
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


D
IS

C
U

SS
IO

N
 P

A
PE

R Apri l  2006 ,  updated May 2006     RFF DP 06-17 -REV  

 

 

Eliciting Information 
on Uncertainty from 
Heterogeneous Expert 
Panels 

Attributing U.S. Foodborne Pathogen 
Illness to Food Consumption 

 

Sandra  Hof fmann ,  Pau l  F ischbeck ,  A lan  Kru pn ick ,  

and  M ichae l  McWi l l i ams  

1616 P St. NW 
Washington, DC 20036 
202-328-5000  www.rff.org   

 



 

© 2006 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without 
permission of the authors. 

Discussion papers are research materials circulated by their authors for purposes of information and discussion. 
They have not necessarily undergone formal peer review. 

Eliciting Information on Uncertainty from Heterogeneous Expert 
Panels: Attributing U.S. Foodborne Pathogen Illness  

to Food Consumption 

Sandra Hoffmann, Paul Fischbeck, Alan Krupnick, and Michael McWilliams 

Abstract 
Decision analysts are frequently called on to help inform decisionmakers in situations where there 

is considerable uncertainty. In such situations, expert elicitation of parameter values is frequently used to 
supplement more conventional research. This paper develops a formal protocol for expert elicitation with 
large, heterogeneous expert panels. We use formal survey methods to take advantage of variation in 
individual expert uncertainty and heterogeneity among experts as a means of quantifying and comparing 
sources of uncertainty about parameters of interest. We illustrate use of this protocol with an expert 
elicitation on the distribution of U.S. foodborne illness from each of 11 major foodborne pathogens to the 
consumption of one of 11 categories of food. Results show how multiple measures of uncertainty, made 
feasible by use of a large panel of experts, can help identify which of several types of risk management 
actions may be most appropriate. 
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Eliciting Information on Uncertainty from Heterogeneous Expert 
Panels: Attributing U.S. Foodborne Pathogen Illness  

to Food Consumption 

Sandra Hoffmann, Paul Fischbeck, Alan Krupnick, and Michael McWilliams∗ 

1. Introduction 

Risk management is ideally guided by good analysis based on sound data. But in many 
cases, data are lacking or known to be inaccurate and/or biased. In such situations, expert 
elicitation of parameter values is frequently used to supplement data-based analysis (Cooke 
1990; Morgan and Henrion 1990). If the gap to be filled is narrowly defined in terms of 
discipline or expertise, expert elicitations can safely rely on a small number of experts, 
particularly if well-performing experts can be identified (Cooke and Goossens 2004). But in 
many cases, the information needed for risk management must draw on a broad range of 
disciplines, professional backgrounds, and experience. In these cases, a single expert or even a 
small group of experts may not be able provide the needed information. Where integration of 
information is required, it may not even suffice to have a series of expert elicitations that are 
more narrowly focused. Instead, the elicitation may require a panel of heterogeneous experts.  

Van der Fels-Klerx et al. (2002) present a protocol for a formal expert elicitation process 
to quantify information on continuous variables from a heterogeneous panel of experts. They 
focus on developing a process to elicit and aggregate expert responses into a single probability 
density function (PDF) that is as reliable and accurate as possible.  

This paper develops a formal protocol for expert elicitation with a heterogeneous expert 
panel that makes use of individual expert uncertainty and heterogeneity among experts as a 
means of quantifying and comparing sources of uncertainty about parameters of policy interest. 
We illustrate use of this protocol with an expert elicitation on the distribution of U.S. foodborne 

                                                 
∗ Sandra Hoffmann is a fellow, Alan Krupnick a senior fellow, and Michael McWilliams  a research assistant at 
Resources for the Future. Paul Fischbeck is associate professor in engineering and public policy at Carnegie Mellon 
University. This research was funded in part by grants from the Robert Woods Johnson Foundation and the U.S. 
Food and Drug Administration. The authors wish to acknowledge the contributions of Glenn Morris and Michael 
Taylor of the University of Maryland School of Public Health, Michael Batz and Juha Siikamäki of Resources for 
the Future, Michael Roberts of the USDA Economic Research Service, and Jody Tick and Dianne Sherman, former 
research assistants at Resources for the Future. 
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illness across foods. We focus on illnesses caused by 1 of 11 leading foodborne pathogens. 
Section 2 provides background on this application. In Section 3, the formal protocol is described, 
together with its application in the food safety context. Results and implications are presented 
and discussed in Sections 4 and 5, respectively. 

2. Background 

U.S. food safety policy is organized around specific pathogens on specific foods. But 
U.S. food safety policymakers do not have good information on how pathogens are distributed in 
the food supply or on the relationship between food consumption and illnesses caused by specific 
pathogens. Current U.S. estimates of the incidence of foodborne illness by pathogen rely on 
outbreak data and active and passive surveillance data collected by the Centers for Disease 
Control (CDC) and state epidemiologists (CDC 2006). The only existing comprehensive 
attribution of foodborne pathogen illness to foods in the United States is based on CDC outbreak 
data (DeWaal and Barlow 2002). Foodborne-illness surveillance systems do not regularly collect 
data on food consumption associated with illness, and outbreak data do not provide a reliable 
picture of the distribution of illness by food-pathogen pairings. Moreover, the quality and 
consistency of outbreak data vary by state, because state governments direct these investigations. 

At best, outbreak data give a lower bound on the number of cases of foodborne illness by 
food-pathogen combination, measured with recognized but unquantified error.  Sporadic cases of 
foodborne illness are not included in outbreak data. Error enters for many reasons. State 
departments of public health collect outbreak data which results in variation in data collection. 
Cases of rare or difficult-to-identify pathogens are often underrepresented. Cases from large 
outbreaks that are associated with restaurants or cases associated with unusual food vectors tend 
to draw attention and are believed to be over-represented.  

Whether or not outbreak data represent a lower bound to the number of cases, there is 
little reason to believe that outbreak data provide a lower bound on estimates of the percent of 
U.S. foodborne illness cases caused a pathogen-food combination. The only consistent 
attribution of foodborne illness caused by specific pathogens to food consumption uses outbreak 
data. But sporadic cases are estimated to account for more cases of foodborne illness than 
outbreak cases by an order of magnitude or more (Mead et al. 1999).  No such good data exists 
on how sporadic cases are distributed across foods and it is unlikely that that data will become 
available soon in the U.S. system.  

2 
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A fundamental problem is that direct evidence of the association between foodborne 
illness and food consumption in sporadic cases has often been destroyed or consumed by the 
time the illness is reported and is very seldom collected even when the evidence is available. 
Furthermore, dietary recall is notoriously inaccurate (Carter et al. 1981; Bernard et al. 1984).  In 
addition, the risk-generation process that results in outbreaks, which by definition are rare events, 
could be very different from that that results in sporadic case. As a result, the distribution of 
sporadic and outbreak cases across foods could differ substantially. It is perfectly possible that 
for any food-pathogen combination, the actual percentage of total foodborne cases of illness 
caused by a particular pathogen is either higher or lower than the percentage of outbreak cases. 

Food safety experts from a wide variety of backgrounds have substantive knowledge that 
could inform a sound judgment about the percentage of a pathogen causing disease in various 
foods. Knowledge of pathology, epidemiology, microbial ecology, veterinary medicine, food 
production, processing and storage technology and practices, food marketing and handling 
practices, food consumption patterns, and human medicine are all relevant to an understanding of 
the likely association of illness with consumption of particular foods. Despite the wide range of 
data that may be relevant to informing a judgment about this relationship, there is no directly 
comparable task that can be used to test experts’ performance. In such a situation, expert 
elicitation cannot reliably turn to calibration of responses based on a similar known estimation 
task (Cooke 1991). Risk managers would like to have a sound estimate of this relationship, but 
they are equally interested in knowing where existing data collection efforts are weak and where 
to focus future data collection efforts. 

