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Preference Variable Impacts in
Direct and Inverse Differential Demand Systems

Abstract

Preference variables are included in the inverse Rotterdam model based on the Tintner-
Ichimura-Basmann relationship linking preference effects on quantities demanded to
price effects and preference effects on marginal utilities. Restrictions are made on the
effects of the preference variables on the marginal utilities, resulting in reductions in the
parameter space for the preference variables in both direct and inverse demand systems.

The model is used to analyze impacts of product quality on fresh citrus demand.
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Preference Variable Impacts in
Direct and Inverse Differential Demand Systems

Non-price, non-income variables such as advertising and quality measures are sometimes
added to the consumer utility function and associated direct demand system to measure
preference shifts (e.g., Basmann; Phlips; Deaton and Muellbauer, 1980b). In general, the
only restrictions on the demand impacts of preference-variables are for adding up.
Demand increases for some goods due to a preference variable change must be offset by
demand decreases for other goods to satisfy the budget constraint. This implies that for n
goods and n product-specific advertising variables, there are n x n-1 advertising impacts
in the demand system to estimate. Since the number of such impacts can be quite large
and difficult to estimate, additional restrictions on the impacts are sometimes considered.
One source of restrictions has been the Tintner-Ichimura-Basmann relationship which
shows how impacts of preference variables on utility carry over to the direct demand
system. Various restrictions based on this relationship have been explored in order to
reduce the preference-variable parameter space to a tractable level in direct demand
systems (e.g., Theil, 1980b; Duffy; Brown and Lee, 1997, 2002). What has not been
explored, and the subject of this paper, is the use of the Tintner-Ichimura-Basmann
relationship as a source of restrictions for the corresponding inverse demand parameter
space.

The Tintner-Ichimura-Basmann relationship links preference (variable) effects on

quantities demanded to price effects and preference effects on marginal utilities.



2
Restrictions have been made on the preference effects on marginal utilities, resulting in
reductions in the preference-variable parameter space in direct demand systems (e.g.,
Theil, 1980b; Duffy). The present paper shows the associated implications for the
inverse demand parameters. Preference effects in the direct demand system are translated
into corresponding effects in the inverse demand system, and an inverse-demand system
with a preference-variable parameterization, that can be straightforwardly used to explore
preference restrictions as in the direct demand system, is developed.

The results of this paper show that given the direct demand elasticities with
respect to n product-specific preference variables can be written as —s*y where ¢ is a
matrix of compensated price elasticities and y is a matrix of marginal utility elasticities
with respect to the preference variables, the inverse demand elasticities are (I - 1 w’)y,
where I is the identity matrix, 1 is a unit vector and w is a vector of budget shares.

An empirical analysis of quality impacts in an inverse demand system for U.S.
fresh citrus is also discussed. The focus is on how prices for different varieties of citrus
are impacted by variety specific quality variables.

The paper consists of a review of direct and inverse demand systems,
development of the relationships between preference effects in the two alternative

demand systems, discussion of the empirical study and conclusions.

Review of Direct and Inverse Demand Systems in Context of the Rotterdam Model
Consider the utility maximization problem confronting consumers---how to allocate

income over available goods. Formally, the problem can be written as maximization of
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u=u(q’, z’) subject to p’q = x, where u is utility; p’=(p1,...,pn)and q =(qi, ..., qn)
are price and quantity vectors with p; and q; being the price and quantity of good i,
respectively; x is total expenditures or income; and z’ = (z;, . . ., z,) is a vector of
product-specific preferences variables such as advertising. The first-order conditions for
this problem are du/dq = Ap and p’q = x, where A is the Lagrange multiplier which is
equal to du/ox. For direct demand, the solution of the first-order conditions yields q =
q(p, X, z), and the Lagrange multiplier equation A = A(p, X, z). Alternatively, for indirect
or inverse demand, the solution is v = v(q, z), where v’ = (pi/X, ..., pn/X) Or income-
normalized prices. The quantities and prices for these two solutions are of course exactly
the same. Below, the relationships between the two demand systems are reviewed with a
focus on the effects of the preference variables. The Rotterdam demand model' is used
for this purpose as the relationship between direct and inverse demand with respect to
preference variable impacts can be straightforwardly shown for this demand
specification. The Rotterdam model is based on the total differential of the first-order
conditions, du/dq = Ap and p’q = x, making it convenient to examine preference variable
impacts through the Tintner-Ichimura-Basmann relationship which is based on an
extension of this total differential.”

