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Externalities, Decreasing Returns, and Common Ownership 

R. David Simpson 

Abstract 
Placing production units under common ownership is often suggested as a solution to the problem 

of externalities. This will not always be true when there are decreasing returns to scale. An atomistic 
industry could be more efficient than a monopoly in some instances. Even when the “optimal” industry 
configuration would involve a finite number of producers, no two may have appropriate incentives to 
combine. An omniscient and benign regulator can always assure a more efficient outcome than would 
result from the combination of private producers. Whether real-world regulators should be called upon, 
however, is less clear. 
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Externalities, Decreasing Returns, and Common Ownership 

R. David Simpson 

Introduction 

Externalities can be corrected in several ways. A regulator may impose direct restrictions. 
The regulator may impose a tax on the externality or the activities generating it. Alternatively, 
the regulator can specify a total ceiling on the amount of the externality to be generated among 
several sources, and allow individuals to trade permits for generating the externality. A private 
solution could, in theory, be implemented by contracts among parties providing payments either 
to reduce or to allow the generation of externalities. 

Another private solution would be to combine all parties generating and receiving 
externalities into a single entity. The owner of the resulting combination would have an incentive 
to restrict generation of the externality to the efficient level. Such a combination could have 
ambiguous welfare effects. On one hand, common ownership internalizes externalities. On the 
other hand, a monopolist with market power may have an incentive to restrict output beyond the 
point justified by the internalization of marginal social costs (Buchanan 1969).1 

Interest in common ownership as a solution to environmental problems has risen in recent 
years. A school of free-market environmentalists asserts that many environmental problems can 
be solved by private markets, such as those for properties affected by externalities (see, e.g., 
Anderson and Leal 2001). Concern with the ecosystem services provided by natural landscapes 
(see, e.g., Daily 1997) has also led some researchers to investigate in greater detail the conditions 
under which uniting a landscape under single ownership can result in socially optimal 
performance. Numerous examples have been cited in which property developers, for example, 
have followed “smart growth” strategies. By preserving2 certain areas of a development in a 

                                                 
1 The standard employed for measuring social welfare throughout this paper will be net monetary benefits. The 
concentration of ownership will in general have distributional as well as efficiency effects, but we will not consider 
the former. 
 
2 Such preservation may also involve contracts with purchasers requiring them to preserve the natural areas in 
perpetuity as well. 
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natural state, for example, a land developer may be maximizing her total earnings from sales in 
the development. Geoffrey Heal has both cited examples of such phenomena (2000) and 
provided rigorous conditions under which common ownership is optimal (2001). In essence, the 
conditions are first, that the owner of the property be able to fully internalize all benefits and 
costs from its environmental features, and second, that the owner perfectly price-discriminate in 
her sales of products whose attributes depend on those environmental features. 

This paper demonstrates that common ownership does not, in general, result in the 
efficient generation of externalities unless we further require constant returns to scale in 
production. The reasoning is straightforward. One might ascribe the existence of multiple 
production units to decreasing returns to scale. If these production units have not been combined 
yet, it may be because doing so would not prove efficient.3 Decreasing returns to scale are due to 
the presence of factors that cannot be replicated, such as proximity to immobile natural 
resources. 

A common owner could instruct each externality-generating production unit to act so as 
to maximize the profit of the entire concern.4 This would, in theory, match the objective of a 
benign regulator and result in the efficient outcome. Realistically, however, ownership oversight 
must itself be regarded as a limited resource. To suppose otherwise would be to deny the 
relevance of vast literatures on corporate governance, principal-agent problems, and the design 
of managerial incentives (for one recent survey, see Prendergast 1999).  

The conclusions of these literatures can be summarized as follows. It is costly, and in 
some instances impossible, for the owner of an enterprise to observe exactly what its managers 
are doing. Leverage over risk-averse managers can be achieved by tying their compensation to 
the performance of the units they manage. Such incentives have two limitations, however. If 
compensation is tied to aggregate performance, one manager will have an incentive to free-ride 

                                                                                                                                                             
 
3 Another possible reason such production units have not been combined is that doing so would violate antitrust 
laws. The present paper abstracts entirely from market-power issues in order to concentrate on the implications of 
returns to scale. 
 