3. Elicitation Protocol 

The protocol developed here makes use of the kind of heterogeneity of relevant 
backgrounds seen in the food safety context. This kind of situation, where multidisciplinary 
expertise is relevant to the risk assessment, is common to many practical decision-analysis 
problems. We supplement Van der Fels-Klerx et al. (2002) by focusing on uncertainty and using 
formal survey methods. These innovations are motivated by the need for an expert elicitation 
protocol that allows systematic examination of uncertainty where a broad range of expertise is 
relevant and no good means exists for directly evaluating the quality of data or expert judgment. 
The protocol has seven basic steps that are a modification of standard expert elicitation protocols 
(Clemen 1996; Cooke and Goossens unpublished manuscript): 
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1. Determine the size of the expert panel. 

2. Choose the model of analysis and/or aggregation.  

3. Choose the mode of elicitation. 

4. Develop the elicitation survey instrument: 

• identify relationships to be elicited and categorize hazards; 

• decide how to manage experts’ information set;  

• decide how to motivate expert judgments and address cognitive biases; 

• decide on relevant independent control variables; and 

• pretest the elicitation instrument. 

5. Identify the expert pool. 

6. Administer the elicitation survey. 

7. Analyze the survey results. 

3.1. Determining the Size of the Expert Panel 

 The size of the panel depends on 1) the type of problem for which expert judgment is 
being elicited; 2) the nature and degree of uncertainty about the problem; and 3) the range of 
relevant expertise needed to assess the problem. The narrower the task and the more defined the 
nature and extent of uncertainty, the narrower is the required the range of expertise. In such 
circumstances a small expert panel is adequate. Expert elicitations usually rely on relatively 
small expert panels, typically fewer than a dozen respondents (Merrick et al. 2005; Winkler and 
Clemen 2004). But the broader and more complex the problem, or the greater the degree of 
uncertainty about the task, the larger the panel will likely need to be. Van der Fels-Klerx et al. 
(2002), for example, use a heterogeneous expert panel of 15 to 22 experts to identify the factors 
relevant to estimating the impacts of bovine respiratory disease on dairy heifer production. 
Keeney and von Winterfeldt (1991) use a panel of 40 experts to assess the probabilities of failure 
associated with alternative sites for high-level radioactive waste storage. We believe our problem 
is best characterized as a broader and more complex problem and therefore requires a  
larger panel. 
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3.2. Mode of Analysis and Aggregation 

Much of the literature on expert elicitation focuses on how to aggregate expert judgment 
to achieve a reliable consensus on parameters or distributions of interest (Cooke and Goossens 
2004). Broadly speaking, two approaches have been taken to aggregation: behavioral and 
mathematical. Delphi processes are a widely used behavioral approach to aggregation that use 
highly structured, iterative group processes to reach consensus among experts. Van der Fels-
Klerx et al. (2002) use this approach in aggregating heterogeneous expert panels. Several 
alternative means of aggregating expert judgment through weighting expert judgments have been 
developed, including the use of a seed variable as a means of measuring experts’ performance 
(Cooke and Goossens 2004). Depending on the purpose of the elicitation, aggregation may not 
be appropriate. In many expert elicitations, the range of expert opinion may be at least as 
valuable as the aggregate assessment (Keith 1996). In cases with a high level of uncertainty, such 
as climate change, Lempert et al. (2004) have argued that it may actually be misleading to 
attempt to construct even a consensus probability distribution. The breadth of our problem 
implies that questions that can rank a wide range of experts as to the quality of their judgments 
will be impossible to identify.  

3.3. Mode of Elicitation  

There is an interaction between the desired type of analysis or aggregation method and 
the elicitation approach. The protocol developed in this study is intended to be used in situations 
of high uncertainty, where there are nonetheless a large number of experts with relevant 
knowledge. In this setting, a formal elicitation survey and standard statistical analysis of the 
survey responses can be used to preserve and formally analyze the range of expert opinion.  

3.4. Development and Administration of an Elicitation Instrument  

In the development and administration of an elicitation survey instrument, all of the basic 
questions encountered in other forms of expert elicitation must still be addressed (Clemen 1996). 
These include: identifying the relationships on which judgments are sought, classifying hazards, 
identifying the expert pool, controlling cognitive biases, deciding when and how to influence the 
information set experts bring to the elicitation task, recruiting experts, and motivating the 
assessment task. In addition, standard concerns that arise in administration of any survey, such as 
avoiding sample bias and ensuring an adequate response rate, must be addressed. An 
acknowledged hazard in expert elicitations is that experts may interpret questions differently 
(Morgan and Henrion 1990). This problem is not unique to expert elicitation: if a formal 
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questionnaire is used, survey methodology addresses this problem through pretesting and 
revision of the survey instrument (Rea and Parker 1997).  

In our foodborne illness application, a survey instrument was developed that consisted of 
a demographic questionnaire on educational background and professional experience, a self-
evaluation of food-specific expertise, a self-evaluation of pathogen-specific expertise, a 
hypothetical food attribution worksheet, and separate food attribution worksheets for each 
pathogen. The survey instrument, together with a cover letter explaining the project and 
instructions for the survey, was pretested on several food safety professionals in the Washington, 
DC, area.  

• Identification of Relationships to Be Elicited and Hazard Categorization. Morgan et al. 
(2000) call for mutually exclusive and administratively relevant categorization schemes in 
comparative risk assessments and rankings. As U.S. food safety policymakers strive to take a 
more risk-based approach to regulatory decisionmaking, one missing piece of information 
needed for priority setting is a solid understanding of the distribution across foods of illnesses by 
causal pathogen. In the example elicitation, experts were asked to attribute cases of illness 
caused by each of 11 major foodborne pathogens to consumption of food from one of 11 
categories that represent broad classes of food at the point of consumption (Figure 1). 
Categorizing foods at the point of consumption provides categories that are meaningful to the 
patients and physicians who ultimately report illnesses to CDC. This approach also provides a 
direct association between pathogen illness and food at the point of exposure, which facilitates 
risk analysis and is consistent with the focus of regulatory programs. We use food categories 
developed by the Center for Science in the Public Interest (CSPI) in its annual attribution of 
CDC outbreak data. This allows us to compare expert judgments with existing outbreak 
attributions. The CSPI categorization scheme is quite generic and was viewed as generally 
unobjectionable in the survey pretests by food safety experts.1  

                                                 
1 CSPI also includes a category for other/multi-ingredient foods. This category overlaps with other food categories 
and is therefore not mutually exclusive. Survey pretests indicated that expert respondents felt able to attribute 
illnesses based on food ingredients, given their knowledge of microbiology, food-handling practices, and food 
consumption patterns. For example, outbreak data could report potato salad as a multi-ingredient food, but food 
safety experts could make the judgment that there was a much higher probability that the problem was the raw egg, 
not the boiled potato. As a result, we do not include a multi-ingredient category. We include the category “other” in 
data collection but drop it in the final analysis, for which the remaining attributions are scaled up to add to 100 
percent.  
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The pathogens included in the study are the nine pathogens CDC follows in FoodNet, its 
primary foodborne illness surveillance program—Campylobacter spp. (Campylobacter), 
Cryptosporidium parvum (Cryptosporidium), Cyclospora cayetanensis (Cyclospora), 
Escherichia coli O157:H7 (E. coli O157:H7), Listeria monocytogenes (Listeria), Salmonella 
nontyphoidal (Salmonella), Shigella, Vibrio spp. (Vibrio), and Yersinia enterocolitica 
(Yersinia)—plus Toxoplasma gondii (Toxoplasma) and Norwalk-like viruses (Norwalk) (CDC 
2003). The inclusion of pathogens in the FoodNet data collection effort is an indication of their 
public health importance. In addition, Toxoplasma is estimated to account for the third-highest 
number of deaths from foodborne pathogens in the United States. Norwalk is estimated to 
account for the highest number of cases (Mead 1999).  

