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Abstract 
 
Preference variables are included in the inverse Rotterdam model based on the Tintner-

Ichimura-Basmann relationship linking preference effects on quantities demanded to 

price effects and preference effects on marginal utilities.  Restrictions are made on the 

effects of the preference variables on the marginal utilities, resulting in reductions in the 

parameter space for the preference variables in both direct and inverse demand systems.  

The model is used to analyze impacts of product quality on fresh citrus demand.   
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Preference Variable Impacts in 
Direct and Inverse Differential Demand Systems 

   

Non-price, non-income variables such as advertising and quality measures are sometimes 

added to the consumer utility function and associated direct demand system to measure 

preference shifts (e.g., Basmann; Phlips; Deaton and Muellbauer, 1980b).  In general, the 

only restrictions on the demand impacts of preference-variables are for adding up.  

Demand increases for some goods due to a preference variable change must be offset by 

demand decreases for other goods to satisfy the budget constraint.  This implies that for n 

goods and n product-specific advertising variables, there are n x n-1 advertising impacts 

in the demand system to estimate.  Since the number of such impacts can be quite large 

and difficult to estimate, additional restrictions on the impacts are sometimes considered. 

 One source of restrictions has been the Tintner-Ichimura-Basmann relationship which 

shows how impacts of preference variables on utility carry over to the direct demand 

system.  Various restrictions based on this relationship have been explored in order to 

reduce the preference-variable parameter space to a tractable level in direct demand 

systems (e.g., Theil, 1980b; Duffy; Brown and Lee, 1997, 2002).  What has not been 

explored, and the subject of this paper, is the use of the Tintner-Ichimura-Basmann 

relationship as a source of restrictions for the corresponding inverse demand parameter 

space.  

The Tintner-Ichimura-Basmann relationship links preference (variable) effects on 

quantities demanded to price effects and preference effects on marginal utilities.  
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Restrictions have been made on the preference effects on marginal utilities, resulting in 

reductions in the preference-variable parameter space in direct demand systems (e.g., 

Theil, 1980b; Duffy).  The present paper shows the associated implications for the 

inverse demand parameters.  Preference effects in the direct demand system are translated 

into corresponding effects in the inverse demand system, and an inverse-demand system 

with a preference-variable parameterization, that can be straightforwardly used to explore 

preference restrictions as in the direct demand system, is developed.  

The results of this paper show that given the direct demand elasticities with 

respect to n product-specific preference variables can be written as –ε*γ where ε* is a 

matrix of compensated price elasticities and γ is a matrix of marginal utility elasticities 

with respect to the preference variables, the inverse demand elasticities are (I - ι w’)γ, 

where I is the identity matrix, ι is a unit vector and w is a vector of budget shares. 

An empirical analysis of quality impacts in an inverse demand system for U.S. 

fresh citrus is also discussed.  The focus is on how prices for different varieties of citrus 

are impacted by variety specific quality variables.  

The paper consists of a review of direct and inverse demand systems, 

development of the relationships between preference effects in the two alternative 

demand systems, discussion of the empirical study and conclusions. 

 

Review of Direct and Inverse Demand Systems in Context of the Rotterdam Model 

Consider the utility maximization problem confronting consumers---how to allocate 

income over available goods.  Formally, the  problem can be written as maximization of 
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u = u(q’, z’) subject to p=q = x, where u is utility; p= = (p1 , . . . , pn) and q= = (q1 , . . . , q n) 

are price and quantity vectors with pi  and qi being the price and quantity of good i, 

respectively; x is total expenditures or income; and z’ = (z1 , . . . , zn)  is a vector of 

product-specific preferences variables such as advertising.  The first-order conditions for 

this problem are Mu/Mq = λp and p=q = x, where λ is the Lagrange multiplier which is 

equal to Mu/Mx.  For direct demand, the solution of the first-order conditions yields q = 

q(p, x, z), and the Lagrange multiplier equation λ = λ(p, x, z).  Alternatively, for indirect 