4 I will refer to profit here, although externalities affecting consumers as well as producers might not be reflected in 
market transactions. 
 



Resources for the Future Simpson 

3 

on another’s efforts. If compensation is tied to individual unit performance, managers may be 
tempted to impose externalities on other production units. The limitations of the owner’s 
oversight might prevent her from inferring the source of such externalities. In short, owner 
oversight is a scarce resource whose limitations may prevent the replication of production units 
under constant returns to scale. 

Decreasing returns to scale can have several implications for the ability of private actors 
to achieve mutually beneficial combinations. Three results are demonstrated. First, optimal 
industry structure in the presence of externalities may involve more than one producer and may, 
in some instances, be atomistic. Second, benign regulation can result in a more efficient outcome 
than even the most efficient configuration of independent producers. Third, individual producers 
generally do not face appropriate incentives to enter into combinations that would enhance the 
efficiency of the industry in which they operate. 

The third result has a precedent in work by Salant et al. (1983) on industrial mergers. 
Those authors found that merging Cournot oligopolists typically do not profit. The concentration 
of market power such combinations facilitate is analogous to the internalization of externalities 
in this analysis (which does not consider market power issues in order to concentrate on 
externalities). In each instance, combining entities may provide greater benefits to the producers 
who are not merging than they receive themselves. A somewhat broader range of outcomes is 
possible in the present model than in that of Salant et al. (1983), who find that mergers among 
duopolists, and only such mergers, are profitable. In this paper there are examples in which the 
only two producers would not wish to combine, and also examples in which no two producers 
among any number would choose to combine, even though industry profits would be maximized 
with a finite number of producers. 

The results speak to issues in environmental regulation. The analysis could be applied to 
many examples but will take an example from agriculture. Production relies upon ecosystem 
services generated by land that is not cultivated. Such services are notoriously difficult to value. 
How shall we assure that they are provided, then? Geoffrey Heal (2000, 125) has written, 
“Valuation is neither necessary nor sufficient for conservation. We conserve much on which we 
do not place economic value, and we do not conserve much that we value economically.” The 
wisdom of these observations is unexceptionable, but the question remains how we might best 
motivate conservation of the assets that provide ecosystem services. Heal suggests that 
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organizing transactions in such assets and services can mitigate the problem (Heal 2000, 134–
41). This paper questions the mitigation thus achieved.5 

The analysis proceeds by constructing an example in which production both generates 
and depends upon an externality, and individual producers experience decreasing returns to 
scale. A concrete example is presented in terms of agricultural production. Because comparisons 
must be made between levels of total profit rather than marginal conditions, it is necessary to 
employ a specific functional form. Individual farmers have a Cobb-Douglas production function 
distinguished by three properties. First, an individual farmer’s output depends positively on the 
amount of land he cultivates, and negatively on the total amount of land cultivated in the 
community. The latter assumption can be motivated by biological considerations: Natural habitat 
may be essential to populations of beneficial wild animals, and these animals may be far-
ranging.6 The second distinguishing property of the model is that the amount of the externality 
any given farmer experiences depends not only on the total amount of land remaining outside 
cultivation but also on the individual farmer’s share of land under cultivation. The larger the 
individual farmer’s field (in proportion to nearby fields), the more likely it is that wildlife will 
use it. The final distinguishing property is that the production function exhibits decreasing 
returns to scale in land cultivated and the service provided by natural habitats.  

We then characterize a noncooperative outcome. In game-theoretic terms, we solve for 
the Nash equilibrium of a one-shot game in which each farmer decides how much of the land at 
his disposal to cultivate, taking other farmers’ land use choices as given. Having derived 
individual land use decisions and profits, we can then treat the corresponding aggregate values as 
functions of the number of landowners. The optimal number of landowners is that number for 
which aggregate profit is greatest. We can then ask what incentives there are for combining 
holdings into this optimal number. Following this, we ask whether a benign regulator might 
produce a more efficient solution by restricting the land use choices of individual farmers. 