• Information Set. Expert judgment is inherently conditional on an information set. The 
extent to which expert elicitations attempt to influence this information set is largely determined 
by the purpose of the elicitation and the underlying state of relevant scientific knowledge. When 
parameter values are sought for a reasonably well-understood process, elicitations have provided 
extensive information packages and briefings on which experts are instructed to base their 
judgments (Cooke and Goossens 2004). In other cases, like the food attribution used as an 
example in this study, the need is to understand the information that experts bring to the task 
(Lempert et al. 2004).  

• Cognitive Biases and Elicitation of Uncertainty. Expert elicitations need to address 
common cognitive biases that could skew elicited responses. Respondents’ judgments tend to be 
anchoredon extreme values or on information first presented or elicited (Tversky and Kahneman 
1974). In addition, they are often overconfident of their knowledge and provide confidence 
intervals around an elicited estimate that are overly narrow. Several “debiasing” techniques (e.g., 
assessing endpoints first, thinking about extreme events, and discussing the nature of the bias) 
have been used to help widen confidence intervals (Epley and Gilovich 2001; George, Duffy, 
and Ahuja 2000; Morgan and Henrion 1990). These techniques have not been applied to the kind 
of task asked of experts in this paper—that is, assessing a vector of proportions that sum to 1.0 
and providing a confidence interval around each proportion. This is a much more constrained 
task than those typically given in debiasing exercises. 

Anchoring of some type is impossible to avoid. The survey design in our example 
elicitation focuses the respondent’s attention first on the “best” estimate and then on the extreme 
values of their confidence intervals (Figure 2). Because the best estimates have to sum to 1.0, 
eliciting confidence intervals, first followed by best estimates, would be cognitively difficult and 
could have increased the refusal rate significantly. Elicited confidence intervals, or ranges, are 
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used to make within-expert and between-expert comparisons. Providing that the respondents are 
similarly susceptible, these comparisons should be relatively unaffected any bias. 

• Independent Variables as Indicators of Background or Expertise. Like other decisions, 
expert judgments are based on respondents’ mental models of the decision problem (Morgan et 
al. 2001). Mental models are small-scale, subjective representations of external reality (Craig 
1943). They include information sets, evaluative criteria regarding the relevancy of information, 
and understandings of causal associations (Gentner and Stevens 1983).  The learning and 
socialization inherent in education and professional experience influence experts’ mental models 
of risk-generation processes (Morgan et al. 2001). Past expert elicitations have found probability 
assessments to vary by field of expertise (Banke and Jenkins-Smith 1993; RFF 2006). Survey 
questions can be used to evaluate how expert judgment varies systematically by factors that 
could affect respondents’ mental models of the risk generation process. In this food attribution 
example, we collected data on each respondent’s field of study, professional work setting, 
experience, and self-evaluated expertise.2  

3.5. Identification of Expert Pool  

A systematic approach to expert selection is needed to avoid bias. Cooke and Goossens 
(2004) recommend that experts be chosen on the basis of reputation, experience, and 
publications. Morgan et al. (2002) recommend that a panel of experts be as balanced as 
practicable in terms of affiliation, training, and subject matter. Balance across background is 
particularly important when selecting a large, heterogeneous expert panel to characterize 
uncertainty about parameters of interest.  

In our food safety example, potential respondents were chosen on the basis of extensive 
professional experience in food safety and recognized expertise in relevant areas of food safety. 
Care was taken to include people representing a wide range of scientific background and 
professional experience. Relying on an individual’s publication record as a primary criterion for 

                                                 
2 Respondents were asked to rank their own expertise for each pathogen on a 5-point Likert scale, with 1 being low 
and 5 being high. A low level of expertise was defined as “no direct experience, anecdotal knowledge only.” A 
medium level of expertise was defined as “some direct experience and wide reading.” A high level of expertise was 
defined as “primary focus of my professional work.” Respondents were asked to fill out a similar questionnaire for 
each food category. Use of self-evaluated expertise to eliminate experts or as a weight in expert elicitation has 
generally been rejected (Cooke 1991). However, we used it as a means of examining factors influencing the degree 
of an individual respondent’s uncertainty about his or her own best attribution estimate.  
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level of expertise would have eliminated state epidemiologists, who run the public health 
surveillance programs and have considerable expertise about the quality of existing estimates. 
Twelve leading experts in food safety science and management were asked to review the initial 
and revised lists of potential respondents. One major result of this review was the inclusion of 
state epidemiologists with food safety responsibilities. (State epidemiology offices have primary 
responsibility for investigation of foodborne illness outbreaks.) A pool of 100 possible 
respondents was ultimately identified through this iterative review process. We were unable to 
obtain usable contact information for 11 of the possible 100 respondents. 

3.6. Administration of the Elicitation 

Choice of how to administer a survey entails a trade-off between cost and response rate. 
Typically surveys administered in person have the highest response rates. In-person 
administration also allows for probability training and assessment techniques developed 
elsewhere in the expert elicitation literature (Morgan and Henrion 1990; Cooke 1991). But this 
approach is costly. Mail surveys are relatively inexpensive and have the advantage of not 
introducing interviewer bias, but response rates are typically low. An intermediate approach is to 
use a mail survey with phone solicitation and follow-up.  

We used a mail survey with phone solicitation and follow up in administering our food 
safety expert elicitation survey. After the purpose of the survey and the nature of the elicitation 
task was explained, 27 respondents on the list of 89 potential respondents declined to participate, 
primarily because they felt they lacked the necessary expertise. Of the 62 respondents who 
agreed to participate and were sent surveys, 44 (67 percent) returned completed surveys. This 
response rate is a good even for mail surveys of subpopulations receiving surveys of high 
salience, such as government surveys of business establishments (Groves et al. 2004; Lu 2004).  

Because of the breadth of the attribution task, respondents were instructed that they did 
not have to respond on particular pathogens for which they felt they did not have adequate 
expertise. Responses by pathogen ranged from a low of 34 to a high of 40. On average there 
were 38 responses per pathogen. In general, the basic quality of responses was good: of the 432 
pathogen level responses, 94 percent met adding-up constraints. Only 5 of the 4,488 range 
responses were illogical. Together this indicates that respondents found the expert elicitation 
survey no more difficult to complete than other mail surveys and were able to provide responses 
that are consistent with probability theory.   
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4. Analysis and Results 

4.1. Respondent Pool 

One of the basic design goals was to survey a relatively large group of experts from a 
wide range of relevant backgrounds. The pool of 100 potential respondents represented a broad 
range of workplaces. Forty-two were working in government, with 15 in state government 
(primarily state epidemiologists); 24 in federal government; and 3 in other government positions. 
Among those in federal government, nine work at the Food and Drug Administration (FDA), 
seven at the U.S. Department of Agriculture (USDA), four at CDC, and four in other offices and 
agencies. Thirteen respondents were working in industry and related private-sector employment. 
Forty-three were employed in academic institutions. Two were working in other settings. 

The final respondent pool was reasonably representative of the original list of potential 
respondents. Three respondents reported having significant work experience in multiple 
institutional settings. The remainder were evenly distributed among government, academia, and 
industry. The response rates relative to the list of 100 potential respondents (which includes 11 
people who could not be contacted) were 60 percent for government, 62 percent for industry, 35 
percent for academia, and 100 percent for other. Twenty-four (54 percent) of the respondents 
listed government as the principal setting in which they had worked over their careers. Eight 
respondents (18 percent) currently work in state government and most of them were state 
epidemiologists. Respondents who currently work for the federal government were spread over 
the primary agencies with food safety responsibility: six at FDA, five at USDA, and three at 
CDC. Fourteen respondents (32 percent) said that academia had been their primary place of 
employment over their careers. Three respondents (7 percent) listed industry as their primary 
place of employment, and two listed “other.”  

