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Abstract

A significant increase in demand for fuel ethanol in California should be ex-

pected if all gasoline sold in the state were to be blended with 10% ethanol, as

envisaged in the State Alternative Fuels Plan. This paper assesses the potential

of California agriculture to supply biofuel feedstock in the form of switchgrass.

We construct a fully calibrated, multi-region, multi-input and multi-output

model of agricultural supply for California’s Central Valley based on the prin-

ciples of Positive Mathematical Programming. We exploit the biogeochemical

model DAYCENT to estimate production functions for switchgrass in each agri-

cultural region. We then predict the extent and location of potential switchgrass

production in the Central Valley. Our results suggest that adoption rates differ

widely among regions, meaning that the location of processing plants may be

an important issue. They also suggest that switchgrass adoption is not likely

to displace specialty crops by much. From a purely methodological standpoint,

this study illustrates the complementarity of agronomic and economic infor-

mation for the calibration of economic optimization models meant to capture

farmer behavior at the regional scale.

The State Alternative Fuels Plan (SAFP) approved by the California Energy

Commission in 2007 predicts that if all gasoline sold in California were to be blended

with 10% of ethanol, California would see an increased use of ethanol from 900 million

gallons to approximately 1.5 billion gallons. In addition, the SAFP emphasizes the

need for California to produce biofuels, establishing the goal that by 2020, 40% of the

biofuels used in the state should be produced within the state. However, the economic

feasibility of growing bioenergy crops in California has yet to be analyzed. Given

the vast heterogeneity of California’s agricultural landscape, assessing the potential

of California agriculture to supply biofuel feedstock in sufficient quantity and at

reasonable prices is a nontrivial question.

In this study, we propose to assess the opportunity cost of allocating farmland

and water resources to the cultivation of biofuel crops in California’s Central Valley.1

1Our focus on land and water as the main limiting resources for California agriculture seems
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To this end, we construct a fully calibrated, multi-region, multi-input and multi-

output model of agricultural supply based on the principles of Positive Mathematical

Programming (PMP). Since their popularization by Howitt (1995b), PMP models

of agricultural supply have been used extensively in policy analysis to predict the

response of agricultural systems facing resource, technology and policy constraints to

exogenous shocks. The models are typically calibrated against observed regional—

e.g., in the U.S., county-level or state-level—cropping patterns and input allocations,

under the maintained assumption of profit-maximizing behavior.

More recently, the literature on mathematical programming has developed method-

ologies to also force regional programming models to replicate an exogenous supply

response pattern, through the use of prior information—typically in the form of econo-

metric estimates—on supply elasticities (Heckelei, 2002; Heckelei and Wolff, 2003;

Jansson and Heckelei, 2008; Mérel and Bucaram, 2010; Mérel et al., 2011a). The idea

is to avoid constructing models that display unreasonable supply responses to price

shocks. In practice, this additional demand on the part of PMP models is possible

to satisfy, due to their typical under-determinacy. In the present study, we exploit

these later developments in PMP calibration so as to control the model’s responses

to output price changes.

The U.S. Department of Energy believes that biofuels made from crops of na-

tive grasses could reduce the nation’s dependence on foreign oil, curb emissions of

greenhouse gases and strengthen America’s farm economy (BFIN, 2009). Feedstocks

differ in the amount of energy yielded per acre of land, the amount of inputs required

in production and the extent to which they compete with existing agriculture for

scarce resources. According to the above criteria, cellulosic ethanol feedstocks such

as miscanthus and switchgrass can be expected to fare better than current biofuel

feedstocks such as corn (Sexton et al., 2009).

Switchgrass, a perennial crop indigenous to Midwestern states, is one of the cel-

lulosic ethanol feedstocks most commonly studied in the US (Schmer et al., 2008).

Production conditions and expected yields under California’s climate remain largely

unknown. Recently, Lee et al. (2010) have used the biophysical process model DAY-

CENT, calibrated on experimental data collected by the University of California,

Davis from various experimental plots, to simulate the yields of six different varieties

of switchgrass in California’s Central Valley. Their study provides spatially disag-

justified in light of the study by Johnston and McCalla (2004). Johnston and McCalla (2004) rank
water shortages associated with global warming as the “number one future threat” to California
agriculture. They further describe “relentless competition for resources” (land and water included)
as California agriculture’s “number two future threat”.
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gregated measures of expected yields under “optimal” production conditions, and we

use this information to estimate regional production functions for switchgrass.

These production functions are used to construct a net revenue function for switch-

grass which is then included in the PMP objective function. The regionalized supply

pattern for switchgrass is derived by iterating the economic optimization algorithm

over switchgrass price levels. Our model fully captures the opportunity cost of allo-

cating scarce resources—land and water—to switchgrass production at the regional

level, defined as the forgone net revenue from other cropping activities. Our analysis

provides information about the extent and location of potential switchgrass produc-

tion in California and has direct policy implications regarding the economic viability

of switchgrass-based biofuel production and the optimal location of processing plants.

The paper is organized as follows. First, we review recent developments in the

field of PMP calibration, with a focus on the incorporation of prior information on

own-price supply elasticities in calibrated models. This provides the methodological

basis for calibrating a regionalized model of California agriculture with land and water

constraints. Second, we explain how information obtained through simulation of crop

cycles within the biogeochemical model DAYCENT (Del Grosso et al., 2008) can be

used to introduce a new crop into the calibrated PMP model. Third, we present the

results from an application of this approach to switchgrass adoption in California. In

the conclusion, we discuss limitations and extensions.

1 First- and second-order PMP calibration

By construction, PMP models permit first-order calibration, that is, the exact repli-

cation of an observed allocation of inputs and scarce resources among activities. They

can also be calibrated to replicate exogenous supply response patterns, and we refer

to this property as second-order calibration.