Following Theil (1975, 1976, 1980a,b), the direct Rotterdam model can be written

as

(1) wid(log qi) = 6; d(log Q) + ¥ m;j d(log pj) + Y d(log zj) i=1,...n,
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where w; = p;q; /X is the budget share for good i; 0; = p; (3qi/0x) is the marginal propensity
to consume (MPC) for good i; d(log Q) = } w; d(log q;) is the Divisia volume index, a
measure of the change in real income or utility (d(log Q) = d(log x)- Y. w; d(log p;))
(Theil, 1971); m;; = (pi p; /X) sij 1s the Slutsky coefficient, with s;; = (9qi/dp; + q; 9qi/9x )
being the i,j™element of the substitution matrix S; and Bi; = wi (dlog gi/dlog zj). The
elasticity of the demand with respect to the jth preference variable is (dlog qi/dlog z;), and,
thus, the preference variable coefficient B is the budget share times this elasticity. The
MPC also equals the budget share times the income elasticity n; = (dlog qi/dlog x), i.e., 6;
= w;n;; and the Slutsky coefficient equals the budget share times the compensated price
elasticity S*ij = (dlog qi/d10g Pj)|u contant, 1.€., Tij = W; S*ij. The uncompensated price
elasticity 1s g; = S*ij - niwj. Overall, the Rotterdam model 1s thus a Hicksian or
compensated demand system with the Divisia volume index indicating changes in real
income and the Slutsky coefficients indicating compensated effects.

Based on the Tintner-Ichimura-Basmann relationship, the preference-variable
coefficients in equation (1) can be written as
) Bi= - i,
where yjx = dlog(du/dq;)/dlog(z), 1.e., Yjk is the elasticity of the marginal utility of good ]
with respect to the preference variable z,. Equation (2) is the source of preference-
variable parameter restrictions in this paper.

Substituting equation (2) into model (1) results in

() wid(log qi) = 6; d(log Q) + ¥ m;j (d(log py) - vk d(log z)) =1, .., n,
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where the term d(log pj) - Y ki d(log zx) can be viewed as a preference, adjusted price.

The corresponding inverse Rotterdam model can be written as (e.g., Barten and
Bettendorf; Brown, Lee and Seale)
(4)  wid(log vi) = gid(log Q) + ) hjj d(log ¢j) + }'; i d(log z)) =1, ..,n,
where again v; = pi/xi; gi is the scale coefficient defined as g; = wi(dlog vi/dlog k), with k
being a scalar that can proportionally change some reference bundle (q=kq* with q*
being the reference bundle)---similar as in the direct Rotterdam parameterization, the
scale coefficient is the budget share times the scale elasticity; h;; = w;i(dlog vi/dlog q;)|u
constant OT the budget share times the compensated quantity elasticity or flexibility (the h;’s
are referred to as Antonelli coefficients and are the counterpart of the Slutsky
coefficients); and o;; = w; (dlog vi/dlog z;) or the budget share times the inverse-demand,
preference variable elasticity. The scale elasticity, compensated flexibility and inverse
preference variable elasticity are denoted as p ;= (dlog vi/dlog k); S*ij = (dlog vi/dlog q;) |u
constant;  Pij = (Alog vi/dlog z;), respectively. The uncompensated flexibility is 6;; = S*ij + Wi
Wi.

To show the relationship between the direct and inverse demand systems, the
models are formulated below in term of matrices and elasticities, i.e.
(5a) wDq=6DQ + n(Dp - yDz) (direct demand coefficients),
or,
(5b)  wDq=wnDQ + v”va*(Dp - yDz) (direct demand elastictities),