or inverse demand, the solution is v = v(q, z), where v’ = (p1/x, …, pn/x) or income- 

normalized prices.  The quantities and prices for these two solutions are of course exactly 

the same.   Below, the relationships between the two demand systems are reviewed with a 

focus on the effects of the preference variables.  The Rotterdam demand model1 is used 

for this purpose as the relationship between direct and inverse demand with respect to 

preference variable impacts can be straightforwardly shown for this demand 

specification.  The Rotterdam model is based on the total differential of the first-order 

conditions, Mu/Mq = λp and p=q = x, making it convenient to examine preference variable 

impacts through the Tintner-Ichimura-Basmann relationship which is based on an 

extension of this total differential.2 

Following Theil (1975, 1976, 1980a,b), the direct Rotterdam model can be written 

as 

(1) wi d(log qi) = θi d(log Q) + 3j πij d(log pj) + 3jβij d(log zj) i=1 , . . , n,  
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where wi = piqi /x is the budget share for good i; θi = pi (Mqi/Mx) is the marginal propensity 

to consume (MPC) for good i; d(log Q) = 3wi d(log qi) is the Divisia volume index, a 

measure of the change in real income or utility (d(log Q) ≈ d(log x)- 3wi d(log pi)) 

(Theil, 1971); πij = (pi pj /x) sij is the Slutsky coefficient, with sij = (Mqi/Mpj + qj Mqi/Mx ) 

being the i,jth.element of the substitution matrix S; and βij  = wi (Mlog qi/Mlog zj).  The 

elasticity of the demand with respect to the jth preference variable is (Mlog qi/Mlog zj), and, 

thus, the preference variable coefficient βij is the budget share times this elasticity.  The 

MPC also equals the budget share times the income elasticity ηi = (Mlog qi/Mlog x), i.e., θi 

= wi ηi; and the Slutsky coefficient equals the budget share times the compensated price 

elasticity ε*
ij = (Mlog qi/Mlog pj)|u contant, i.e., πij = wi ε*

ij.  The uncompensated price 

elasticity is εij = ε*
ij - ηiwj.  Overall, the Rotterdam model is thus a Hicksian or 

compensated demand system with the Divisia volume index indicating changes in real 

income and the Slutsky coefficients indicating compensated effects. 

 Based on the Tintner-Ichimura-Basmann relationship, the preference-variable 

coefficients in equation (1) can be written as 

(2) βik = -3j πijγjk, 

where γjk = Mlog(Mu/Mqj)/Mlog(zk), i.e., γjk is the elasticity of the marginal utility of good j 

with respect to the preference variable zk.  Equation (2) is the source of preference-

variable parameter restrictions in this paper.  

 Substituting equation (2) into model (1) results in 

(3) wi d(log qi) = θi d(log Q) + 3j πij (d(log pj) - 3kγjk d(log zk))    i=1 , . . , n, 
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where the term d(log pj) - 3kγjk d(log zk) can be viewed as a preference, adjusted price. 

 The corresponding inverse Rotterdam model can be written as (e.g., Barten and 

Bettendorf; Brown, Lee and Seale) 

(4) wi d(log vi) = gi d(log Q) + 3j hij d(log qj) + 3j αij d(log zj) i=1 , . . , n, 

where again vi = pi/xi; gi is the scale coefficient defined as gi = wi(Mlog vi/Mlog k), with k 

being a scalar that can proportionally change some reference bundle (q=kq* with q* 

being the reference bundle)---similar as in the direct Rotterdam parameterization, the 

scale coefficient is the budget share times the scale elasticity; hij = wi(Mlog vi/Mlog qj)|u 

constant or the budget share times the compensated quantity elasticity or flexibility (the hij’s 

are referred to as Antonelli coefficients and are the counterpart of the Slutsky 

coefficients); and αij = wi (Mlog vi/Mlog zj) or the budget share times the inverse-demand, 

preference variable elasticity.  The scale elasticity, compensated flexibility and inverse 

preference variable elasticity are denoted as μ i = (Mlog vi/Mlog k); δ*
ij = (Mlog vi/Mlog qj) |u 

constant;  ρij = (Mlog vi/Mlog zj), respectively.  The uncompensated flexibility is δij = δ*
ij + μ i 

wj. 