1.1 Calibration against observed acreage

Calibration of a PMP model to observed input allocations and output levels is stan-

dard and described in Howitt (1995b) and Howitt (1995a). Model parameters are

chosen so that the first-order conditions to the economic optimization program are

satisfied at the observed base-year allocation. This is made possible by specifying

a non-linear objective function, to avoid overspecialization. In Howitt (1995b), a

quadratic term is added to the net revenue of profitable activities so that yields are
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linearly decreasing in acreage, but other specification rules may be used (Heckelei

and Britz, 2005; Heckelei and Wolff, 2003). The profit-maximizing assumption allows

the analyst to model the outcome of the production decisions of atomized farmers,

facing the same input and output prices, as the result of the optimization of aggregate

farm returns subject to regional resource and/or technical constraints. As such, the

calibrated production functions obtained from PMP reflect technology and resource

limitations at the regional level.

The allocation data typically consists of a single observation on market conditions

(prices of outputs and inputs, resource availabilities) and observed economic behavior

(input allocations and output levels). In applications, the reference year allocation

may be obtained as the average of a small number of observations. This is partic-

ularly useful when the data comes from different sources, as with models of explicit

input allocation such as constant-elasticity-of-substitution (CES) models, because in-

put allocation data typically comes from accounting surveys that are conducted at

different dates and/or frequencies than available data on prices, acreage and yields.

In our application, data on acreage, output prices and yields comes from the Califor-

nia Department of Water Resources, while input use data comes principally from the

University of California Cost and Return Studies.

1.2 Calibration against own-price elasticities

The use of prior information on supply elasticities to calibrate PMP models of agri-

cultural supply has been advocated repeatedly in the recent literature (Heckelei and

Britz, 2005; Mérel and Bucaram, 2010). The reason is two-fold: first, PMP models are

typically underdetermined, that is, the information on the observed cropping pattern

and input allocation is not sufficient to recover the entire set of model parameters.

The literature has dealt with this underdeterminacy problem by either imposing a

priori restrictions—in quadratic models for instance, setting off-diagonal elements

to zero is a popular modeling choice—or, more recently, by using generalized max-

imum entropy algorithms to recover the entire set of model parameters (Paris and

Howitt, 1998). The use of prior information on crop supply elasticities as a second

source of information to recover model parameters has the ability to mitigate the

under-determinacy problem.

Second, whether arbitrary restrictions or GME algorithms are used, traditional

PMP algorithms are not always geared towards ensuring consistency of the model’s

implied supply responses with econometric priors regarding the value of supply elas-
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ticities. Although any PMP model exactly replicates the observed cropping pat-

tern, different calibration rules imply different—and sometimes unrealistic—supply

response patterns (Heckelei and Britz, 2005).

An early solution to this problem has been to use “myopic” calibration rules. Such

rules ignore the change in the shadow prices of constrained resources (in particular,

land) that are induced by the change in crop prices, and therefore allow each activ-

ity to be calibrated separately from all others. However, they provide an acceptable

calibration rule only when changes in shadow prices are negligible. Mérel and Bu-

caram (2010) recently provided an ex ante test to determine, within quadratic models

of acreage allocation, whether the use of a myopic calibration rule is defendable in

practice. In essence, the base-year allocation must have a sufficiently large number of

positive activities, and no activity can have a desired acreage response that dominates

all others.

When the use of “myopic” calibration rules cannot be justified, one must take ac-

count of the fact that the implied supply elasticity of each crop depends on all model

parameters. Thus, it is no longer possible to calibrate each activity independently.

The analyst needs to solve a system of nonlinear equations that is not guaranteed

to have an acceptable solution, that is, a solution that preserves the concavity prop-

erties of the economic optimization program. Recent research in the area of exact

calibration of PMP models has focused on the following questions: (i) How to re-

cover the supply elasticities implied by a given model specification, as a function of

the model parameters to be calibrated? (ii) Given a system of nonlinear calibrating

equations, under which conditions can the analyst recover an acceptable solution?

and (iii) Under which conditions is the solution to the calibrating system unique?

Mérel and Bucaram (2010) have provided a general answer to question (i). Ques-

tions (ii) and (iii) cannot be answered generally and instead are model-specific. This

is because the general form of the calibration system depends upon the form of the

objective function. In the present study, we use the specification proposed in Mérel

et al. (2011a). These authors have derived an explicit criterion for second-order cali-

bration of a generalized CES model specification, and here we build on their findings

to generate regional variability in supply elasticities.
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Figure 1: The SWAP agricultural regions
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2 An application to California agriculture

2.1 The SWAP model

Our model of California agriculture is built as an extension to the existing statewide

agricultural production (SWAP) model developed by R. Howitt (Jenkins et al., 2001).

The SWAP model divides the California Central Valley into G = 27 regions based

mostly on water transferability. These regions are shown in Figure 1 and described

in Table 1.

There are four water sources in California: the Central Valley Project (CVP), the

State Water Project (SWP), local surface water and ground water. Water use from

these sources is either based on long-term contracts (e.g., CVP and SWP), or water

cannot be transferred between regions because of existing law (e.g., ground water).

In addition, local water agencies only provide water to specific regions. As a result,

each of the 27 SWAP regions can be considered to be independent in terms of water

allocation. Thus, there are two constrained resources in each SWAP region: land and

water. (Both constraints need not be binding, see Figure 1.)