The respondents had significant professional experience and training in food safety. Of 
the 44 experts who completed the survey, 63 percent had 20 years or more of professional 
experience with this issue; 77 percent had at least 12 or more years of experience. On average, 
respondents had 21.5 years of experience working on food safety. Respondents received their 
highest degrees in a broad range of fields relevant to food safety: medicine (25 percent), food 
science (18 percent), public health (17 percent), microbiology (17 percent), and veterinary 
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medicine (11 percent).3 Ninety-four percent of the sample had PhDs, MDs, or DVMs. Of these 
there were 23 PhDs, 13 MDs, 3 DVMs, and 1 DVM and Ph.D. The remaining respondents had 
other relevant graduate degrees.4  

4.2. Self-Evaluated Expertise 

All respondents provided self-evaluations of expertise on foods, and all but one provided 
a self-evaluation of expertise on pathogens. Experts self-evaluated as having the highest level of 
expertise on meats, particularly beef and poultry (Table 1). Produce also ranked high. Beverages, 
breads and bakery, and game ranked lowest. Historically, meats and produce have been seen as 
posing greater public health risks than beverages and breads and bakery (foods whose hazards 
are naturally lower or more readily controlled) and game (which is not widely consumed).  
Respondents also believed they understood some pathogens better than others. High on this list 
were E. coli O157:H7, Listeria, Salmonella, and Toxoplasma; Cryptosporidium and Cyclospora 
have low mean expertise scores.  

4.3. Graphical Analysis of Uncertainty Measures 

We use three measures to characterize uncertainty about the attribution of pathogen-
related illnesses to foods: 1) the extent of agreement between expert and outbreak-based 
attributions; 2) the degree of variability among experts’ best estimates; and 3) individual 
uncertainty. Given the quality of data and uncertainty about the relationship between foodborne 
illnesses cause by particular pathogens and food consumption, it is not possible to say whether 
outbreak-based attributions or attributions from this elicitation are correct. Yet it seems plausible 
that there may be less uncertainty about attributions where experts agree strongly with outbreak-
based attributions.  

                                                 
3 Respondents were asked their field of work in an open-ended question. Responses were then coded to 6 fields of 
work as follows: Microbiology Group (bacteriology, food science microbiology, microbiology, area pathology), 
Public Health Group (public health, public health epidemiology, epidemiology), Veterinary Medicine Group 
(veterinary medicine, veterinary medicine parasitology), and Other (ecology, math, nutrition, quality management). 
Food science and medicine were retained as independent groups. 
4 Only a few reasonably strong correlations emerge among respondent-related variables (Pearson product-moment 
correlations that exceed 0.5 in absolute value). Not surprisingly, having a career primarily in government is 
negatively correlated with one in academia (–.73). But having a career in any of the other sectors has a negative but 
low correlation with having a career in other sectors. Having a PhD is positively correlated with working in 
microbiology (.52) and negatively correlated with working in medicine (–.58) or having an MD (–.67). Respondents 
with DVMs predominantly work in veterinary medicine (.91) and those with MDs in human medicine (.87). 
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Figure 1 provides a graphical overview of the first two measures of uncertainty—
agreement with outbreak data and variability among experts’ best estimates. Four major patterns 
emerge. First, more difference occurs among food-pathogen combinations than across pathogens 
or for particular foods. Second, there is substantial agreement between expert and outbreak-based 
attributions about which food-pathogen combination are not problems (i.e., when the attribution 
rate is low). In general, a food-pathogen combination attributed with close to zero percent of 
cases has interquartile ranges close to zero. This observation is examined analytically below. 
Third, attributions do vary by pathogens.  

At one extreme are two pathogens, Vibrio and Cyclospora, for which there is also close 
agreement between expert and outbreak-based attribution on foods attributed with a high 
percentage of cases. These pathogens have single, well-understood transmission pathways: 
Vibrio is found almost exclusively in seafood, and Cyclospora, almost purely waterborne, 
contaminates raw produce.5 At the other extreme are three pathogens for which there is 
substantial disagreement between expert and outbreak-based attribution: Campylobacter, 
Toxoplasma, and Cryptosporidium. These three pathogens differ in the degree of variation 
among experts.  

The remaining pathogens have a reasonable degree of agreement between expert and 
outbreak-based attribution but can be grouped by level of expert variability. Shigella and 
Norwalk-like viruses have fairly large inter-quartile ranges for foods attributed with more than 
10 percent of caseload by experts. The remaining four pathogens—E. Coli O157:H7, Listeria, 
Salmonela, and Yersinia—have more moderate inter-quartile ranges. Finally, most foods have 
only one pathogen for which either the difference between expert and outbreak-based attribution 
or the inter-quartile range exceeds 10 percentage points. Three foods have two or more 
pathogens where this holds.  

4.4. Statistical Analysis of Uncertainty Measures 

• Agreement between Expert and Outbreak-Based Attribution. There is substantial 
agreement between experts and the outbreak-based data about cases in which a food-pathogen 
combination is not a problem. Both experts and outbreak-based estimates attribute zero percent 
of cases to 47 foods (out of 121 possible combinations). For 22 of the food-pathogen 

                                                 
5 Personal communication with Dr. Glenn Morris, University of Maryland School of Public Health. 
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combinations, the mean expert best estimate is greater than zero but less than five percent when 
the outbreak-based attribution is zero. In total, then, experts and outbreak-based estimates agree 
that more than half (69) of the food-pathogen combinations account for less than 5 percent of the 
cases of foodborne illness caused by a particular pathogen.  

There are a substantial number of food-pathogen combinations, however, that account for 
more than a de minimis proportion of cases and for which experts do not agree with the outbreak-
based attribution. Table 2 presents descriptive statistics and tests of means for 43 food-pathogen 
combinations for which one of the two estimation methods attribute at least 5 percent of 
pathogen-related cases. For 28 of the 43, more than half of the 5th to 95th percentile ranges do 
not include the outbreak estimate. Over all possible pairings (not shown), 50 ranges (5–95th 
percentiles) do not include the outbreak-based estimates.  

Another way to look at the comparison of expert and outbreak estimates is to ask whether 
the ranking of foods for each pathogen is the same. As suggested by the box-and-whisker plots, 
for several pathogens the ranking of foods in terms of the percentage of illnesses differs 
substantially for expert and outbreak-based attributions. The most dramatic cases are 
Campylobacter, Cryptosporidium, and Toxoplasma. Outbreak-based attribution characterizes 
Campylobacter as a problem in produce and diary; experts see it as overwhelmingly associated 
with poultry. Outbreak-based attribution associates Cryptosporidium cases chiefly with 
beverages and secondarily with produce; experts would reverse this ranking and spread cases 
among a much wider range of foods than implied by outbreak data. Outbreak data associates 100 
percent of cases of Toxoplasma with game, but because this reflects a single outbreak, it is 
unsurprising that experts believe cases are more widely distributed. For several pathogens, 
including Norwalk and Listeria, Salmonella, Yersinia and Shigella, there are less marked 
differences. And for others—in particular, Vibrio, Cyclospora, and E. coli O157:H7—there is 
strong agreement between expert judgment and outbreak-based attributions.  

We use regression analysis to explain differences between an individual expert’s best 
estimates and the outbreak data estimates. As just discussed, difference may vary by food, 
pathogen, or food-pathogen pairing. They may also vary by expert characteristics such as career 
affiliation, final academic degree, field of expertise, years of experience, or self-assessment of 
expertise. Finally, we hypothesize that additional outbreaks associated with a specific pathogen 
add information and decrease the difference between expert and outbreak-based attributions.  

Table 3 presents results of Tobit regressions of expert best estimates minus outbreak-
based attributions testing these hypotheses. We use Tobit regression to accommodate the 
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censoring of the dependent variable at 0 and 100. Stepwise examination of possible hypotheses 
was used to identify a final model.  