and
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(6a) wDv=gDQ + hDq + aDz (inverse demand coefficients),
or
(6b)  WwDv=wubDQ + \?v8*Dq + wpDz (inverse demand elastictities),
where W is a diagonal matrix with the diagonal elements being the budget shares; Dq = [d
log qi], Dp = [d log pi], Dz = [d log z;], and Dv = [d log vi] are all n x 1 vectors; DQ =d
log Q =w’Dq = Dx — w’Dp, where Dx= dlog x and w’ is a 1 x n vector of budget shares
(Theil, 1971); 6 =[6;] is an n x 1 vector of MPCs; m = [m;;] is an n x n matrix of Slutsky
coefficients; y =[ y;] is an n x n matrix of elasticities of marginal utilities with respect to
the preference variables; n = [n;] is an n x 1 vector of income elasticities; g= [S*ij] isann
X n matrix of compensated price elasticities; g is an n x 1 vector of scale coefficients; h is
an n X n matrix of quantity or Antonelli coefficients; a is an n x n matrix of preference
coefficients; p is an n x 1 matrix of scale elasticities; & is an n x n matrix of compensated
quantity elasticities; and p is an n X n matrix of advertising elasticities.

The general restrictions on the direct Rotterdam model are (e.g., Theil 1975,

1976, 1980a,b)

(7a)  adding up: =1 v'n=0
(7b)  homogeneity: m=0
(7c)  symmetry: T=m,

where 1’ is an n x 1 vector of ones. Note that restriction (7a) requires that the preference
effects also obey adding up, i.e., given the advertising coefficient matrix 3 equals -my, 13
=-1vmy =0, since 'nw = 0. Restrictions (7a) through (7¢) are for the usual Rotterdam

parameterization (5a). The corresponding restrictions on the elasticities in specification
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(5b) are a) w’n) =1 (Engle aggregation) and we = 0or w(Eetnw’) = wetw=0
(Cournot aggregation), b) e1=0or(c+ nw’) 1= et +n =0 (homogeneity), and c) £ =W
e W (symmetry).
The general restrictions on the inverse Rotterdam model are (e.g., Barten and

Bettendorf; Brown, Lee and Seale)

(8a) adding up: vg=-1 vh=0 va=0,
(8b)  homogeneity: hi=0
(8c)  symmetry: h="h’.

The corresponding restrictions on the elasticities in specification (6b) are a) w’p = -1
and w8 = 0 orw’(s - pw’) = wo+w’=0,b) §1=0o0r (5 - pw’)1=290t1- p=0, and c)

* *

5 =w!s w.

Relationship Between Preference Effects in the Direct and Inverse Demand Systems
Anderson has shown the relationship between the direct and inverse demand systems
with respect to price, quantity, income and scale effects. Below, these relationships are
extended to the preference variable effects. The objective is to transform the direct
Rotterdam model to the inverse Rotterdam model to reveal the structure of the inverse
demand preference-variable coefficients. The first step is to pre-multiply equation (5b)
by W' to find
9) Dq=nDQ + 8*(Dp - yDz).

If ¢" were nonsingular, we could simply multiply both sides of equation (9) by the

inverse of ¢ and rearrange, but this is not the case given (7b). The problem is that price



8
effects of equation (9) are compensated. An inversion, however, can be made by
transforming the compensated elasticities of equation (9) to uncompensated ones. To
accomplish this, replace DQ in equation (9) by its equivalent Dx — w’Dp, and rearrange
the result, i.e.,
(10a) Dq=n(Dx - w’DP) +¢'(Dp - yDz),
or
(10b) Dq=nDx + (8* -nw’)Dp - s*yDz,
or
(10c) Dq=nDx + eDp - a*yDz,
where again € = ¢ - 1 w’, the uncompensated price elasticities. The homogeneity
condition requires €1 = -1 since €1 = £1- n w’itor 1= -1, given g1=Wwrn1=0, by
restriction (7b). The corresponding inverse relationship is 8t = p since 51=8" 1+ pw’ 1
= W, given restrictions (8b).