The statewide economic optimization model maximizes net farm returns under

regional land and water constraints. The generalized CES model, first proposed by

Heckelei and Wolff (2003) and further analyzed by Mérel et al. (2011a), assumes crop-

specific production functions of the CES form, allowing for decreasing returns to scale

at the crop level. The optimization program is defined as follows:

max
qgi≥0,xgij≥0

∑

g

∑

i {pgiqgi − [(cgi1 + λgi1)xgi1 + (cg2 + λgi2)xgi2 + (cg3 + λgi3)xgi3]}

subject to


















∑I

i=1
xgi1 ≤ bg1 ∀g ∈ [|1, G|]

∑I

i=1
xgi2 ≤ bg2 ∀g ∈ [|1, G|]

qgi = µgi

[

∑

3

j=1
βgijx

ρgi

gij

]

δgi
ρgi ∀(g, i) ∈ [|1, G|] × [|1, I|]

(1)

where pgi is the price of crop i in region g and cgj is the price of input j (j =

1, 2, 3) in region g. The choice variables xgij represent the amount of input j used

in the production of crop i in region g, and qgi the output level, related to the

input employments in a generalized CES production function with parameters µgi,

βgij and δgi, satisfying µgi > 0, βgij > 0,
∑

j βgij = 1 and δgi ∈ (0, 1). There are

three explicit inputs in our model. The indices j = 1 and j = 2 denote land and

water, respectively. The third explicit input is fertilizer, assumed to be supplied in a
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SWAP Region
Counties

Name
Farming Water

acres (ac-ft)
1 22,100 77,722 Tehema, Shasta
2 171,700 561,944 Butte, Glenn, Tehema

3A 270,053 1,083,484 Colusa, Glenn, Yolo
3B 90,267 286,157 Colusa, Glenn, Yolo
4 256,010 962,542 Butte, Colusa, Glenn, Sutter, Yolo
5 358,140 1,516,316 Butte, Glenn, Sutter, Yuba
6 230,140 728,973 Solano, Yolo
7 95,560 423,454 El Dorado, Placer, Sacramento, Sutter
8 309,360 775,195 Amador, Claveras, Sacramento, San Joaquin, Stanislaus
9 394,050 1,165,949 Alameda, Contra Costa, Sacramento, San Joaquin, Solano, Yolo
10 426,980 1,448,857 Fresno, Merced, San Benito, San Joaquin, Stanislaus
11 237,130 837,133 San Joaquin, Stanislaus
12 252,200 836,296 Merced, Stanislaus
13 561,500 171,327 Madera, Mariposa, Merced

14A 485,700 1,267,819 Fresno, Kings
14B 38,100 60,553 Fresno, Kern, Kings
15A 624,300 1,735,226 Fresno, Kings, Tulare
15B 19,000 69,505 Kings
16 150,900 333,408 Fresno
17 260,800 651,771 Fresno, Kings, Tulare
18 712,700 2,074,069 Kings, Tulare

19A 84,200 297,197 Kern
19B 168,300 565,844 Kern
20 209,800 626,275 Kern, Tulare

21A 194,100 603,833 Kern
21B 102,200 219,558 Kern
21C 68,000 158,836 Kern

Table 1: Description of the SWAP regions
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perfectly elastic fashion to the farm sector. For the purpose of this study, all other

inputs (such as pesticides, labor, custom operations etc.) are assumed to be employed

in fixed proportion with land, and therefore their respective cost is included in the

price of land, cgi1.
2 The parameters bg1 and bg2 represent the limited land and water

resources in each region.

Following common PMP practice, calibration parameters λgi1, λgi2 or λgi3 are

added to the land, water and fertilizer cost terms to allow for calibration against

the reference allocation (otherwise, the model does not have enough parameters to

calibrate). For each crop, at most one of these parameters is nonzero, so that the

calibration problem is not under-determined. The choice of whether λgi1 = 0, λgi2 = 0

or λgi3 = 0 is driven by ease of calibration against the supply elasticity. The analysis

by Mérel et al. (2011a) suggests that larger sets of supply elasticities will be replicable

if the cost adjustment parameter is added to the input with the largest cost share in

the reference allocation. Therefore, we choose to add the cost adjustment to whichever

input has the largest cost share, here either land, water or fertilizer.3

The calibration phase consists of recovering the set of unknown parameters (µgi, βgi,

δgi, λgi1, λgi2, λgi3), given the reference allocation and a set of supply elasticities. The

parameter ρgi is a pure substitution parameter and is given by ρgi =
σgi−1

σgi
, where

σgi is the elasticity of substitution between any two inputs. As suggested by McFad-

den (1963), we keep partial elasticities of substitution constant between any pair of

factors.4

2.2 Data

For crop acreages in each region, we rely on the latest available version of the SWAP

model, which uses crop acreages for the year 2005 assembled by the California De-

partment of Water Resources (DWR). We follow the DWR crop classification, which

includes twenty crops or groups of crops. For grouped crops, we choose to define a

“representative” crop within the group, and attribute the information on price, yield,

2Since different activities require different proportions of these other inputs, the “cost” of land
is therefore crop-specific in our model. Note that this cost represents the cost of these inputs and
does not reflect the scarcity of land, which is embedded in the shadow value of the land constraint.

3Mérel et al. (2011a)’s analysis applies for regions with one binding constraint only. In regions
where two of the constraints are binding we apply the increment to the land cost systematically
(λgi2 = 0 and λgi3 = 0).