Self-assessed food expertise was significant in explaining the difference between 
attribution estimates (at the 1 percent level). A one-point increase in mean self-reported food 
expertise is associated with a 1.35-percentage-point increase in the absolute difference between 
expert and outbreak-based attribution. But this significance disappears when food dummies are 
added to the equation. Although there is not significant correlation between food expertise and 
individual dummy variables, sign reversals and change in significance of coefficients for foods 
suggest multicollinearity is affecting results. Thus it is not possible to distinguish between the 
influence of expertise and food dummies. In addition, the number of outbreaks is significant in 
all models at a 1 percent level. An additional outbreak results in a 0.05 to 0.08 percentage point 
decrease in the difference between attribution estimates, consistent with the idea that more 
outbreaks leads to greater confidence among the experts that the outbreak data accurately 
represent reality.  

The difference between attribution estimates varies systematically by food and pathogen. 
Columns I and II of Table 3 report the influence of pathogen identity and food type on this 
difference without including other variables. The omitted dummy variables are Campylobacter 
and produce. The mean difference for produce is larger than for any other food, ranging from 9 
percentage points larger than poultry to 35 percentage points for eggs. Table 3 shows that on 
average, the difference between attribution estimates is 45 percentage points smaller for 
Cyclospora than for Campylobacter. Hoffmann et al. 2006 reports results in which alternative 
pathogen and food dummies are omitted. When Cyclospora is omitted as a dummy variable, the 
difference between attribution estimates for Cyclospora is statistically different from all other 
pathogens except Vibrio at the 1 percent level. The difference between expert and outbreak-
based attributions is 12 to 35 percentage points smaller for eggs than for any other food. 
Likelihood ratio tests comparing the full mixed-effects model with restricted models find that 
food/pathogen combination dummies jointly and food dummies jointly are significant at the 1 
percent level. Pathogen dummies are not jointly significant even at the 10 percent level.  

• Variability across Experts. Variability among experts’ judgments also provides an 
indication of whether knowledge about a relationship is settled. This is a statistical measure of 
consensus of expert opinion. The standard deviation of the best estimates ranges from a low of 0 
for 13 food-pathogen pairings to a high of 35 percentage points for Norwalk-like viruses in 
seafood. Figure 3 shows that variation among experts’ best estimates is lowest for food-pathogen 
combinations for which experts have low mean best estimates and those few with very high 
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mean best estimates. This is also reflected in the fact that the median standard deviation is 4.24 
and the 75th percentile is 8.47. Table 4 lists the food-pathogen pairings in the top decile of 
standard deviation of best estimates. These include some of the most studied of food/pathogen 
combinations, including Listeria in dairy products and luncheon meats and Salmonella in 
poultry, as well as some of the least studied, such as Toxoplasma in game, pork, and beef. 

Regressions show that the curvature seen in Figure 4 is statistically meaningful (Table 5). 
All models show the standard deviation of best estimate as being quadratic in mean best 
estimate. There are a number of reasons for this. One is that as best estimates approach the 
boundaries of 0 and 100, there is less “room” for disagreement because best estimates are 
bounded either above or below. In addition, at best estimates of 0, there is a great deal of 
agreement among experts about which foods are not vectors for particular pathogens. To a lesser 
extent, there is also significant agreement on those cases where experts think there is a single 
food that is the predominant vector for a particular pathogen. Beyond this curvature, Table 5 
shows that other factors explain the standard deviation of best estimates. The number of 
outbreaks is significant. Higher mean self-reported pathogen expertise, but not mean self-
reported food expertise, is associated with lower variability among experts’ best estimates. 
Columns I and II of Table 5 look at the influence of food and pathogen dummies in isolation, 
with Salmonella and breads omitted. Differences in variability by pathogen and by food seen in 
Figure 2 do appear to be statistically meaningful. For example, the mean standard deviation for 
Salmonella is not distinguishable from that for Listeria or E. coli O157:H7, but it is statistically 
smaller than that for Toxoplasma or Shigella. Similarly, the mean standard deviation for seafood 
and game is statistically different from and higher than, that of breads, eggs, or several other 
foods (Table 5).  

• Individual Uncertainty. Experts also vary in how certain they are about their own 
attribution judgments. Individual uncertainty is measured as the difference between the 95 
percent and 5 percent confidence bounds that individual experts put around their own best 
estimates. We call this measure the “range” of the experts’ attribution estimates. Because upper 
and lower confidence bounds cannot be constrained to sum to 100, they cannot be directly 
compared across individuals or food-pathogen pairings. However, the size of the difference 
between these bounds does give information on the individual expert’s degree of certainty about 
his or her estimates and can be compared across individuals and food-pathogen pairings. 

Figure 4 plots range by pathogen and by food. Again, variability across food-pathogen 
combinations is greater than by pathogen or food on average. As with best estimate and standard 
deviation of best estimate, small ranges predominate. Only 29 of the total 121 food-pathogen 
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combinations have ranges of 10 percentage points or more. All of these are for combinations 
attributed with at least 5 percent of pathogen-related cases by either the expert or the outbreak-
based attribution (Table 2). Although there is variation by pathogen in ranges at the food-
pathogen level, and in aggregate, measured as mean range by pathogen, no pathogen dominates. 
In contrast, the mean range for produce is more than double that of the next-highest food, and 
produce has a range greater than 10 percentage points for 8 of the 11 pathogens and individual 
uncertainty about breads and eggs is very low. Across all foods and across all pathogens, average 
range is 6.98 percentage points, ranging from zero to 46.6 percentage points. Figure 5 plots 
experts’ mean range by food-pathogen combination against experts’ mean best estimate by food-
pathogen combination. As in Figure 4, the plot is distinctly quadratic.  

Table 6 reports results for Tobit regressions for range. In contrast to the regressions on 
the difference between attribution estimates and variability among expert best estimates, both 
respondent-related variables and food- and pathogen-related variables help explain variation in 
average range. The first two columns of Table 5 report results for Tobit regressions of range on 
pathogen dummies, excluding Toxoplasma, and on food dummies, excluding produce. The 
results again support results found earlier on the difference between attribution estimates or 
variability in best estimates (Figure 6). Mean expert ranges for Cyclospora, Vibrio, and Yersinia 
are smaller than for Toxoplasma. Mean ranges for several pathogens are indistinguishable from 
that of Toxoplasma, including Campylobacter and Cryptosporidium as well as E. coli O157:H7, 
Shigella, Listeria, and Norwalk. Regressions confirm that the range for produce is statistically 
different from and larger than that of other foods.  

In contrast to our earlier results, experts’ backgrounds and experiences as well as self-
reported pathogen expertise help explain variation in individual experts’ ranges. Respondents 
who identify government as their primary career setting have tighter ranges than those whose 
careers have been primarily in academia, industry, or multiple sectors. Those with significant 
career experience in multiple sectors have the largest ranges (11.05 percentage points larger than 
government respondents), followed by those in industry (4.6 percentage points greater than 
government), followed by academia (2.3 percentage points greater than government). This result 
is basically invariant to model specification. Highest degree also explains variation in range. 
Those with master’s degrees have the least confidence in their best estimates, and DVMs have 
the most. On average, the ranges of DVMs are almost 7 percentage points smaller than those of 
experts with master’s degrees. The averages ranges of MDs and PhDs are roughly 3 percentage 
points smaller than for those with master’s degrees. The field of expertise also matters. Relative 
to microbiology (bacteriology, food science microbiology, microbiology, and area pathology), 
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those who identified their field as “public health” (public health, public health epidemiology, and 
epidemiology) have ranges that are 4 percentage points larger than the microbiology group. 
Veterinary medicine had ranges that are 3 percentage points smaller than the microbiology 
group. In the more complete models, an increase in pathogen expertise, but not food expertise, is 
associated with a statistically significant decrease in range. When food and pathogen dummies 
are added, the coefficient of pathogen expertise becomes smaller but is still significant. The 
addition of random effects introduces significant collinearity and so is not reported.  