 To show the relationship between the direct and inverse demand systems, the 

models are formulated below in term of matrices and elasticities, i.e. 

(5a) ŵDq = θDQ + π(Dp - γDz)  (direct demand coefficients), 

or, 

(5b) ŵDq = ŵηDQ + ŵε*(Dp - γDz) (direct demand elastictities), 

and 
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(6a) ŵDv = gDQ + hDq + αDz  (inverse demand coefficients), 

or 

(6b) ŵDv = ŵμDQ + ŵδ*Dq + ŵρDz (inverse demand elastictities), 

where ŵ is a diagonal matrix with the diagonal elements being the budget shares; Dq = [d 

log qi], Dp = [d log pi], Dz = [d log zi], and Dv = [d log vi] are all n x 1 vectors; DQ = d 

log Q = w’Dq ≈ Dx – w’Dp, where Dx= dlog x and w’ is a 1 x  n vector of budget shares 

(Theil, 1971); θ =[θi] is an n x 1 vector of MPCs;  π = [πij] is an n x n matrix of Slutsky 

coefficients; γ =[ γij] is an n x n matrix of elasticities of marginal utilities with respect to 

the preference variables; η = [ηi] is an n x 1 vector of income elasticities; ε*= [ε*
ij] is an n 

x n matrix of compensated price elasticities; g is an n x 1 vector of scale coefficients; h is 

an n x n matrix of quantity or Antonelli coefficients; α is an n x n matrix of preference 

coefficients; μ is an n x 1 matrix of scale elasticities; δ*  is an n x n matrix of compensated 

quantity elasticities; and ρ is an n x n matrix of advertising elasticities. 

The general restrictions on the direct Rotterdam model are (e.g., Theil 1975, 

1976, 1980a,b) 

(7a) adding up:  ι’θ = 1  ι’π = 0  

(7b) homogeneity:  πι = 0  

(7c) symmetry:  π = π’, 

where ι’ is an n x 1 vector of ones.  Note that restriction (7a) requires that the preference 

effects also obey adding up, i.e., given the advertising coefficient matrix β equals -πγ, ι’β 

= - ι’πγ = 0, since ι’π = 0.  Restrictions (7a) through (7c) are for the usual Rotterdam 

parameterization (5a).  The corresponding restrictions on the elasticities in specification 
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(5b) are a)  w’η  = 1 (Engle aggregation) and w’ε* =  0 or w’(ε + η w’)  =  w’ε + w’= 0 

(Cournot aggregation), b) ε*ι = 0 or (ε + η w’) ι = ει + η = 0 (homogeneity), and c) ε* = ŵ-

1ε*’ŵ  (symmetry).    

The general restrictions on the inverse Rotterdam model are (e.g., Barten and 

Bettendorf; Brown, Lee and Seale) 

(8a) adding up:  ι’g = -1  ι’h = 0  ι’α = 0, 

(8b) homogeneity:  hι = 0  

(8c) symmetry:  h = h’. 

The corresponding restrictions on the elasticities in specification (6b) are a)  w’μ  = -1  

and w’δ* =  0 or w’(δ - μw’)  =  w’δ + w’= 0, b) δ*ι = 0 or (δ - μw’) ι = δι - μ = 0, and c) 

δ* = ŵ-1δ*’ŵ.    