                                                 
5 The intention is not to portray the author of thoughtful work as a straw man. A reasonable reading of the work 
cited is that Heal suggests, entirely correctly, that markets can provide some appropriate incentives. What to do 
beyond that remains an open question. 
 
6 Animals with complex life cycles may be particularly appropriate examples. Insects may, for example, require one 
type of habitat in their larval stage, but then spread over large distances as adults. 
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Results are easily understood as consequences of, on one hand, externalities, and on the 
other, decreasing returns to scale. Competing forces are at work when holdings are combined. 
Production is enhanced by internalizing externalities, but at the same time it may be stifled by 
stretching fixed factors too thin. Depending upon which of these effects dominates, and to what 
degree, the optimal structure of landholding among noncooperative farmers may call for 
innumerable atomistic landowners, for a finite number, or for all land to be concentrated under a 
single owner. In contrast, an atomistic structure is always optimal when a regulator can control 
land use choices directly. Regulatory authority can be used to address externalities. With this 
problem resolved, there is no reason to sacrifice the efficiency inherent in large numbers of 
producers. 

The policy implications of the analysis may not be as straightforward as they first appear. 
An omniscient regulator might improve performance by requiring every farmer to cultivate less 
land. An omniscient regulator is, however, no less a fiction than an indefatigable entrepreneur. 
Although the paper suggests reasons why private markets might not achieve the optimum 
optimorum, it is not the author’s intention to dismiss an idea for which he feels considerable 
philosophical sympathy. It remains an open question whether real-world regulation, with all the 
limitations it faces, could assure better outcomes than do real-world private decisionmakers.  

I. The Model 

Suppose that the production of each farm is a function of two arguments. The first is the 
flow of ecosystem services the farm appropriates. The other is the land the farmer devotes to 
production. We will suppose that the production function exhibits decreasing returns to scale.  

Notation is as follows. Farms are indexed by an integer i = 1, 2,…, m. Farm i’s 
production is qi; its land under cultivation is ai; and its ecosystem services are ni. Corresponding 
uppercase variables denote total production, Q; total land under cultivation, A; and the total flow 
of ecosystem services, N. The total flow, N, is a function of the amount of potential farmland 
maintained in natural habitat. Let H denote total land available. Then H – A is the amount 
maintained in natural habitat. 

Any number of examples could be given to illustrate this general structure, but one is 
particularly apposite. Total output on a farm may depend on the land the farmer has under 
cultivation and the wildlife that serves the land by pollinating crops or eating pests. Such wild 
animals may require natural habitat for foraging, breeding, refuges to escape predators, or other 
purposes. Life-cycle considerations may be important. Wildlife may breed when crops are not 
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available, and hence eggs, larvae, or other life stages may require that natural habitats be 
maintained. Mobile populations may move to the land of another farmer, and vice versa. Each 
farmer is, then, providing some externalities for her neighbors when she maintains habitat. 
Common models of biological growth model wildlife populations as functions of habitat area. If 
natural habitat constitutes a limiting factor on wildlife populations, it is appropriate to model the 
services that such populations provide as a function of land maintained in a natural state.  

Similar considerations may apply in modeling natural ecosystems that regulate water 
flow and other examples (see, e.g., Daily 1997 for a list of the services that natural ecosystems 
provide). Essentially the same analysis would also apply to situations such as pesticide 
overspray, which may kill wildlife serving not only the fields of the farmer doing the spraying 
but those of his neighbors as well. 

It is useful to have a concrete example to motivate the exposition, so N will henceforth be 
the population of pollinators. Let us use the simplest possible form to relate pollinators to natural 
habitat: 

AHN −= . (1) 

Similarly, and in keeping with the example, suppose that the number of pollinators 
attracted to a given farm is proportional to that farm’s area under cultivation as a fraction of the 
total: 

A
aNn i

i = .(2) 

This seems a reasonable representation of the way pollinating insects might spread over 
adjoining and homogeneous fields. 