 5. Discussion 

The foregoing results show a wide range of variation at the food/pathogen level. Without 
a large sample size, we could not have tested to see if uncertainty varied systematically by 
discipline or professional background. We see that variability in best estimates, but not 
individual uncertainty or difference between expert and outbreak attributes does differ by 
professional background and discipline. This association is consistent with the mental models 
literature.  

Use of a larger expert panel also allows us to develop multiple measures of uncertainty: 
difference between expert judgment and existing estimates, individual uncertainty, and 
variability among experts. These measures capture different aspects of uncertainty that are 
meaningful to risk management decisions. Figure 7 shows how food/pathogen pairings can be 
assigned to one of eight cells representing alternative combinations of high and low levels of 
uncertainty based on these three uncertainty measures. These relationships form a three-
dimensional cube, but for ease of interpretation we unstack the cube in Figure 7. In general, there 
is a strong positive relationship between mean range and standard deviation of best estimates by 
food pathogen combinations (Pearson correlation coefficient of 0.86). As a result, for this expert 
elicitation, the cells with low uncertainty and low variability and the cells with high uncertainty 
and high variability will be more heavily populated than those with low uncertainty and high 
variability or high uncertainty and low variability.  

The eight comparisons of uncertainty measures represented in Figure 7 can be used to 
inform risk management decisions. Where individual experts’ uncertainty is low on average and 
experts agree with one another in their best estimates, decision makers should feel most 
confident about the state of knowledge about the elicited value. In our food attribution survey, 
there are many such food/pathogen combinations, particularly those attributed with few or no 
cases of illness. Strong agreement with prior estimates, in this case outbreak-based attributions, 
would add to that confidence. Where expert judgment does not agree with prior judgment, 
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experts share significant information that is not captured in the prior judgment. In our food 
attribution survey, these are food/pathogen combinations where experts are confident and unified 
in their disagreement with outbreak-based attribution estimate, such as Yersinia on luncheon 
meat or Campylobacter on seafood. In such cases, meta-analysis or focused literature-based risk 
assessments may be adequate to gain a sound understanding of the association between food 
consumption and pathogen contamination. In cases where experts are very confident about their 
best estimates but there is significant variability among experts, risk managers might consider 
doing more focused expert elicitations. Expert elicitations using group process to uncover why 
experts disagree and yet individuals are quite certain. In our food attribution expert elicitation, 
Cyclospora in game or Campylobacter in eggs are examples of low individual uncertainty, but 
high variability among experts. Cases where there is significant individual uncertainty, but little 
variability in responses, even if there is high agreement with outbreak attributions, suggests that 
additional epidemiological and other primary research might be warranted to reduce the 
uncertainty. An example is Cyclospora on produce in our survey. The quadrant with high 
uncertainty and high variability more strongly suggests the need for primary research, 
particularly if many where the attribution estimates are high. Examples from our survey include 
Cryptosporidium or Shigella on produce. Results from use of a protocol like the one developed 
here would provide the basis for value of information analysis that would be useful in deciding 
whether it is worth spending research money to reduce this uncertainty.  

6. Conclusions 

This study provides some basic insights into use of formal survey methods to elicit 
probability beliefs from large heterogeneous expert panels. Fundamentally, we have learned that 
experts can do probability assessment in a mail survey context. Reasonably high response rates 
and low level of spoiled surveys suggest that this is an approach to probability assessment that 
experts will accept and can perform. We also see that statistical analysis of a large heterogeneous 
sample can help more efficiently set research and policy agendas. A number of areas for further 
research would improve this approach. More research is needed on how to address cognitive bias 
in a survey setting. Split sample studies would be helpful in understanding whether survey, in-
person, and group process elicitation methods result in different probability assessments. 
Because sampling frame is important with larger, more heterogeneous panels, research on how to 
identify the panel would be useful. Such research could draw on the social networks literature to 
develop optimal strategies for identifying a set of potential expert respondents.  
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Decision analysts are frequently called on to help inform decisionmakers in situations 
where there is considerable uncertainty. Sometimes, this uncertainty is limited and reasonably 
well understood, but the relationship between particular variables or the distribution of particular 
parameters needs to be better understood. Sometimes—as in the case of climate change or, 
surprisingly, in the case of managing pathogen-related foodborne illness in the United States—
the uncertainty is great enough that a better understanding of the nature of that uncertainty is 
needed to advance policymaking. When such situations also require understanding a broader 
range of relationships that touch on a wide range of expertise, the universe of relevant experts 
will be heterogeneous. In both situations, expert judgment can be a useful supplement to hard 
data. Other researchers have developed protocols that use heterogeneous expert panels to 
quantify parameter distributions. This study shows how formal survey methods and statistical 
analysis can take advantage of the greater heterogeneity of expert background and opinion to 
gain a better understanding of where further effort is needed to reduce uncertainty.  

This paper has focused on the use of a survey protocol to examine uncertainty on a wide 
but related set of relationships between foodborne pathogens, illness, and food consumption in 
the U.S. food supply. A next step is examining the value of additional information to reduce the 
uncertainty identified in this paper. The same survey protocol can also be used to quantify 
distributions on these parameters values. Hoffmann et al. (2006) use data collected in this same 
survey to examine implications for food safety policy priorities.  
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Figures and Tables 
 

Figure 1. Box and Whisker Diagrams of Expert Elicitation Best Estimates of Foodborne 
Illness Food Attributions in the U.S. in a Typical Year 
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NOTE: µ denotes mean expert best attribution estimate. O denotes outbreak-based attribution estimate. 
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Figure 2. Instruction Sheet for Expert Respondents from Expert Elicitation Foodborne 
Illness Attribution Survey 

Food Category

Likely to 
be a 

source?   
Best Estimate Low 

Estimate
High 

Estimate

Seafood

N

Eggs

N

Produce

N

Beverages
 (not water)

N

Dairy            

Y 10% 5% 40%

Breads and Bakery

N

Game

Y 65% 55% 90%

Beef

N

Poultry

N

Pork

N

Luncheon/
Other Meats        

Y 20% 5% 25%

Illnesses Caused by Pathogen z

Percent of U.S. Foodborne Cases in a Typical Year

Step 1.  Indicate whether this 
food category is likely to be 
associated with foodborne 
disease caused by Pathogen z.  
Mark Y for yes or N for no.

Step 2. For categories marked yes, give the 
percent of Pathogen z-related cases caused 
by eating this food.  
    Start with the food category with which you 
are most familiar.*         
    Repeat for other boxes.  
Make sure the "best estimates" column sums 
to 100%.

Step 3.  Start with the food category that 
you've said has the highest percent of 
Pathogen z cases (Game in this 
example).  
    Give low and high estimates  (5th and 
95th percentiles of cases).      
    Repeat for the other "best estimates."

