

ξ

+ µgt

σ2
gt

1

σ2
gt
+ Gt

σ2
g
+ Ht

σ2
g+σ2

ξ

, (16)

σ2

gt+1 =
1

1

σ2
gt
+ Gt

σ2
g
+ Ht

σ2
g+σ2

ξ

. (17)
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B Approximation of an AR(1) process (Tauchen 1986)

For an AR(1) process like

zt+1 = λ zt + νt νt ∼ N(0, σ2) ,

Tauchen (1986) suggests an algorithm to approximate it in the following way.

1. First, discretize the space of z into equal-spaced points in an interval [z, z̄], where

z = −z̄ are the lower bound and upper bound of z. Suppose there are N points:

z = z1 < z2 < · · · < zN = z̄; 6

2. Suppose the length between two points is w, then the transition probability Pij =

P (zk|zj) can be computed as

Pij =























F
(

z1−λzj+w/2
σ

)

, k = 1

P (zk − w
2
≤ λzj + ν ≤ zk + w

2
) = F

(

z1−λzj+w/2
σ

)

− F
(

z1−λzj−w/2
σ

)

, 1 ≤ k ≤ N − 1

1− F
(

zN−λzj+w/2
σ

)

, k = N

3. Get the invariant probability P z of each state

Given the transition probability P , we can compute the invariant probability of each

state P z by a contraction mapping

P z = PP z
0 ,

where P z
0 is an initial probability of P z.

6Tauchen (1986) suggests that N = 9 is adequate for most purposes.

28



References

[1] K. A. Baerenklau. Toward an understanding of technology adoption: Risk, learning,

and neighborhood effects. Land Economics, 81(1):1–19, 2005.

[2] B. L. Barham, J. D. Foltz, D. Jackson-Smith, and S. Moon. The dynamics of agricultural

biotechnology adoption: Lessons from rbst use in wisconsin, 1994-2001. American

Journal of Agricultural Economics, 86(1):61–72, 2004.

[3] T. Besley and A. Case. Modeling technology adoption in developing countries. American

Economic Review, 83(2):396–402, May 1993.

[4] T. Besley and A. Case. Diffusion as a learning process: Evidence from hyv cotton.

Working Papers 228, Princeton University, Woodrow Wilson School of Public and

International Affairs, Research Program in Development Studies., May 1994.

[5] L. A. Cameron. The importance of learning in the adoption of high-yielding variety

seeds. American Journal of Agricultural Economics, 81(1):pp. 83–94, 1999.

[6] T. G. Conley and C. R. Udry. Learning about a new technology: Pineapple in ghana.

American Economic Review, 100(1):35–69, March 2010.

[7] G. S. Crawford and M. Shum. Uncertainty and Learning in Pharmaceutical Demand.

Econometrica, 73(4):1137–1173, July 2005.

[8] J. Cummings, Ralph W. The puebla project. Paper prepared for meeting on social

science research in rural development, Rockefeller Foundation, April 1975.

[9] G. Feder, R. E. Just, and D. Zilberman. Adoption of agricultural innovations

in developing countries: A survey. Economic Development and Cultural Change,

33(2):255–298, 1985.

29



[10] A. D. Foster and M. R. Rosenzweig. Learning by Doing and Learning from Others:

Human Capital and Technical Change in Agriculture. Journal of Political Economy,

103(6):1176–1209, December 1995.

[11] Z. Griliches. Hybrid corn: An exploration in the economics of technological change.

Econometrica, 25(4):501–522, 1957.

[12] L. P. Hansen and K. J. Singleton. Generalized instrumental variables estimation of

nonlinear rational expectations models. Econometrica, 50(5):pp. 1269–1286, 1982.

[13] C.-f. Huang and R. H. Litzenberger. Foundations for Financial Economics.

North-Holland, New York, 1988.

[14] T. M. Hurley, P. D. Mitchell, and M. E. Rice. Risk and the value of bt corn. American

Journal of Agricultural Economics, 86(2):345–358, 05 2004.

[15] C. F. Manski. Identification of endogenous social effects: The reflection problem. The

Review of Economic Studies, 60(3):531–542, 1993.

[16] K. Munshi. Social learning in a heterogeneous population: technology diffusion in the

indian green revolution. Journal of Development Economics, 73(1):185–213, February

2004.

[17] A. Pakes. Patents as options: Some estimates of the value of holding european patent

stocks. Econometrica, 54(4):pp. 755–784, 1986.

[18] J. Rust. Optimal replacement of gmc bus engines: An empirical model of harold zurcher.

Econometrica, 55(5):999–1033, September 1987 1987.

[19] G. Tauchen. Finite state markov-chain approximations to univariate and vector

autoregressions. Economics Letters, 20(2):177–181, 1986.

30



[20] P. Useche, B. L. Barham, and J. D. Foltz. Integrating technology traits and producer

heterogeneity: A mixed-multinomial model of genetically modified corn adoption.

American Journal of Agricultural Economics, 91(2):444–461, 05 2009.

31