Based on the inverse function theorem, the uncompensated elasticity matrix € will
be nonsingular, in general, so that multiplying equation (10c) through by its inverse £,
denoted by 9, and rearranging yields

(11a) Dp =8Dq - dnDx + 8¢ YDz,

or, further rearranging and simplifying,

(11b) Dv=uDQ + 8 Dq+ (I-1w’)yDz,

where again Dv=Dp —1Dx, 8 =& - yw’, DQ = w’Dq, and I is the n x n identity matrix.
In equation (11a), the term —On equals the n x 1 vector of unit elements, since o€ = I, and

thus e 1= 1or —0n =1 given & 1 = -n; this relationship follows from the homogeneity
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condition noted after equation (7), which for convenience is repeated in the present
context as d(¢ - w’)t=It=1, or 8¢t - & w’1=tor -dn= 1, since € 1= 0 based on

condition (7b) and w’1=1. The term 8¢’ in equation (11a) equals I - 1 w’, since 8(8* -1

w’) =1, and thus 8¢ =1+ &n w’, and given the previous result that -3n=1, we have d¢"
I[-1w’. (Similarly, ed1=¢ep=1and €8 =1-ww’. Thus, 8 = 88*.)

Finally, multiplying (11b) through by W yields
(12) WwDv= wpDQ+ w8 Dq+ (W-ww)yDz,
which is the same as equation (6a) or (6b) except for the specification of the coefficients
on the preference variables (Dz). In equations (6a) and (6b), these coefficients are o =
wp while in equation (12) they are (W - w w’)y. Thus, we conclude
(13) a=wp=(W-ww)y.

Preference variable coefficient specification (13) can also be obtained using the
Hotelling-Wold identity which states
(14)  vi=0u/dq;/ Y qk Ou/dgx.

Taking the log of equation (14) results in
(15)  log vi=log(du/aq;) - log(}x qx du/dqx),
and differentiating this equation with respect to log z; yields
(16)  odlog vi/dlog zj= 0 log(du/dq;)/ dlog z;

- (1/(21( Jk au/aqk)) (Zk qka(au/aqk)/alog Z; + Zk (au/aqk) aqk/alog Zj).
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Based on a) the first order condition du/dqgj= Apj, b) Y iqjou/dg;= LY ; pjgj = Ax and
¢) given (i are fixed so that dqx/dlog z = 0, the last term on the right-hand side of
equation (16) can be written as
— (1/(Xx qx 0u/9qk)) (X k qk(Apk/0u/dqk) A(Au/dqx)/dlog z;)

or
— (M(Xk qx u/9qx)) Xk pkax Olog(du/dqx)/dlog z;)
or
— Y x wk dlog(du/dqx)/dlog z;.

Hence, equation (16) can be written as
(17a) OJlog vi/dlog zj= 9 log(du/dq;)/dlog(z;) — )« Wk dlog(du/dqx)/dlog z;,
or, multiplying through by wj,

(17b)  w; dlog vi/dlog zj= Wi Yij — Wi Yk Wk Ykj»
where v;; =0 log(du/0q;)/ dlog(z;). Equation (17b) is the non-matrix version of equation
(13).

In the above direct and inverse demand systems (5a) and (12), the matrix y is
potentially a source of restrictions on the preference variable impacts; that is, restrictions
on the preference variable impacts can be made through restrictions on the effects of the
preference variables on marginal utilities. For example, in the direct demand system,
Theil (1980b), assumed y was a scalar times the Identity matrix, while, Duffy assumed it
was a diagonal matrix (4). The Theil (1980b) and Duffy specifications are based on the

assumption that the preference variable for good i only effects the marginal utility of that
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good. For a group of uniform substitutes, Brown and Lee (2002) showed that the same
result can be obtained based on the weaker assumption that y = 4 + tb” where b’= (b, by,
..., by) with b; being a scalar; this specification allows the preference variable for good i
to effect the marginal utility of other goods, uniformly across the goods in the group. In
the direct and inverse models, (5a) and (12), the preference variable effects are -my and
(W - w w’)y, respectively, which for the above structure for y become -n(a +1b’) = -na
and (W-ww’)(@+1b’)=(W-ww’)a with the terms related to b’ disappearing given -
n1 = 0 based on restriction (7b) and (W - w w’) 1= 0. Although assuming b is zero yields
the same result, such an assumption may not realistic for a group of closely related goods
such as uniform substitutes. Thus, we see that the Duffy assumption can be extended to
cases where preference variables have uniform effects across the marginal utilities of the
goods in the group.

In estimating the inverse model, there is, however, an endogeneity problem with
the budget shares embedded in the term (W - w w”)y. This problem might be handled by
using mean budget shares in this term, instrumental variables, or perhaps lagged budget
shares, as suggested to deal with a similar endogeneity problem in the Almost Ideal
Demand System involving budget shares embedded in the Stone price index (Eales and

Unnevehr).?