Let farm i’s production function be of the Cobb-Douglas form, 
αβα −= iii anq (3) 

We will generally assume that β < 1, so the production technology exhibits decreasing 
returns to scale. 

Using the definitions given thus far,  

( ) β
α

αβ
α

αβ
α

ii
i

i
i

i a
A

AHa
A
aAHa

A
aNq 






 −=



 −=






= −− .(4) 

No important generality would be obtained by making the price of output explicit, 
incorporating a set of costly inputs, or including a price for land. Let us suppose, in order to 
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concentrate attention on the matters of interest, that the price of output is normalized to one, 
demand for output is perfectly elastic, and there are no other inputs. 

If all m farmers act independently, each maximizes profit by choosing an area ai to 
cultivate such that 

01
2

1

=





 −+






 −−=

∂
∂ −

−
β

α
β

α

βα ii
i

i a
A

AHa
A
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A
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a
q .(5) 

Rearrange expression (5) as 







 −=

A
AHa

A
H

i βα 2 .(6) 

As the outcome should be symmetric, A = mai, so 







 −=

ma
maH

am
H βα 2 , 

or 

H
m

ma 2β
αβ −= ..(7) 

Total agricultural land use is 

H
m

mA
β

αβ −= .(8) 

The results (7) and (8) can be used to solve for qi in (4), 

[ ]
β

αββ
α αβ

β
α 2m

mHqi

−−








= (9) 

Multiplying by m to determine total output, we have 

[ ]
12 −

−−








= β

αββ
α αβ

β
α

m
mHQ .(10) 

II.The Optimal Number of Farms 

Conventional wisdom has it that externalities can be internalized by placing the entities 
both generating and receiving the externalities under common ownership. This is not necessarily 
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true. Consider the problem of maximizing joint production. Use expression (10) now to express 
total production as a function of the number of separate farms. 

Differentiate expression (10) with respect to m:  

( ) ( )( ) ( )
β

αβ
β

α αββαβαβ
β

α 2
1 121

m
mmH

dm
dQ −++−−








= −− .(11) 

If there is to be an interior solution for the optimal number of farms, which we will 
denote as m*, the two terms in the numerator of the fraction must be of opposite sign.7 An 
interior solution is obtained when α + β > 1. Under any other circumstances the optimal structure 
involves atomistic farms. Recall that α < β. The externalities one farm imposes on others are 
limited when α + β ≤ 1, so the decreasing-returns-to-scale consideration dominates, and optimal 
structure is atomistic. 

The second-order condition for a maximum is satisfied when α + β > 1 and can be used 
to rule out other potential solutions. The details are more tedious than enlightening, however, and 
are relegated to Appendix A.1. 

When α + β > 1, m can be chosen to set (11) to zero, and we would have 

( )






+−

−=
βα

β
β
α

1
21*m .(12) 

We ought also require that a meaningful solution have m* ≥ 1. It is obvious on inspection 
that when β = 1, m* = 1. Recall that β = 1 when the production function displays constant returns 
to scale in the two arguments of land and ecosystem services. Not surprisingly, then, the optimal 
industry structure under constant returns and externalities is a single farm. There are no 
disadvantages associated with the concentration of production in a single entity, so the 
advantages of internalizing the externalities dominate. 

A single firm would also be optimal if β = α, but this case can be dismissed as 
uninteresting, as it would imply that the marginal product of cultivated land is zero. The two 
extremes we have identified, β = 1 and β = α, are the roots of the quadratic equation in β defined 
by (12) when m* = 1. For all α < β < 1 and α + β > 1, m* > 1.  

                                                 
7 Meaningful solutions will have m* a positive integer. Thus βm* – α > 0. 
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Results of a number of numerical examples are reported in Table 1. Note the triangular 
pattern. When α + β < 1 the optimal structure is atomistic. Since α is necessarily less than β, 
values of beta less than ½ are not reported, and the section of Table 1 for which α > β is 
obviated. The numerical examples confirm that the approximations afforded by treating m as a 
continuous variable are reliable. 