 

Relationship Between Preference Effects in the Direct and Inverse Demand Systems 

Anderson has shown the relationship between the direct and inverse demand systems 

with respect to price, quantity, income and scale effects.  Below, these relationships are 

extended to the preference variable effects.  The objective is to transform the direct 

Rotterdam model to the inverse Rotterdam model to reveal the structure of the inverse 

demand preference-variable coefficients.  The first step is to pre-multiply equation (5b) 

by ŵ-1 to find 

(9) Dq = ηDQ + ε*(Dp - γDz). 

 If ε* were nonsingular, we could simply multiply both sides of equation (9) by the 

inverse of ε* and rearrange, but this is not the case given (7b).  The problem is that price 
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effects of equation (9) are compensated.  An inversion, however, can be made by 

transforming the compensated elasticities of equation (9) to uncompensated ones.  To 

accomplish this, replace DQ in equation (9) by its equivalent Dx – w’Dp, and rearrange 

the result, i.e., 

(10a) Dq = η(Dx - w’DP) + ε*(Dp - γDz), 

or 

(10b) Dq = ηDx + (ε* - η w’)Dp - ε*γDz, 

or 

(10c) Dq = ηDx + εDp - ε*γDz, 

where again ε = ε* - η w’, the uncompensated price elasticities.  The homogeneity 

condition requires ει = -η since ει = ε*ι - η w’ι or ει = -η, given ε*ι = ŵπ ι = 0, by 

restriction (7b).   The corresponding inverse relationship is δι = μ since δι = δ* ι + μ w’ ι 

= μ, given restrictions (8b).  

Based on the inverse function theorem, the uncompensated elasticity matrix ε will 

be nonsingular, in general, so that multiplying equation (10c) through by its inverse ε-1, 

denoted by δ, and rearranging yields 

 (11a) Dp = δDq - δηDx + δε*γDz,     

or, further rearranging and simplifying, 

 (11b) Dv = μ DQ + δ*Dq + (I - ι w’)γDz, 

where again Dv= Dp – ιDx, δ* = δ - μw’, DQ = w’Dq,  and I is the n x n identity matrix.  

In equation (11a), the term –δη  equals the  n x 1 vector of unit elements, since δε = I, and 

thus δε ι =  ι or –δη = ι  given ε ι = -η; this relationship follows from the homogeneity 
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condition noted after equation (7), which for convenience is repeated in the present 

context as δ(ε* - η w’)ι = Iι = ι, or δε*ι - δη w’ι = ι or -δη= ι, since ε*ι = 0 based on 

condition (7b) and w’ι =1.  The term δε* in equation (11a) equals I - ι w’, since δ(ε* - η 

w’) = I, and thus  δε* = I + δη w’, and given the previous result that -δη= ι, we have δε* = 

I - ι w’.  (Similarly, εδι = εμ = ι and εδ* = I - ιw’. Thus, εδ* = δε*.) 

 Finally, multiplying (11b) through by ŵ yields  

 (12) ŵDv =  ŵμ DQ + ŵδ*Dq + (ŵ - w w’)γDz, 

which is the same as equation (6a) or (6b) except for the specification of the coefficients 

on the preference variables (Dz).  In equations (6a) and (6b), these coefficients are α = 

ŵρ while in equation (12) they are (ŵ - w w’)γ. Thus, we conclude 

(13) α = ŵρ = (ŵ - w w’)γ. 

Preference variable coefficient specification (13) can also be obtained using the 

Hotelling-Wold identity which states 

(14) vi = Mu/Mqi / 3k qk Mu/Mqk. 

Taking the log of equation (14) results in  

(15) log vi = log(Mu/Mqi) - log(3k qk Mu/Mqk), 

and differentiating this equation with respect to log zj yields 

(16) Mlog vi / Mlog zj = M log(Mu/Mqi)/ Mlog zj 

 – (1/(3k qk Mu/Mqk)) (3k qkM(Mu/Mqk)/Mlog zj + 3k (Mu/Mqk) Mqk/Mlog zj). 
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Based on a) the first order condition Mu/Mqj = λpj, b) 3jqjMu/Mqj= λ3j pjqj = λx and 

c) given qk are fixed so that Mqk/Mlog z = 0, the last term on the right-hand side of 

equation (16) can be written as  

– (1/(3k qk Mu/Mqk)) (3k qk(λpk/Mu/Mqk) M(Mu/Mqk)/Mlog zj) 

 or 

– (λ/(3k qk Mu/Mqk)) (3k pkqk Mlog(Mu/Mqk)/Mlog zj) 

or 

– 3k wk Mlog(Mu/Mqk)/Mlog zj. 