Application
Impacts of fresh citrus quality on prices were examined using U.S. retail data on fresh

citrus sales (Freshlook Marketing Group). Retail prices, quantities and the percentage of
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volume sales that are random weight were examined for three varieties of citrus:
grapefruit, oranges and tangerines. Fresh citrus is generally sold in two forms: 1)
individual pieces, referred to as random-weight (RW) fruit, and 2) bags/cases, referred to
as fixed-weight (FW) fruit. The two types of citrus are usually displayed side by side in
produce sections in retail stores but priced differently. The quality of RW and FW fruit
may differ with respect to size, variety and external look. The RW percentage is treated
as a measure of quality but may also reflect merchandising and packaging tactics. A
summary of the data are provided in Table 1. The data are weekly from week ending
1/8/2006 through 2/15/2009.

Fresh citrus are seasonal with their availability changing substantially over the
course of a year (volumes are greatest during late fall, winter and early spring). When
volumes are high, prices tend to be low and vice versa. Given this situation, a
conditional demand version of inverse Rotterdam model (4), with the preference-variable
coefficients specified as on the right hand side of equation (13), was used to estimate how
fresh citrus prices are impacted by scale (overall availability of oranges, grapefruit and
tangerines), relative product quantities (Antonelli substitution), and quality/packaging as
measured by the RW percentages. Following the preceding section, it is assumed that the
quality variable for a variety of citrus (i) has a specific impact (a;) on the marginal utility
of that variety of citrus and a uniform substitute or generic impact (b;) on the marginal
utilities of all varieties (including the variety in question). In this case, 4 is a diagonal
matrix with the diagonal elements being (a;, a;, a3) for the three citrus varieties studied, b

= (by, by, b3), and the matrix indicating the impacts of quality on the marginal utilities in
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equation (13) isy=4a +1b’. The term (W - w w’) YDz in the model then becomes (W - w
w’) 4 Dz, since (W - w w’) b’ = 0. Thus, the impact of preference variable j in the
equation for good 1 can be written as (w; A;; - wiw;) a; Dz;, where again A;jis the
Kronecker delta. In estimating this term lagged budget shares were used to avoid the
endogeneity problem mentioned earlier.

Homogeneity and symmetry, conditions (8b) and (8c), were imposed as part of
the maintained hypothesis in estimating the model. The adding-up condition (8a) holds
as the data add up by construction. The infinitely small changes in the logarithms of
prices and quantities in the differential model were measured by discrete differences
(Theil 1975, 1976). The quality variables, which are percentages of volumes that are
RW, were not transformed to log values, and the levels of these variables were similarly
differenced. To account for seasonality in demand, the variables were 52™ differenced
(for the 52 weeks in a year)-- d(log pi) = log pit -log pit.s2, d(log qir) = log qit -log qits» and
dzy = Zkt -Zir-s2 (Duffy, Brown and Lee 1997). Average budget share values underlying
the differencing were used in constructing the model variables---w;; was replaced by (wi

+ Wits2)/2.

The demand specifications studied are conditional on expenditure or income
allocated to the three citrus varieties. Income allocated to the citrus group is measured by
the conditional Divisia volume index for this group which was treated as independent of
the error term added to each fresh citrus inverse demand equation for estimation, based
on the theory of rational random behavior (Theil 1980a; Brown, Behr and Lee).* As the

data add up by construction---the sum of the left-hand-side variables in the inverse
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Rotterdam model equal the negative of the conditional Divisia volume index--the error
covariance matrix was singular and an arbitrary equation was excluded (the model
estimates are invariant to the equation deleted as shown by Barten, 1969). The
parameters of the excluded equation can be obtained from the adding-up conditions or by
re-estimating the model omitting a different equation. The equation error terms were
assumed to be contemporaneously correlated and the full information maximum
likelihood procedure (TSP) was used to estimate the system of equations.