4In the absence of reliable prior information on the value of substitution elasticities, we choose
to set σgi = 0.21.
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Crop
Prior Calibrated Regional

elasticity elasticity variation
Almond and Pistachio 0.19 0.19 No
Alfalfa 0.44 0.46 Yes
Corn 0.21 0.79 Yes
Cotton 0.50 0.50 No
Melons, Squash and Cucumbers 0.05 0.06 Yes
Dried Bean 0.13 0.23 Yes
Fresh Tomato 0.27 0.27 No
Wheat 0.36 0.86 Yes
Onion and Garlic 0.11 0.13 Yes
Other deciduous fruits and nuts 0.19 0.19 Yes
Other field crops 0.63 0.63 Yes
Other truck crops 0.11 0.11 No
Pasture 0.24 0.25 Yes
Potato 0.11 0.15 Yes
Processing tomato 0.55 0.55 Yes
Rice 0.48 0.48 Yes
Safflower 0.34 0.35 Yes
Sugar Beet 0.11 0.25 Yes
Citrus 0.03 0.04 Yes
Grape Vine 0.05 0.06 Yes

Table 2: Statewide supply elasticities

input intensities per acre and per acre variable costs for that crop to the entire group.5

The water price for each agricultural region comes from DWR. DWR water prices

are weighted average prices, computed based on usage of the three main sources of

water: canal water, local surface water and groundwater.

For each crop/crop group, county-level agricultural commissioner reports provide

information on yield and price.6 We exploit GIS data to infer the area of each county

present in each SWAP region and then convert the county-level information into

SWAP-level data.

Most of the state supply elasticities come from the initial SWAP model. However,

supply elasticities for almond and pistachio, alfalfa, cotton, rice, processing tomato

and fresh tomato are updated using the recent study by Russo et al. (2008).

5The main reason for this approach is that we do not have the regional acreage for each indi-
vidual crop, but only for the group. In addition, the input intensity and per acre cost data, which
comes from the Cost and return studies published by the Department of Agriculture and Resource
Economics at UC Davis, are typically available only for a subset of the crops included in a given
group.

6They also provide information on acreage, but we do not use this information.
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We calibrate model (1) against the observed cropping pattern and supply elas-

ticities using the latest PMP methodology developed by Mérel et al. (2011a).7 The

starting point is a set of exogenous statewide elasticity priors (see Table 2). Mérel

et al. (2011a) have derived the necessary and sufficient conditions for calibration of

the generalized CES model. These conditions are often violated when the available

statewide elasticities are used at the regional level, even once the cost increment

parameters are chosen optimally to allow for maximum flexibility.

Our approach is therefore to construct region-specific supply elasticities using a

generalized maximum entropy algorithm that disaggregates the statewide elasticity

prior by minimizing the information cost from deviating, in each region and at the

state level, from the statewide elasticity prior, while allowing for exact calibration

based on the calibration criterion of Mérel et al. (2011a). State-level elasticities are

calculated as weighted averages of the regional supply elasticities, using output shares

as the weights. To reflect the fact that available elasticity priors are statewide and

not region-specific, we specify wider support intervals for regional elasticities than for

state-level elasticities. This implies that the information cost of deviating from the

elasticity prior is larger at the state level than at the regional level. This algorithm

enables us to recover region-specific elasticities while allowing for calibration of the

model against a set of elasticities that departs from the prior minimally—in a maxi-

mum entropy sense. The resulting regional variation in supply elasticities, certainly

desirable from a modeling perspective, is driven by observed input and output alloca-

tion patterns, the choice of functional form for the crop-specific production functions,

and the necessity to calibrate as closely as technically feasible to the initial prior.

In our application, a majority of 16 crops (out of 20) display regional variation

in their supply elasticities. The resulting statewide elasticities are reported in Table

2. While a small number of elasticities seem to differ widely from the initial prior

(notably, corn and wheat), our choice of regional and state elasticities is optimal in

the sense that the resulting statewide elasticities are as close as possible to the prior

values while allowing the model to exactly calibrate against regional elasticities that

are also as close a possible to the prior values.8

7A standard PMP approach is used to infer the dual values of constrained resources in the
reference allocation.

8Since a calibration criterion was not available for models with two binding constraints at the
time when this paper was written, the state averages reported in Table 2 only take into account
regions where either land or water is binding. Out of the 27 regions, 23 have only one binding
constraint. We note that crops for which calibrated statewide elasticities differ widely from the
prior often correspond to less profitable crops: Corn, Dried Bean and Wheat, which make more
sense because they do not require special soil quality or specialized technology and relatively easy
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2.3 Estimating regional production functions for switchgrass

To analyze how the introduction of switchgrass affects input allocation decisions in

each region, we estimate region-specific production functions for switchgrass. Since

technology parameters for switchgrass cannot be recovered from observed economic

behavior, we rely on information obtained from a calibrated biogeochemical crop

simulation model (DAYCENT, Del Grosso et al. (2008)) to identify the essential

relationship between input intensity and output. We here present a simple application

where the production function for switchgrass essentially consists of a relationship

between acreage and output, namely

qgs = µgsx
δgs
gs

where xgs is the acreage of switchgrass in region g, qgs is output, and µgs and δgs are

unknown technology parameters satisfying µgs > 0 and δgs ∈ (0, 1). This production

function is simply the fixed-proportions variant of the generalized CES specification.

We estimate the coefficients µgs and δgs econometrically using simulation data

from DAYCENT at the regional level. The DAYCENT model can simulate the yields

of six different varieties of switchgrass: Alamo, Blackwell, Cave in rock, Kanlow, Sun-

burst and Trailblazer. The water and fertilizer application rates used for each region

correspond to “optimal” rates from a purely agronomic perspective. Predicted yield,

conditional on water and fertilizer rates, is obtained at a given geographical “point.”

The DAYCENT yield prediction depends on local conditions at that point: temper-

ature, soil characteristics, weather, etc. The California Central Valley is divided into

12 × 12 km squares (cells) that are treated as being homogenous in terms of these

local conditions and therefore correspond to the same predicted yield, conditional

on switchgrass variety. Each SWAP region g is large enough to cover multiple cells,

allowing us to exploit multiple “observations” to econometrically recover the values

of µgs and δgs.