Hence, equation (16) can be written as 

(17a) Mlog vi / Mlog zj = M log(Mu/Mqi)/Mlog(zj) – 3k wk Mlog(Mu/Mqk)/Mlog zj, 

or, multiplying through by wi, 

(17b) wi Mlog vi / Mlog zj = wi γij – wi 3k wk γkj, 

where γij =M log(Mu/Mqi)/ Mlog(zj).  Equation (17b) is the non-matrix version of equation 

(13).    

 In the above direct and inverse demand systems (5a) and (12), the matrix γ is 

potentially a source of restrictions on the preference variable impacts; that is, restrictions 

on the preference variable impacts can be made through restrictions on the effects of the 

preference variables on marginal utilities.  For example, in the direct demand system, 

Theil (1980b), assumed γ was a scalar times the Identity matrix, while, Duffy assumed it 

was a diagonal matrix (â). The Theil (1980b) and Duffy specifications are based on the 

assumption that the preference variable for good i only effects the marginal utility of that 
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good.  For a group of uniform substitutes, Brown and Lee (2002) showed that the same 

result can be obtained based on the weaker assumption that γ = â + ιb’ where b’= (b1, b2, 

…, bn) with bi being a scalar; this specification allows the preference variable for good i 

to effect the marginal utility of other goods, uniformly across the goods in the group.  In 

the direct and inverse models, (5a) and (12), the preference variable effects are -πγ and 

(ŵ - w w’)γ, respectively, which for the above structure for γ become -π(â + ιb’) = -πâ 

and (ŵ - w w’) (â + ιb’) = (ŵ - w w’) â  with the terms related to b’ disappearing given -

πι = 0 based on restriction (7b) and (ŵ - w w’) ι= 0.  Although assuming b is zero yields 

the same result, such an assumption may not realistic for a group of closely related goods 

such as uniform substitutes.  Thus, we see that the Duffy assumption can be extended to 

cases where preference variables have uniform effects across the marginal utilities of the 

goods in the group. 

In estimating the inverse model, there is, however, an endogeneity problem with 

the budget shares embedded in the term (ŵ - w w’)γ.  This problem might be handled by 

using mean budget shares in this term, instrumental variables, or perhaps lagged budget 

shares, as suggested to deal with a similar endogeneity problem in the Almost Ideal 

Demand System involving budget shares embedded in the Stone price index (Eales and 

Unnevehr).3   

 

Application 

Impacts of fresh citrus quality on prices were examined using U.S. retail data on fresh 

citrus sales (Freshlook Marketing Group).  Retail prices, quantities and the percentage of 
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volume sales that are random weight were examined for three varieties of citrus: 

grapefruit, oranges and tangerines.  Fresh citrus is generally sold in two forms:  1) 

individual pieces, referred to as random-weight (RW) fruit, and 2) bags/cases, referred to 

as fixed-weight (FW) fruit.   The two types of citrus are usually displayed side by side in 

produce sections in retail stores but priced differently.  The quality of RW and FW fruit 

may differ with respect to size, variety and external look.  The RW percentage is treated 

as a measure of quality but may also reflect merchandising and packaging tactics.  A 

summary of the data are provided in Table 1. The data are weekly from week ending 

1/8/2006 through 2/15/2009.   