 

Table 1: Optimal Number of Farms as a Function of αααα and ββββ 
β 

      
 0.55 0.65 0.75 0.85 0.95 
 0.1 ∞ ∞ ∞ ∞ 2 
 0.2 ∞ ∞ ∞ 3 1 
 0.3 ∞ ∞ 4 2 1 
 0.4 ∞ 4 2 1 1 
α  0.5 2 2 2 1 1 
 0.6 * 1 1 1 1 
 0.7 * * 1 1 1 
 0.8 * * * 1 1 
 0.9 * * * * 1 
* Not meaningful, as α < β. 

III. Incentives for Efficiency-Enhancing Combinations 

We have just seen that the most efficient outcome is not necessarily achieved under 
single ownership. Even if single ownership, or concentration of holdings under a finite number 
of owners, were most efficient, it is not necessarily easy to achieve such a combination. The 
problem is that any subset of entities that combine generates positive externalities for all other 
farmers. Unless enough farmers make payments to compensate those who have agreed to benefit 
the community by withdrawing land from production, efficient consolidations will not occur. 

Let us consider the incentives of two farms to join under common ownership. The 
production realized by two among m farms is 2q(m). If these farms were to merge, they would 
constitute one production unit among m – 1, and produce q(m – 1). Such a merger would be 
profitable, then, if 

( ) ( )mqmq 21 >− .(13) 



Resources for the Future Simpson 

10 

Answers will be more easily derived if we continue to abstract from the integer constraint 
and suppose 

( ) ( ) 11 ⋅+−≈
dm
dqmqmq .(14) 

In order to avoid some awkward notation, expression (14) is treated as though a 
divestiture, as opposed to a merger, were contemplated, but in this model divestitures and 
combinations are entirely symmetric. Now using (14) in (13), a merger between two farms would 
be profitable if 

( )
dm
dqmq 21 >−− , 

or, suppressing arguments and rearranging, 

mdm
qdqm −<

2
.(15) 

The elasticity on the right-hand side is 

( )[ ]mm
mmdm

qdq βα
αβ

β −−
−

= 2 .(16) 

If m ≥ 1, and recalling that β > α, the fraction β/(βm – α) is positive, and the expression 
in square brackets is negative. The elasticity of individual farm output with respect to the number 
of farms is declining. The comparison in (15) can be expressed as 

( )
2

2 m
mm

m >
−

−
−

+
αβ

α
αβ
βαβ .(17) 

It can be shown (see Appendix 2) that this inequality can be satisfied only for m < 4. 
Numerical examples establish both that the limiting behavior described in the appendix occurs 
and that the differentiable approximation we have employed follows closely the exact results 
obtained for integer values of m. 

Although individually remunerative combinations can happen only if m < 4, there is no 
assurance that the optimal industry structure can always be achieved by combinations among 
existing farms. Consider, for example, the situation depicted in Table 2. Although industry 
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output is maximized when there are four farms, no pairwise combination among a larger number 
is attractive to the owners who would combine. 

Table 2: An Example in Which Efficient 
Combinations Are Never Privately Attractive 

Number of farms Output per farm Total output 
1 0.608 0.608 
2 0.329 0.658 
3 0.222 0.666 
4 0.167 0.667 
5 0.133 0.666 
6 0.111 0.664 
7 0.095 0.662 
8 0.082 0.659 
9 0.073 0.657 
10 0.065 0.655 
Parameter values: H = 1, α = 0.25, β = 0.80 

IV. Optimal Regulation 

Implicit in the analysis above is the assumption that firms cannot be compelled by 
regulatory authority to restrict their land use. Let us now consider a situation in which a regulator 
could require such restrictions. The regulator’s objective would be to maximize output over all 
firms. We can characterize this objective by summing the individual farmer’s objective, (4), over 
all farms: 

∑∑
==







 −=

m

j
j

m

j
j

i

a
A

AHq
a 11

max β
α

.(18) 

The first-order condition for each farm’s land use decision would then be 
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Assuming symmetry, we have, on rearranging, 
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A
AHa

A
Hm j βα 2 , 

or 
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HA 






 −=
β

αβ
.(20) 

Each farm would cultivate one mth of this total, that is, 

H
m

a r
j 







 −=
β

αβ .(21) 

Note that we are using a superscript r to denote these first-best outcomes. 