Feel free to write in specific 
subcategories of food where 
appropriate.  For example, most 
illnesses caused by Pathogen z in 
the seafood category are 
associated with shellfish;  write 
this under "Seafood."

shellfish
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 Figure 3. Variability in Experts’ Best Estimate Food Attribution Judgments Relative to 
Mean Best Estimate 
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NOTE: Each point represents one of 121 distinct combinations of the 11 pathogens and 11 food categories. 
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Figure 4. Mean Range of Expert Attribution Estimates by Pathogen and Food Category 
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NOTE: Experts were requested to provide 90 percent confidence intervals around each best estimate of foodborne 
illness food attribution. Range is equal to the size of the confidence interval. 
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Figure 5. Mean Range of Expert Foodborne-Illness Attribution Estimates Relative to 
Expert Mean Best Estimates 
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NOTE: Experts were requested to provide 90 percent confidence intervals around each best estimate of foodborne 
illness food attribution. Range is equal to the size of the confidence interval Each point represents one of 121 
distinct combinations of the 11 pathogens and 11 food categories. 
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Figure 6. Experts' Mean Range Relative to the Variability in Best Estimates Across 
Experts 
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NOTE: Experts were requested to provide 90 percent confidence intervals around each best estimate of foodborne 
illness food attribution. Range is equal to the size of the confidence interval. Each point represents one of 121 
distinct combinations of the 11 pathogens and 11 food categories. 
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Figure 7. A Framework Using Uncertainty Comparisons to Inform Risk Management 
Decisions 
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Table 1. Self-Evaluated Food and Pathogen Expertise (Scored with a 5-point Likert Scale: 
1 low and 5 high) 

 
Food Categories 

 
  Mean  St. Dev.  
Beef  3.69  0.95  
Poultry  3.53  0.99  
Eggs  3.2  0.97  
Produce  3.18  1.17  
Pork  3.16  1.15  
Dairy  3.13  1.04  
Seafood  3.13  1.16  
Lunch Meat  3.09  1.22  
Beverages  2.24  0.98  
Breads & Bakery  2.22  1.04  
Game  2  0.93  

 
      

Pathogens 
      
  Mean  St. Dev.  
Escherichia Coli O157:H7  3.89  0.78  
Salmonella  3.73  0.95  
Listeria   3.65  1.03  
Campylobacter  3.16  1.06  
Vibrio  2.89  1.15  
Shigella  2.75  1.01  
Norwalk-like viruses  2.64  1.31  
Yersinia   2.64  1.08  
Cryptosporidium  2.24  1.07  
Cyclospora   2.04  1.09  
Toxoplasma   1.98  1.03  
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Table 2. Statistical Comparison of Expert and Outbreak-based Food Attributions 

NOTE: Experts were requested to provide 90 percent confidence intervals around each best estimate of foodborne 
illness food attribution. Range is equal to the size of the confidence interval.  

Pathogen  
Food 

Category  

Outbreak-
Based 

Estimate  

Mean 
Best 

Estimate  
Standard 

Error  
Mean 

Range* 

% of Experts' Ranges 
Not Including Outbreak 

Est.   

z-Test of Ho: 
Outbreak Est. = Mean 

Expert Est. 

Campylobacter               
  Beef  6.1  4.4 0.73 6.0 48.4%  -2.39 ** 
  Dairy  24.6  7.8 1.26 9.0 93.9%  -13.38 *** 
  Poultry  5.8  72.0 3.10 29.8 100.0%  21.36 *** 
  Produce  48.9  5.2 1.45 7.0 93.9%  -30.20 *** 
  Seafood  11.8  0.8 0.27 2.0 97.1%  -40.23 *** 

Cryptosporidium           
  Beef  0.0  7.4 1.76 10.9 32.3%  4.22 *** 
  Beverages  73.5  9.0 2.29 16.4 93.8%  -28.12 *** 
  Dairy  0.0  5.8 2.04 7.9 32.3%  2.84 *** 
  Game  0.0  5.4 1.86 7.1 20.0%  2.89 *** 
  Poultry  5.8  1.2 0.58 1.0 96.8%  -7.88 *** 
  Produce  20.8  59.5 5.11 46.6 61.3%  7.59 *** 
  Seafood  0.0  7.7 2.52 11.0 28.1%  3.07 *** 

Cyclospora           
  Produce  100.0  96.1 1.60 24.1 11.8%  -2.43 ** 

Escherichia Coli O157:H7          
  Beef  72.6  67.9 2.49 33.9 31.4%  -1.89 * 
  Produce  15.4  18.4 1.95 20.0 50.0%  1.56  

Listeria          
  Breads  6.3  0.2 0.14 0.3 97.1%  -44.91 *** 
  Dairy  32.0  23.6 2.61 21.9 55.9%  -3.22 *** 
  Lunch Meat  57.3  54.0 3.43 37.0 41.2%  -0.97  
  Produce  0.0  8.7 1.19 12.3 60.6%  7.33 *** 
  Seafood  0.0  7.2 1.14 10.7 61.8%  6.29 *** 

Norwalk-like Viruses          
  Breads  9.9  5.8 1.43 8.5 66.7%  -2.87 *** 
  Dairy  6.1  2.9 1.11 4.2 76.7%  -2.90 *** 
  Lunch Meat  2.2  9.4 2.46 12.6 83.3%  2.92 *** 
  Produce  38.8  37.3 4.81 30.6 70.0%  -0.31  
  Seafood  27.7  34.1 6.10 23.4 70.0%  1.06  

Salmonella          
  Beef  6.3  10.9 1.37 15.3 47.1%  3.41 *** 
  Dairy  7.2  7.3 0.82 9.5 35.3%  0.07  
  Eggs  36.5  21.8 1.87 21.8 70.6%  -7.85 *** 
  Pork  2.9  5.7 1.01 8.9 58.8%  2.73 *** 
  Poultry  18.3  35.1 2.78 29.4 70.6%  6.06 *** 
  Produce  16.6  11.7 1.57 15.2 44.1%  -3.15 *** 

Shigella            
  Lunch Meat  0.0  9.4 2.23 11.6 50.0%  4.20 *** 
  Poultry  9.3  4.9 1.30 7.4 81.3%  -3.37 *** 
  Produce  62.0  60.0 5.03 37.4 43.3%  -0.39  
  Seafood  23.6  7.8 2.11 13.0 87.5%  -7.50 *** 

Toxoplasma           
  Beef  0.0  23.2 5.40 23.5 59.3%  4.29 *** 
  Game  100.0  20.4 5.17 15.7 96.3%  -15.40 *** 
  Pork  0.0  41.0 5.90 28.7 74.1%  6.95 *** 
  Produce  0.0  7.0 1.87 11.0 40.7%  3.76 *** 

Vibrio            
  Seafood  100.0  97.1 1.02 14.7 3.0%  -2.84 *** 

Yersinia           
  Dairy  0.0  12.2 2.99 12.9 63.6%  4.08 *** 
  Lunch Meat  21.4  1.8 0.74 2.8 94.1%  -26.50 *** 
  Pork  78.6  71.6 4.88 27.7 38.2%  -1.43  

*** Statistically different from zero at the 1% level     
** Statistically different from zero at the 5% level      
* Statistically different from zero at the 10% level      
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Table 3. Tobit Regression Results for the Difference between Mean Best Estimate of the 
Expert Elicitation and Outbreak-Based Food Attribution 

 
Explanatory Variables  I II III IV  V 
Industry      -0.98  -0.25  -.28 
Academia      0.08  0.03  -0.35 
Multisector     0.42  0.07  -0.28 
PhD      -.36  -.06  0.1 
DVM           
MS      -.11  .00  0.05 
Veterinary Medicine     -.88  omitted  omitted 
Public Health     -.02  .03  0.25 
Human Medicine     -.95  -.11  0.31 
Food Science     -.98  -.07  -0.14 
Other Field     -.28  0.07  0.11 
Pathogen Expertise     -.58  -0.03  -0.01 
Food Expertise     1.35***  0.11  0.13 
Years of Experience     -.034  -0.01  -.01 
No. of Outbreaks     -.047***  -.08***  -.08*** 
Campylobacter omitted      omitted  omitted 
Norwalk-like viruses -3.66***      0.47  0.49 
Salmonella. -3.7***      3.49  3.48 
Cryptosporidium -6.03***      -0.45  -0.43 
Shigella  -6.19***      -0.11  -0.09 
Toxoplasma  -6.43***      -0.35  -0.33 
E. Coli O157:H7 -10.37***'      0.62  0.61 
Listeria -11.23***      -0.17  -0.18 
Yersinia  -16.15***      -0.24  -0.23 
Vibrio  -41.39***      -0.01  0 
Cyclospora -45.01***      -0.22  -0.19 
Produce    omitted    omitted  omitted 
Poultry    -8.67***    6.4***  6.49*** 
Seafood    -11.28***    -0.86  -0.85 
Dairy    -11.57***    -1.33  -1.33 
Lunch Meat    -12.16***    -2.07***  -2.06* 
Beef    -13.18***    2.39**  2.38** 
Pork    -14.05***    2.44**  2.44** 
Game    -14.67***    -5.95***  -5.91*** 
Beverage    -15.5***    -6.18***  -6.15*** 
Breads    -22.35***    -1.96  -1.93 
Eggs    -34.75***    -0.36  -0.36 
Expert ID Dummies          
No. obs.  4483  4483  4483  4483  4483 
LR chi2  926.12  381.54  54.46  220.18  220.38 
pr > chi2  0  0  0  0  0 
           