For each region g, we estimate the production function based on the following

method: for each cell included (even partially) in the region we select the highest

yielding variety of switchgrass, and rank all the cells in descending order of yield. We

then construct the first “observation” (x1, q1) as the acreage x1 = a1 of the highest

yield cell contained in the region, coupled with the resulting output q1 obtained by

multiplying a1 by the corresponding yield y1. The second observation, (x2, q2) is

constructed as the cumulative area of the two highest-yielding cells, x2 = a1 + a2,

to be replaced by other crops in California.

12



coupled with the resulting cumulative output q2 = a1y1 + a2y2, and so on. The

number of observations for each region is given by the number of cells that intersect

that region.

We then use OLS to estimate the parameters µgs and δgs in the following regres-

sion:

ln(qn
gs) = ln(µgs) + δgsln(an

gs) + ǫn
gs, (2)

where n represents the nth observation. The way we construct cumulative acreage

and cumulative output ensures that the coefficient δgs strictly lies between zero and

one. The estimation results are reported in Appendix A.

The DAYCENT model actually provides 2 sets of possible yields, ygs,1 and ygs,2,

under two weather scenarios (wet or dry year). To capture this uncertainty regarding

expected yield, we calibrate production functions under both scenarios and then in-

troduce expected revenue from switchgrass in the profit function, assuming an equal

probability of a wet and a dry year.

The regionalized economic optimization model once switchgrass is introduced thus

has the form

max
qgi≥0,xgij≥0

qgs≥0,xgs≥0

∑

g

∑

i pgiqgi −
[

(cgi1 + λgi1)xgi1 + (cgi2 + λgi2)xgi2 + (cg3 + λgi3)xgi3

]

+pgsqgs − Cgsxgs

subject to


























∑I

i=1
xgi1 + xgs ≤ bg1 ∀g ∈ [|1, G|]

∑I

i=1
xgi2 + wgxgs ≤ bg2 ∀g ∈ [|1, G|]

qgi = µgi

[

∑

3

j=1
βgijx

ρgi

gij

]

δgi
ρgi ∀(g, i) ∈ [|1, G|] × [|1, I|]

qgs = 1

2
µ̂gs,1x

δ̂gs,1
gs + 1

2
µ̂gs,2x

δ̂gs,2
gs ∀g ∈ [|1, G|]

(3)

where qgs is the regional quantity of switchgrass produced and xgs the corresponding

acreage. In the water availability constraint of program (3), the parameter wg denotes

the regional water application rate for switchgrass. The variable Cgs represents an es-

timate of the variable per-acre cost, based on the water and fertilizer application rates

used to obtain the regional yield estimates, combined with the local prices of water

and the price of fertilizer, as well as an exogenous estimate of other operating costs,

including labor. Although not the focus of this particular study, sensitivity analysis

on Cgs could be conducted to test the robustness of our results to this exogenous

information.

Table 3 shows the average water, labor and nitrogen use for switchgrass in each
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SWAP region
Input

Water Labour Nitrogen Variable cost
ac-ft/ac hrs/ac lb/ac $/ac

1 2.71 3 200 524.53
2 2.74 3 200 593.91

3A 2.99 3 200 597.08
3B 2.99 3 200 597.08
4 2.96 3 200 550.85
5 2.98 3 200 531.21
6 3.51 3 200 573.10
7 2.64 3 200 545.29
8 2.61 3 200 575.60
9 4.04 3 200 569.29
10 4.66 3 200 661.22
11 2.60 3 200 504.56
12 2.65 3 200 520.19
13 3.01 3 200 555.65

14A 4.53 3 200 800.08
14B 3.27 3 200 716.42
15A 4.08 3 200 693.16
15B 3.22 3 200 646.50
16 2.95 3 200 534.69
17 2.84 3 200 571.10
18 3.03 3 200 557.86

19A 4.64 3 200 708.42
19B 4.03 3 200 645.10
20 3.15 3 200 631.50

21A 2.95 3 200 650.56
21B 2.86 3 200 647.90
21C 2.91 3 200 649.48

Table 3: Regional input application rates
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SWAP region. These values reflect optimal irrigation from a purely agronomic per-

spective, based on local agronomic conditions. The fertilizer application rate was set

at 200 Lbs N/ac. In all regions and the labor rate was set at 3 hrs/ac based on expert

advice. Other costs such as herbicide, pesticide and machinery are not dictated by

the DAYCENT model, and we assume that they are equal to the corresponding costs

for production of the closest perennial crop currently grown in California, alfalfa.

The calibrated model can then be used for policy analysis. The question we ad-

dress here is the extent and location of switchgrass production at various hypothetical

switchgrass prices, that is, the derivation of the regional and statewide supply curves

for switchgrass. Such information is likely to be of interest to policy makers and

potential entrants in the biofuel industry. The use of a regionalized model is of

critical importance since biofuel feedstock is usually expensive to transport. It is,

therefore, pertinent to know where potential biofuel production would be located.

This particular question clearly illustrates the need for a pluridisciplinary approach

that can combine technical information regarding regional yield possibilities and in-

put intensities for the new crop (information that is typically not available to the

econometrician) and economic information regarding the opportunity cost of growing

switchgrass in each agricultural region, taking full account of the limited availability

of some inputs, the existing technology set and observed market conditions.