Expressions (20) and (21) may be used to compute output per farm, 

( ) ( ) ( )
β

αββ
αβ

α
αβ

β
α

m
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A
AHq r
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r
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−−
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 −= .(22) 

Total output becomes 

( ) βαβ
β

α αβ
β

α −−−







== 1mHmqQ r

j
r .(23) 

If there are decreasing returns—that is, if β < 1—the regulator would always prefer an 
atomistic structure. Since the regulator can compel jointly optimal performance, she can take 
advantage of the economies of atomistic production without having to combine farms in order to 
provide stronger incentives for internalization. 

How does the first-best outcome induced by the regulator compare with that from the 
output-maximizing combination of farms with no regulatory compulsion? Consider the quotient 
of expression (10) derived in Section II divided by the expression we have just derived, (23):  

β
αβ

αβ
αβ mm

Q
Q

r

−









−
−= .(24) 

This ratio is necessarily less than or equal to one, with equality holding only when α = 0 
or m = 1. This limit on the ratio is obvious by construction. The objective of regulation is 
presumed to be the maximization of output, so the regulated outcome can result in no less 
production than the unregulated. This conclusion is also demonstrated mathematically in 
Appendix 3. 
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V. Conclusion 

Three principal results have emerged. First, combining all farms under common 
ownership does not necessarily maximize industry profits. Second, farmers will not necessarily 
have appropriate incentives to combine into an efficient industry structure. Third, a hypothetical 
regulator could induce superior performance by imposing restrictions on each farmer’s use of 
land.  

These results have been demonstrated in a very simple model. In the interest of clarity we 
have omitted considerations such as elasticity of demand for output, costs of inputs, and dynamic 
aspects of biological resources. Although a richer model would be more realistic, the three 
conclusions would still obtain. 

Two considerations might be particularly important in interpreting the results of the 
simple exercises we have conducted. First, land use decisions have been treated as one-time 
choices among farmers. Individuals interacting with one another over generations may be able to 
achieve more efficient outcomes by adopting strategies that depend on past actions (the extensive 
literature on the “folk theorem” in repeated games treats these issues; see, e.g., Mas-Colell et al. 
1995, 404). In that context as well, however, efficient outcomes will be more difficult to achieve 
with larger numbers of actors. Rewards to deviation from collectively efficient strategies 
typically increase with the number of actors, as do the costs of detecting such deviations in the 
presence of stochastic factors. 

The second important issue that has been sidestepped concerns heterogeneity across 
farmers and landscapes. Land use choices among each of a group of farmers have an equal effect 
on all farmers in the group (and, implicitly, on no one outside the group). The reality is probably 
very different—albeit also very poorly understood. It is often plausible to suppose that farmers’ 
land use choices have the greatest effect on their own production and that of their immediate 
neighbors, but declining effects as distances increase. Spatial and temporal scales are important 
in making such determinations, however. To continue with our example of pollinating insects, 
areas foraged by an existing hive of wild bees are limited, but one farmer provides a positive 
externality for others if he maintains bee populations that could colonize other areas. 

The Cobb-Douglas model with which we have worked is patently unrealistic in one 
respect. Output is unbounded if production is divided among infinitely many infinitesimal farms. 
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This unrealistic aspect could be obviated by including a fixed cost of operation in the 
specification of the individual farmer’s and the regulator’s objective functions.8 As there are 
diminishing returns in the number of farms, adding a linear cost term in the number of farms 
would necessarily result in an interior solution for both the optimal number of noncooperative 
farms and the optimal number of farms under regulation.  