In estimating the (conditional) inverse Rotterdam model for fresh citrus, first-
order autocorrelation was found to exist, which required estimating an additional
parameter p (Berndt and Savin). Model estimates are shown in Table 2 (equations (4)
with a specified in equation (13)). To measure the fit of the system of equations, a
system R?, based on the Wald test and dependent on the equation omitted in estimating
the model, was calculated (McElroy, Bewley). The system R” ranged from .87 to .99
depending on the equation deleted. Although not appropriate for measuring goodness of
fit for a system of equations, single equation R values for grapefruit, orange, and
tangerine prices were .86, .99 and .69, respectively.

All coefficient estimates, except that for the tangerine quantity effect on the
grapefruit price, are significantly different from zero to the extent their values are twice
or greater than their estimated standard errors. The scale coefficients are all negative,
indicating that as the overall volume of citrus in the market increases, prices for these
varieties decline. All own-quantity or Antonelli coefficients are negative, consistent with

the law of demand. The cross-quantity coefficients were positive indicating (net)
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complementary relationships between these varieties at the compensated demand level,
except the insignificant tangerine quantity effect on the grapefruit price indicating a
neutral relationship; at the uncompensated level, all cross effects were negative,
indicating (gross) substitution, as noted below. The net complementary relationship
suggests that some households may be purchasing combinations of these citrus varieties.
All coefficients on the quality measures were positive, suggesting the quality of random
weight fruit is higher than that for fixed weight fruit. The RW coefficients may also be
reflecting a preference for less restricted packaging or the impact of other in-store
differences in merchandising of RW and FW fruit.

The uncompensated elasticities (flexibilities) for the inverse citrus demand system
are provided in Table 3. The scale elasticities for grapefruit, oranges and tangerines are
-.93,-.99 and -1.06, respectively, indicating the if all three quantities increased
proportionately, say by 10% , the price of tangerines would decrease the greatest
by10.6%, while the price of grapefruit would decrease the least by 9.3%. The own-
quantity elasticities for grapefruit, oranges and tangerines are -.38, -.73, and -.39,
respectively, indicating the price of oranges is more sensitive to own-quantity than the
other two varieties. The cross-quantity elasticities are all negative, reflecting substitution
at the uncompensated level.

The quality estimates indicate that if the RW shares of tangerines, grapefruit and
oranges are increased say by 10 percentage points, their prices would increase by 7.6%,
2.7% and .8%, respectively, excluding cross effects. The cross-RW estimates indicate

negative impacts on competing varietal prices, and if, for example, the RW share of
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tangerines is increased by 10 percentage points, the prices of grapefruit and oranges
would each decrease by about 2.1%. To the extent the fruit in each varietal category is
ranked by quality and the highest quality fruit is sold as RW, the results suggest that the
retail price and hence revenue might be enhanced by some additional sorting of FW fruit
by quality and selling more as RW. Other factors, however, may offset such possible
benefits. For example, RW fruit may be subject to a higher spoilage rate as a result of
consumer handling of the fruit, and the bags and other containers in which FW fruit is
sold may hide external fruit blemishes to some degree, although internal quality of the
fruit may be relatively good.

In the empirical application here, the uniform substitute restrictions or essentially
equivalent restrictions suggested by Duffy reduce the preference-variable parameter
space by a factor of n-1 where again n is the number of goods. Three RW coefficients
were estimated for the six RW impacts in the model--three RW variables per equation
times two equations with the impacts for the third equation determined from the adding-
up condition. More generally, for system of n equations, n coefficients would need to be
estimated for n x n-1 preference effects. Thus, to the extent the uniform substitute or
Dufty assumptions are acceptable, the reduction in the parameter space could be quite
large.

The results of this study may also be of interest for demand analyses where it is
useful to have corresponding estimates of direct and inverse demand elasticities or
impacts with respect to some preference variables. Based on equation (11b), the inverse

demand elasticities with respect to the preference variables are (I - 1 w”)y, while based on
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equation (10b), the direct demand elasticities with respect to the preference variables are
-¢ y. It was also found that 8&" =1 - 1 w’ where & is the matrix of uncompensated quantity
elasticities for the inverse demand equations. Thus, multiplying -5, which equals —¢ or
the negative of the uncompensated price elasticities for the direct demand equations,
times the inverse preference variable elasticities (I - 1 w’)y yields the direct demand,
preference variable elasticities -¢ y. In the present analysis, the direct demand, own-RW
impacts (d(log q;)/0z;) at mean budget shares are 1.01 (.27) for grapefruit, .31 (.08) for
oranges and 3.91 (.76), with the corresponding inverse demand, own-RW impacts (6(log
pi)/0z;) from Table 3 in parentheses. The relatively large direct demand impact for
tangerines is a result of a relatively high (direct demand) own-price elasticity,
corresponding to the relatively low (inverse demand) own-quantity elasticity, and a

relatively high impact (y) of the RW variable on the marginal utility for tangerines.