3 A pattern of switchgrass adoption

3.1 Generalized CES model results

To illustrate the possibilities offered by our approach, we derived the regional supply

patterns and the statewide supply curve for switchgrass in California using the fully

calibrated SWAP model (3). To this end, we simply solved program (3) iteratively

for pgs ∈ [0, $60/ton]9. We conducted this experiment under two market scenarios:

(i) exogenous output prices and (ii) endogenous output prices. In scenario (i), model

(3) was run as is. Scenario (ii) assumed downward-sloping state-level demand curves

for all crops other than switchgrass. The initial state-level prices were calculated as

Pi =
∑

g pgiqgi
∑

g qgi
, and linear demand functions were fitted through the initial point using

9There is no market for switchgrass as of now, but current research about switchgrass production
costs provide some information about the expected price for switchgrass. Perrin et al. (2008)’s
experiments suggest that the average cost is between $46/ton and $88/ton; Bangsund et al. (2008)’s
results are between $35/ton and $40/ton; Duffy (2001)’s estimations have a wide range, which is
between $49/ton and $135/ton.
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Figure 2: State supply curves for switchgrass

exogenous estimates of residual demand elasticities. The difference between the initial

regional price pgi and the state-level price Pi can be interpreted as a regional mar-

keting cost (which is negative for some regions by construction). This regional price

difference reflects differences in transportation costs among regions and is assumed

to be constant per unit of output. The market equilibrium was found by maximizing

total economic surplus, including consumer surplus and taking account of regional

marketing costs.

Figure 2 depicts the state-level supply curve for switchgrass under the fixed and

endogenous prices scenarios. The two curves are extremely close, reflecting the fact

that California faces a highly elastic demand for the included crops. The supply curves

show that the Central Valley starts to supply significant switchgrass from $46/ton.

In addition, the supply curve corresponding to scenario (i) (fixed crop prices) lies

to the right of the supply curve for scenario (ii) (endogenous crop prices). This

is expected, since, as switchgrass enters the cropping pattern, fewer resources are

allocated to other crops. When crop prices are endogenous, the prices of other crops

therefore increase as switchgrass expands at their expense, which tends to mitigate

their decline compared to the situation where crop prices do not change.
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Figure 3: Regional switchgrass output at various prices

Since our model is regionalized, we can also derive regional supply curves for

switchgrass. This type of information is particularly relevant when deciding where to

locate processing plants, in order to minimize transportation costs. Figure 3 depicts

switchgrass output for each agricultural region at four different price levels. Figure

4 depicts the corresponding acreage allocated to switchgrass as a percentage of total

regional acreage. These figures are derived under scenario (ii) (endogenous crop

prices).

Figures 3 and 4 show that the adoption of switchgrass is far from being uniform

across regions, justifying ex post the use of a regionalized agricultural model. Figure

3 suggests that processing plants should primarily be located in or near region 18,

located in the Southern San Joaquin Valley and corresponding to the counties of

Kings and Tulare, because this region appears to be an early and massive adopter of

switchgrass. This region covers a significant agricultural acreage, and a large share

of its agricultural land is predicted to be allocated to switchgrass at prices above

$54/ton.10 Regions 4, 6, 7, 8 and 9, located in the Southern Sacramento Valley

10The output and energy levels inferred from our model for prices at the upper end of the range
seem to be consistent with the feedstock requirements of cellulosic ethanol plants. Perrin and
Williams (2008) report that 80 gallon of ethanol can be extracted per ton of switchgrass. Grooms
(2009) reports that a US company has begun constructing a commercial-scale cellulosic ethanol
facility in Emmetsburg, IA. The capacity of this facility is 25 million gallon per year. At a price of
$54/ton, region 18 is predicted to supply a little more than 1 million tons, an equivalent of about
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Figure 4: Regional switchgrass adoption at various prices

and Northern San Joaquin Valley, constitute another cluster of significant suppliers.

These five contiguous regions are predicted to provide less feedstock than region 18,

yet their total combined output at prices above $54/ton lies above 0.6 million tons,

which would be enough for at least two processing plants.11 Region 12, corresponding

to the counties of Merced and Stanislaus, also emerges as a potential supplier of

switchgrass feedstock, but at the price levels considered here its predicted output

could not support a plant with a capacity of 25 million gal per year.

In contrast, some regions appear as late and/or insignificant adopters, in particular

those located in the Southern San Joaquin Valley such as region 14A, 14B, 15A, 19A,

19B and 20. This is not surprising, as irrigated switchgrass is a water-intensive crop,

and water is relatively more expensive in this part of the Central Valley. Note that

our finding that region 18 is the most significant region in terms of switchgrass output

is not a mere consequence of its relatively large size. Figure 4 shows the acreage share

of switchgrass at various prices. Region 18 appears to allocate the largest share of

cropland to switchgrass. Region 15A is the second largest region, yet it does not adopt

switchgrass at any of the price levels considered here (less than $54/ton). In other

words, the quantity of swichgrass produced in a region is not merely determined by

80 million gal of ethanol, and could thus supply three such facilities.
11The number of ethanol plants is based on the assumption that the plant capacity is 25 million

gal per year.
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Crops Initial acreage (%)
% change in acreage

switchg. price
ps = 50 ps = 54

Almond and Pistachio 11.84 -0.10 -0.58
Alfalfa 10.30 -0.45 -2.36
Corn 9.85 -1.19 -5.41
Cotton 9.77 -0.30 -1.18
Melons, Squash and Cucumbers 1.35 -0.11 -1.03
Dried bean 0.92 -0.69 -5.84
Fresh tomato 0.57 -0.04 -0.28
Wheat 5.37 -1.62 -7.77
Onion and Garlic 0.67 -0.04 -0.22
Other deciduous fruits and nuts 8.85 -0.23 -1.46
Other field crops 6.39 -1.15 -4.99
Other truck crops 3.08 -0.05 -0.34
Pasture 4.52 -0.49 -3.49
Potato 0.37 -0.05 -0.23
Processing tomato 4.45 -0.06 -0.60
Rice 8.31 -0.11 -1.49
Safflower 0.72 -0.80 -6.45
Sugar beet 0.31 -0.26 -1.09
Citrus 3.64 -1.06 -4.39
Grape vine 8.72 -0.49 -2.96

Note: Corn includes grain and sileage. Other deciduous fruits and nuts include apples, apricots,
cherries, plums, walnuts, etc. Other field crops include grain sorghum, sudan grass, sunflower, etc.
Other truck crops include artichokes, asparagus, green beans, carrots, celery, lettuce, flowers, berries,
peppers, cabbage, etc. Grape vine includes wine grapes, table grapes and raisins.