The result embodied in Equation (24) would continue to hold. For any given number of 
farms, a regulator could effect a more efficient outcome than would result from even the optimal 
combination among noncooperative firms. Still more efficient outcomes might result if the 
regulator could also choose the appropriate number of farms. 

The policy prescription emerging from this analysis may be less obvious than it seems. 
“Impose regulation” may seem good advice, but this begs the question “How much?” The 
analysis suggests that some small restriction on land use among numerous farmers would always 
be a step in the right direction. It is less clear how far such steps can be taken before they become 
excessively restrictive. The point of the paper is that there may be significant impediments to 
purely private actions resulting in the optimum optimorum. To suppose that an omniscient, 
purely benevolent regulator would achieve a substantially better outcome is no less of an appeal 
to a deus ex machina than is putting blind faith in the efficiency of market outcomes. It is worth 
bearing in mind as well that regulation has its costs. Even the most benign regulators expend 
social resources in performing their function. A private market outcome could, in the final 
analysis, still be the best practical alternative.  

                                                 
8 This would be reasonable. The operation of a successful business requires the attention of an entrepreneur, and 
there are both upper and lower bounds on the attention an individual can devote to the enterprises she controls. We 
have not incorporated such factors into the exposition because the analytical difficulties introduced would 
complicate results considerably: Closed-form solutions would no longer obtain.  
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Appendixes 

A.1 Conditions under Which Atomistic Farms Are Optimal 

In order for the upper bound on the collective output of farms to occur for some positive 
m*, expression (11) must be satisfied as an equality. This can occur if α + β > 1. Expression (11) 
can also be an equality if β is less than ½. Inspection of expression (12) shows that the implied 
value of m* would then be a fraction, however (recall that α < β). Moreover, such a point is a 
minimum rather than a maximum. To see this, calculate the second derivative of joint output with 
respect to the number of farms: 
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The first term in brackets is zero if the expression is evaluated at m* for which dQ/dm = 
0. If β is less than ½, the second terms in brackets is positive, and hence the entire second 
derivative is positive when evaluated at m*. Thus the second-order condition for joint output 
maximization is not satisfied. We conclude, then, that if β < ½, the optimal industry structure is 
one with innumerable tiny farms. Note that this second-order condition is satisfied for α + β > 1.  

If β > ½ and α + β ≤ 1, the first-order condition (11) is always positive, and innumerable 
atomistic farms are again optimal. 

A.2 A Limit on the Number of Farms for Which a Pairwise Combination Would Be 
Profitable 

Differentiate the left-hand side of inequality (17) with respect to α for fixed β and m. 

( ) =







−

−
−

+
∂
∂

αβ
α

αβ
βαβ

α mm
m 2 ( )

( ) 012
2 >

−
−

αβ
ββ

m
m ..(A2) 

Now differentiate the same expression with respect to β: 
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We conclude, then, that the left-hand side of inequality (17) reaches its greatest value in 
the limit as α approaches β and β approaches 1.  

Making these substitutions in (17), we have 

2
2 m> , or m < 4.   (A4) 

 

A.3The Ratio of Noncooperative to Regulated Output 

Expression (24) in the text gives the ratio of industry output under the noncooperative 
equilibrium to that under optimal regulation: 
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When α = 0 or m = 1, the expression is one. Differentiating with respect to α for fixed β 
and m, we have 
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A sufficient condition for this entire expression to be negative (maintaining the 
assumptions m ≥ 1 and 1 > β > α > 0) is that the expression in square brackets be negative.  

Again, evaluate the expression in square brackets at α = 0 and α = β. At the former, (m – 
1)/m < ln m for all values of m of 2 or more. When α approaches β, the logarithm expression 
tends to infinity while the first term approaches 1. Finally, differentiating the expression in 
square brackets with respect to α again demonstrates that it is decreasing in α for α < β. 

We have concluded, then, that the term in square brackets in (A6) is less than zero for all 
values of α between zero and β. This means that expression (A5) is declining for all values of α 
between zero and β. One must then be its maximum on that interval, and would be achieved only 
in the limit as α approaches zero. 
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