Conclusions

This paper extends the Tintner-Ichimura-Basmann relationship to specifying preference
variable shifts in inverse demand systems. The Tintner-Ichimura-Basmann relationship
indicates how effects of preference variables on quantities demanded are related to price
effects and effects of the preference variables on the marginal utilities. This relationship
has been a source of restrictions on preference coefficients in direct demand systems.
The extension here is based on the relationship between the direct and indirect demand
systems and the corresponding preference variable impacts in each system. In both

systems, a change in a preference variable has the same basic impacts on the marginal
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utilities, but in the direct demand system, the impacts on the marginal utilities results in
demand impacts through the price effects, while in the inverse demand system the
marginal utility impacts result in impacts on prices through the budget shares.

The addition of a set of preference variables like product specific advertising
levels results in a relatively large increase in the parameter space of direct and inverse
demand systems, which may make estimation of the preference variable impacts difficult.
For such demand models, theoretically based restrictions on the preference variable
impacts may be of interest. This paper shows that restrictions on the impacts of
preference variables on marginal utilities offer an approach to estimating the effects of
preference variables in not only direct demand systems but also inverse demand systems.
An empirical study of the demand for fresh citrus illustrates the modeling approach.
Varietal specific, quality variables are assumed to impact prices through the marginal
utilities similarly as has been suggested for direct demand systems. The preference
variable specifications of this study may not only be of interest for estimation but may
also be useful for converting direct demand system impacts to inverse demand system

impacts and vice versa, to help in understanding market behavior.
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Table 1. Summary Statistics: Weekly U.S. Retail Orange Grapefruit and Tangerine

Sales, Week Ending 1/8/2006 through 2/15/2009.

Variable Variety Unit Mean Std Dev
Volume Grapefruit mil. Ibs 4.242 2.146
Oranges mil. 1bs 16.797 8.057
Tangerines mil. lbs 6.032 6.337
Price Grapefruit $/1b 1.006 0.146
Oranges $/1b 1.134 0.254
Tangerines $/1b 1.405 0.229
Expenditure mil. § 28.689 11.786
Budget Share Grapefruit % 14.4% 2.7%
Oranges % 63.7% 12.5%
Tangerines % 21.9% 13.8%
RW Share” Grapefruit % 59.6% 5.1%
Oranges % 60.0% 8.9%
Tangerines % 15.6% 12.0%

* Percentage of total pounds sold that is random weight.
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Table 2. Inverse Rotterdam Model Estimates, Equations 4 and 13.

Equation Explanatory Var. Coeff. Est.  Std Error  T-Statistic  P-Value
Grapefruit P. Scale (g1) -0.1360 0.0085 -16.0066 [.000]
Grapefruit Q. (hy;) -0.0352 0.0045 -7.7330 [.000]
Orange Q. (hy2)" 0.0327 0.0042 7.7916 [.000]
Tangerine Q. (h;3)° 0.0024 0.0019 1.2779 [.201]
Gft. RW % (ay)** 0.3200 0.1069 2.9945 [.003]
Orange P. Scale (g2) -0.6300 0.0227 -27.7246 [.000]
Orange Q. (hy) -0.0641 0.0070 -9.1997 [.000]
Tangerine Q. (ha3)° 0.0314 0.0063 49517 [.000]
Oran. RW % (a,)™° 0.2219 0.0918 2.4165 [.016]
Tangerine P. Scale (g3) -0.2340 0.0233 -10.0211 [.000]
Tangerine Q. (hs3) -0.0338 0.0069 -4.9231 [.000]
Tan. RW % (a3)" 0.9746 0.3676 2.6515 [.008]
Autocorrelation Coeft. (p) 0.9008 0.0297 30.3505 [.000]

* Parameter hy, shared by equation (2) by symmetry.

® Parameters hys and hys shared by equation (3) by symmetry.