Table 4: Statewide acreage reduction for existing crops

the available cropland. It is, to a large extent, determined by the region-specific water

requirements and expected yields, combined with the opportunity cost of displacing

existing crops.

The calibrated bio-economic model can also be used to predict the contraction of

crops that are competing with switchgrass for limited resources. Table 4 shows the

percentage reduction in acreage for the existing crops at the state level, at various

switchgrass prices. At a price of $54/ton, all competing crops experience acreage

contractions, although crops that are considered “specialty crops” in California seem

to experience relatively smaller contractions. The crops that are the least affected

by the introduction of switchgrass at this price level are Onions and Garlic, Potato,

Fresh tomato, and Other truck crops. The most affected crops are Wheat, Safflower,

Dried bean, Corn, and Other field crops.
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Crops Initial acreage (%)
% change in acreage

switchg. price
ps = 50 ps = 54

Almond and Pistachio 4.60 -1.21 -4.47
Alfalfa 14.00 -2.83 -9.98
Corn 21.61 -4.17 -14.87
Cotton 8.33 -3.05 -11.02
Melons, Squash and Cucumbers 0.11 -2.58 -9.31
Dried bean 0.31 -6.31 -20.99
Fresh tomato 0.20 -0.29 -1.13
Wheat 4.15 -12.14 -31.73
Onion and Garlic 0.06 -1.74 -6.57
Other deciduous fruits and nuts 7.96 -1.65 -6.02
Other field crops 15.94 -3.72 -13.34
Other truck crops 0.63 -0.36 -1.42
Pasture 0.22 -5.08 -15.74
Potato 0.06 -1.61 -6.29
Processing tomato 0.20 -1.26 -4.69
Safflower 0.15 -13.28 -35.55
Sugar beet 0.10 -5.58 -18.78
Citrus 14.56 -2.51 -9.21
Grape vine 6.81 -3.68 -13.40

Table 5: Acreage reduction for existing crops in region 18

Table 5 shows the reduction in the acreages of competing crops for the early and

large switchgrass adopter, namely region 18. In this region, at a price of $54/ton,

where switchgrass is predicted to take over about 10% of acreage, the acreage con-

traction exceeds 15% for Safflower, Wheat, Dried Bean, Sugar Beet and Pasture. All

these crops either represent a relatively small share of initial acres or are low value.

In contrast, crops that are high value (Fresh tomato, Other truck crops, Almond

and Pistachio, Processing tomato, Other deciduous fruits and nuts) experience the

smallest contractions.

3.2 Results from a fixed-proportion variant

The above results are based on generalized CES specification for existing crops, with

an elasticity of substitution exogenously set at σgi = 0.21. Here we conduct a robust-

ness check based on a fixed-proportion variant of the previous model, that is, we set

σgi = 0.
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The regionalized economic optimization model becomes

max
qgi≥0,xgi1≥0

qgs≥0,xgs≥0

∑

g

∑

i pgiqgi − (Cgi + λgi)xgi1 + pgsqgs − Cgsxgs

subject to






















∑I

i=1
xgi1 + xgs ≤ bg1 ∀g ∈ [|1, G|]

∑I

i=1
agixgi1 + wgxgs ≤ bg2 ∀g ∈ [|1, G|]

qgi = µgix
δgi

gi1 ∀(g, i) ∈ [|1, G|] × [|1, I|]

qgs = 1

2
µ̂gs,1x

δ̂gs,1
gs + 1

2
µ̂gs,2x

δ̂gs,2
gs ∀g ∈ [|1, G|]

(4)

where pgi is the price of crop i in region g, qgi the output level, related to input

employment in a fixed-proportion production function with parameters µgi and δgi,

satisfying µgi > 0 and δgi ∈ (0, 1). We define the parameters agi as the per acre

quantity of water applied to crop i in region g. As before, the parameters bg1 and

bg2 represent the limited land and water resources in each region. Following common

PMP practice, calibration parameters λgi are added to the per acre cost term to allow

for calibration against the reference allocation. The technology parameters λgi, µgi

and δgi are recovered following Mérel et al. (2011a), so that the model replicates the

same set of region-specific supply elasticities and the same base-year allocation as in

the previous section. For switchgrass, the fixed-proportion production functions are

the same as in the previous section.

Figure 5 shows the statewide supply curves for the generalized CES model and

the fixed-proportion model, under the two scenarios regarding the endogeneity of

output prices. As expected, the fixed-proportion model predicts less switchgrass

supply at any price level, as existing crops are more constrained than under input

substitution, resulting in higher shadow prices for constrained resources. Yet, the

statewide supply curves are very close for the two model specifications, indicating that

for this simulation the use of the simple fixed-proportion variant may be sufficient.

The two models also generate very similar regional patterns regarding switchgrass

acreage and output. Figures 6 and 7 show that the fixed-proportion model consis-

tently predicts a smaller acreage of switchgrass than the generalized CES model.