*** Statistically different from zero at the 1% level     
** Statistically different from zero at the 5% level      
* Statistically different from zero at the 10% level      
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Table 4. Top Decile Rankings of Expert Elicitation Food-Pathogen Combinations with the 
Greatest Variability in Foodborne Illness Attributions 

 

Pathogen  
Food 

Category  

Absolute Value of 
Difference Between 
Expert Best Est. & 

Outbreak Est. 
(percentage points) 

Average Range 
(percentage points)  

Standard Deviation of 
Experts' Best Estimates

(percentage points) 
            
Campylobacter  Poultry  66.14 (2) 29.76 (6)  19.09 (10) 
Toxoplasma  Pork  41.00 (5) 28.72 (8)  33.37 (2) 
Cryptosporidia  Produce  38.74 (6) 46.62 (1)  31.06 (3) 
Toxoplasma  Beef  23.17 (7) 23.47 (11)  30.57 (4) 
Salmonella  Poultry  16.87 (9) 29.41 (7)  16.70 (13) 
Shigella  Produce   37.42 (2)  29.76 (6) 
Listeria  Lunch Meat   36.97 (3)  21.41 (9) 
Norwalk  Produce   30.58 (5)  27.64 (8) 
Yersinia  Pork   27.73 (9)  30.49 (5) 
Norwalk  Seafood   23.39 (12)  35.03 (1) 
Toxoplasma  Game  79.61 (1)   29.24 (7) 
Yersinia  Dairy  12.20 (13)   18.69 (11) 
E.Coli O157:H7  Beef   33.93 (4)   
Cyclospora  Produce   24.12 (10)   
Listeria  Dairy   21.86 (13)   
Cryptosporidia  Beverages  64.48 (3)    
Campylobacter  Produce  43.67 (4)    
Yersinia  Lunch Meat  19.66 (8)    
Campylobacter  Dairy  16.80 (10)    
Shigella  Seafood  15.82 (11)    
Salmonella  Eggs  14.69 (12)    
Shigella  Beverages     17.23

 
(12) 

 
 
NOTE: Experts were requested to provide 90 percent confidence intervals around each best estimate of foodborne 
illness food attribution. Range is equal to the size of the confidence interval. 

34 



Resources for the Future Hoffmann et al. 

Table 5. Tobit Regression Results for the Standard Deviation of the Expert Elicitation 
Best Estimate Food Attribution 

Explanatory Variables  I II III 

      
Mean Best Estimate 1.22***  1.14***  1.14*** 
Mean Best Estimate Squared -.01***  -.01***  -.01*** 
No. of Outbreaks -.05***  -.04***  -.04*** 
Pathogen Expertise -1.99***    -2.13*** 
Food Expertise -.68    0.87 
Listeria     -0.46  -0.63 
E. coli O157:H7    -0.01  0.33 
Campylobacter   0.58  -0.63 
Vibrio    0.61  -1.18 
Cyclospora   1.29  -2.3** 
Norwalk-like Viruses   3.14***  0.82 
Cryptosporidium     3.65***  0.5 
Toxoplasma    3.73***  dropped 
Yersinia    3.73***  1.41 
Shigella    3.76***  1.68* 
Salmonella.   omitted  omitted 
Eggs    0.8  -0.04 
Poultry    0.86  -0.27 
Beef    1.27  dropped 
Lunch Meat    1.66  0.91 
Produce    1.73  0.9 
Dairy    2.01*  1.22 
Pork    2.24*  1.43 
Beverages    2.88**  2.86 
Game    3.41***  3.6*** 
Seafood    3.94***  3.15*** 
Breads    omitted  omitted 
       
No. obs.  121  121  121 

LR chi2  241.36  277.02  277.02 

pr > chi2  0  0  0 
*** Statistically different from zero at the 1% level 
** Statistically different from zero at the 5% level  
* Statistically different from zero at the 10% level  
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Table 6. Expert Elicitation Mean Range of Best Estimate Foodborne Illness Attribution by 
Pathogen and Food Category 

 

Pathogen  
Mean 
Range  

Food 
Category  

Mean 
Range 

       
Norwalk-like viruses  10.9  Produce  19.0 
Shigella  9.0  Beef  9.3 
Cryptosporidium   8.7  Poultry  7.8 
Listeria   8.2  Dairy  7.5 
Salmonella   7.5  Pork  7.4 
Vibrio  6.5  Seafood  7.4 
Yersinia   6.5  Lunch Meat  7.2 
Campylobacter  6.3  Beverages  3.7 
Cyclospora   5.7  Game  3.6 
Escherichia Coli O157:H7  3.8  Eggs  2.7 
Toxoplasma  2.2  Breads  1.1 

 
 

NOTE: Experts were requested to provide 90 percent confidence intervals around each best estimate of foodborne 
illness food attribution. Range is equal to the size of the confidence interval. 
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Table 7. Tobit Regression Results for the Mean Range of Expert Elicitation Food 
Attribution Estimates 

Explanatory Variables  I  II  III  IV 
Best Estimate  1.45***  1.47***  1.46***  1.42*** 
Best Estimate Squared  -.01***  -.01***  -.01***  -.01*** 
Government  omitted    omitted  omitted 
Academia  2.32***    2.43***  2.35*** 
Industry  4.64***    4.37***  4.72*** 
Multisector  11.05***    12.34***  12.61*** 
DVM    -6.8***  omitted  omitted 
MD    -3.35***  omitted  omitted 
PhD    -3.25***  omitted  omitted 
MS    omitted  omitted  omitted 
Microbiology      omitted  omitted 
Public Health   4.63***  4.08*** 
Food Science   2.29***  2.29*** 
Human Medicine   -.08  -.64 
Other Field   -.26  -.70 
Veterinary Medicine      -2.95***  -3.53*** 
Pathogen Expertise   -1.27***  -.76*** 
Food Expertise   -.03  -.15 
Campylobacter     omitted 
Cryptosporidium     5.82*** 
Toxoplasma     4.12*** 
Vibrio     -2.41 
Shigella     1.40 
E. Coli O157:H7     -1.19 
Yersinia     -1.14 
Norwalk-like viruses     0.79 
Cyclospora      0.92 
Salmonella     0.60 
Listeria     -0.49 
Produce     omitted 
Dairy     -4.1*** 
Poultry     -4.96*** 
Beef     -3.01*** 
Pork     -2.86*** 
Game     -2.58** 
Seafood     -2.15** 
Breads     -3.07* 
Eggs     -3.06* 
Lunch Meat      -1.78* 
Beverages     -1.43 
Years of Experience   -..09***  -.08** 
No. of Outbreaks   -.02***  -.02* 
         
No. obs.  1566  1566  1566  1566 
LR chi2  1420.18  1383.12  1526.44  1954.74 
pr > chi2  0  0  0  0 
*** Statistically different from zero at the 1% level     
** Statistically different from zero at the 5% level     
* Statistically different from zero at the 10% level     

  
NOTE: Experts were requested to provide 90 percent confidence intervals around each best estimate of foodborne 
illness food attribution. Range is equal to the size of the confidence interval. 
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