¢ Percentage of total pounds sold that is random weight.

4 parameters aj, a; and a3 shared by all equations.
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Table 3. Inverse Rotterdam Model Elasticities.”

Equation Explanatory Var. Estimate Std Error
Grapefruit P. Scale -0.931 0.058
Grapefruit Q. -0.377 0.037
Orange Q. -0.365 0.030
Tangerine Q. -0.189 0.017
Gft. RW %" 0.273 0.091
Oran. RW %" -0.141 0.058
Tang. RW %" -0.215 0.081
Orange P. Scale -0.995 0.036
Grapefruit Q. -0.094 0.009
Orange Q. -0.731 0.023
Tangerine Q. -0.170 0.013
Gft. RW %" -0.047 0.016
Oran. RW %" 0.081 0.034
Tang. RW %" -0.215 0.081
Tangerine P. Scale -1.061 0.106
Grapefruit Q. -0.144 0.018
Orange Q. -0.529 0.068
Tangerine Q. -0.387 0.042
Gft. RW %" -0.047 0.016
Oran. RW %" -0.140 0.058
Tang. RW %" 0.759 0.286

* At sample budget share means.
b Percentage of total pounds sold that is random weight (z); estimates for RW variables are

d(logp;)/0z;.
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! Barnett, Byron, and Mountain show that the Rotterdam model is a flexible specification
comparable to other popular functional forms such as the Almost Ideal Demand System or

AIDS (Deaton and Muellbauer, 1980a,b).

? Alternative popular demand models based on the cost or expenditure function such as,
for example, the recent nested PIGLOG model (Piggott) which embeds the AIDS and
related models were not used as their relationship to the Tintner-Ichimura-Basmann
relationship is less direct. The AIDS cost function, for example, does not have an
associated closed form direct utility function, making the linkage between its demand
equations, first-order conditions and the Tintner-Ichimura-Basmann relationship less

straightforward.

3 The preference variable results for the Rotterdam model can also be extended to AIDS-
like models. The AIDS model’s dependent variable is the budget share w; = piq; /X.
Taking the log of this budget share results in (i) log wi= log p; + log g - log x, and its
total differential is (i1) d(log wi)= d(log p;) + d(log q;) - d (log x), or noting d(log w;) =
dwi /wi, (ii1) dw; = wid(log p;) + wid(log q;) - wid(log x). The latter equality implies (iv)
dw;/d(log z;) = w;d(log q;i )/d(log z;), and since wid(log q;) is the dependent variable of
the direct Rotterdam demand system, this result implies that preference variable effects
are the same in each model. That is, the Rotterdam preference variable term, ) ;B d(log

zj), in equation (1), is also applicable for AIDS-like models. An approximation of the
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differential AIDS model is (v) dwi= Y ; ¢jj Dp; + biDQ + ) ;i Dz; (Deaton and
Muellbauer, 1980a; Barten, 1993).  Substituting equation (v) into (iii) and rearranging
results in (vi) wiDgi= (b; + w;)DQ + Y (cij - Wi Ajj + wi wj)Dp; + Y;Bij Dzj, where Ajis the
Kronecker delta (A;j= 1 if i =j, otherwise Aj;=0). From equation (vi) we conclude that
(vil) mj = (cij - wi Aj; + w; wj). Thus, in equation (v), the preference variable coefficient
can be specified as (vii) Bik=-); (Cij - Wi Ajj + Wi Wj) Yjk, based on equation (2). In
estimating AIDS-like model (v) with B;; defined by (vii), budget shares used as
explanatory variables might be replaced by their lagged values to avoid endogeneity. If
direct estimates of the coefficients of an AIDS-like model (b;, cj;, and 7y;;) are available,
the corresponding inverse demand relationship could be found for some set of budget
shares as shown in this paper with 6; = (bi + wi), = (cij - Wi Ajj + Wi W), and Bix=-);

(Cij - Wi Ajj + Wi Wj) Vik-

* Adding an n x 1 vector of error terms e to the direct demand equations (5a), the error
terms in the inverse demand equations (12) are wow'e. Given e is independent of the
Divisia volume index DQ in the direct demand equations (rational random behavior),

Wwow e is independent of DQ in the inverse demand equations.