Figures 8 and 9 show similar results for switchgrass output. However, both models

imply that region 18 on the one hand and regions 4, 6, 7, 8 and 9 on the other hand

are the two main adopting clusters at a price of $54/US ton.
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Figure 5: State supply curves for switchgrass

4 Conclusion

This study has demonstrated the usefulness of combining information obtained from

observed economic behavior (regionalized input and output allocation, econometri-

cally estimated crop supply elasticities) with information simulated using a biogeo-

chemical model (regionalized yield estimates) to infer the pattern of adoption of a

new crop in a diverse agricultural region. The innovative feature of this study is the

recovery of region-specific technology parameters for the new crop using information

on average yields and yield variability obtained from a biogeochemical model of plant

growth.

Once calibrated, our model was used to infer the pattern of adoption of a new

energy crop, switchgrass in California. The use of regionalized economic information

combined with regionalized yield estimates allowed for the derivation of a spatially

explicit supply pattern. Our results suggest that adoption rates differ widely among

California SWAP regions, meaning that the location of processing plants may be

an important issue. They also suggest that switchgrass adoption is not likely to

displace specialty crops by much statewide. The generalized CES model and the
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Figure 6: Regional swithchgrass adoption
for the fixed-proportion model
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Figure 7: Regional swithchgrass adoption
for the generalized CES model
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Figure 8: Regional swithchgrass output
for the fixed-proportion model
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Figure 9: Regional swithchgrass output
for the generalized CES model

fixed-proportion model yielded very comparable results in terms of acreage and out-

put adoption patterns, indicating that the move to more sophisticated technology

specifications, when no inference on intensive margin changes is sought, may not be

needed.

Although our approach represents a significant step forward in terms of the sophis-

tication of the calibration methodology used, it is not exempt from limitations. First

of all, even though our model is regionalized, the level of disaggregation (27 regions)

is not commensurate with the possibilities offered by the DAYCENT model in terms

of predicted yields. This aspect can be overcome by obtaining more disaggregated

economic data, but the cost of doing so is likely high.

Second, one can regret that the technology specified for the new crop in our appli-

cation is less flexible than that of existing crops, in the sense that it does not allow for
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substitution between factors as in the generalized CES specification. Indeed, agro-

nomic process models such as DAYCENT are specified and calibrated to accurately

reflect the effects of changes in levels of inputs such as fertilizer or water, which

generally can be considered as the intensive marginal adjustment. Multi-product

economic models with fixed-proportion production functions can only represent crop

switching at the extensive margin. To avoid losing information from the underlying

biogeochemical process models, bio-economic models could certainly take the form

of interdependent multi-input production functions, which are able to reflect ratio-

nal economic adjustment at both the extensive and intensive margins, as well as

externalities from specific inputs such as nitrogen or water.
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Appendix

A.

The regional switchgrass production function estimations are listed in the following

table 6.

28



SWAP Region

Regression method Mérel et al. (2011b) method
Scenario 1 Scenario 2 Scenario 1 Scenario 2

µ̂1

gs δ̂1

gs µ̂2

gs δ̂2

gs µ̂1

gs δ̂1

gs µ̂2

gs δ̂2

gs

1 11.71 0.98 10.75 0.99 18.00 0.93 13.63 0.96
2 12.89 0.98 11.59 0.99 12.05 0.99 13.02 0.98

3A 14.75 0.98 12.87 0.98 12.69 0.99 15.37 0.97
3B 14.75 0.98 12.87 0.98 12.69 0.99 15.37 0.97
4 15.88 0.97 12.33 0.99 12.68 0.99 13.17 0.98
5 15.06 0.97 13.10 0.97 12.34 0.99 11.97 0.99
6 14.47 0.98 12.60 0.98 17.01 0.96 13.27 0.98
7 15.68 0.96 16.48 0.95 21.22 0.94 15.85 0.97
8 14.58 0.98 16.62 0.96 22.42 0.94 16.23 0.97
9 15.25 0.97 18.26 0.95 12.89 0.99 11.43 0.99
10 20.31 0.95 14.67 0.97 15.38 0.98 11.29 0.99
11 12.31 0.98 10.82 0.99 11.42 0.99 10.26 0.99
12 17.47 0.95 12.99 0.98 17.13 0.96 12.10 0.98
13 13.02 0.99 11.93 0.99 16.79 0.97 14.25 0.97

14A 20.91 0.96 20.41 0.95 16.73 0.98 14.93 0.98
14B 16.24 0.97 14.86 0.97 20.38 0.95 11.29 0.99
15A 17.42 0.97 15.95 0.96 13.36 0.99 16.24 0.95
15B 14.99 0.99 11.52 0.99 14.79 0.99 13.14 0.98
16 14.04 0.98 11.73 0.99 12.04 0.99 10.82 0.99
17 13.33 0.99 11.58 0.99 17.51 0.91 14.15 0.94
18 19.96 0.96 16.78 0.96 14.12 0.99 12.59 0.99

19A 18.15 0.96 22.27 0.93 17.96 0.97 21.14 0.94
19B 16.29 0.98 36.82 0.90 14.13 0.99 23.20 0.95
20 17.98 0.97 15.88 0.97 13.66 0.99 13.24 0.99

21A 14.51 0.99 15.19 0.97 16.99 0.97 25.01 0.93
21B 13.24 0.98 12.39 0.98 15.97 0.96 32.31 0.82
21C 13.87 0.98 13.79 0.98 17.57 0.97 38.59 0.88

Note: All the coefficients from the regression method are statistically significant at 0.1% level.

Table 6: Estimations of regional production functions for switchgrass
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