Fresh citrus are seasonal with their availability changing substantially over the 

course of a year (volumes are greatest during late fall, winter and early spring).  When 

volumes are high, prices tend to be low and vice versa.  Given this situation, a 

conditional demand version of inverse Rotterdam model (4), with the preference-variable 

coefficients specified as on the right hand side of equation (13), was used to estimate how 

fresh citrus prices are impacted by scale (overall availability of oranges, grapefruit and 

tangerines), relative product quantities (Antonelli substitution), and quality/packaging as 

measured by the RW percentages.  Following the preceding section, it is assumed that the 

quality variable for a variety of citrus (i) has a specific impact (ai) on the marginal utility 

of that variety of citrus and a uniform substitute or generic impact (bi) on the marginal 

utilities of all varieties (including the variety in question).  In this case, â is a diagonal 

matrix with the diagonal elements being (a1, a2, a3) for the three citrus varieties studied, b’ 

= (b1, b2, b3), and the matrix indicating the impacts of quality on the marginal utilities in 
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equation (13) is γ = â + ιb’.  The term (ŵ - w w’) γDz in the model then becomes (ŵ - w 

w’) â Dz, since (ŵ - w w’) ιb’ = 0.  Thus, the impact of preference variable j in the 

equation for good i can be written as (wi ∆ij - wiwj) aj Dzj, where again ∆ij is the 

Kronecker delta.  In estimating this term lagged budget shares were used to avoid the 

endogeneity problem mentioned earlier.  

Homogeneity and symmetry, conditions (8b) and (8c), were imposed as part of 

the maintained hypothesis in estimating the model.  The adding-up condition (8a) holds 

as the data add up by construction.  The infinitely small changes in the logarithms of 

prices and quantities in the differential model were measured by discrete differences 

(Theil 1975, 1976).  The quality variables, which are percentages of volumes that are 

RW, were not transformed to log values, and the levels of these variables were similarly 

differenced.  To account for seasonality in demand, the variables were 52nd differenced 

(for the 52 weeks in a year)-- d(log pit) = log pit -log pit-52, d(log qit) = log qit -log qit-52 and 

dzkt = zkt -zkt-52 (Duffy, Brown and Lee 1997).  Average budget share values underlying 

the differencing were used in constructing the model variables---wi,t was replaced by (wi,t 

 + wi,t-52 )/2. 

The demand specifications studied are conditional on expenditure or income 

allocated to the three citrus varieties.  Income allocated to the citrus group is measured by 

the conditional Divisia volume index for this group which was treated as independent of 

the error term added to each fresh citrus inverse demand equation for estimation, based 

on the theory of rational random behavior (Theil 1980a; Brown, Behr and Lee).4  As the 

data add up by construction---the sum of  the  left-hand-side variables in the inverse 
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Rotterdam model equal the negative of the conditional Divisia volume index--the error 

covariance matrix was singular and an arbitrary equation was excluded (the model 

estimates are invariant to the equation deleted as shown by Barten, 1969).  The 

parameters of the excluded equation can be obtained from the adding-up conditions or by 

re-estimating the model omitting a different equation. The equation error terms were 

assumed to be contemporaneously correlated and the full information maximum 

likelihood procedure (TSP) was used to estimate the system of equations.  

In estimating the (conditional) inverse Rotterdam model for fresh citrus, first-

order autocorrelation was found to exist, which required estimating an additional 

parameter ρ (Berndt and Savin).  Model estimates are shown in Table 2 (equations (4) 

with α specified in equation (13)).    To measure the fit of the system of equations, a 

system R2, based on the Wald test and dependent on the equation omitted in estimating 

the model, was calculated (McElroy, Bewley).  The system R2 ranged from .87 to .99 

depending on the equation deleted.  Although not appropriate for measuring goodness of 

fit for a system of equations, single equation R2 values for grapefruit, orange, and 

tangerine prices were .86, .99 and .69, respectively.  

All coefficient estimates, except that for the tangerine quantity effect on the 

grapefruit price, are significantly different from zero to the extent their values are twice 

or greater than their estimated standard errors.  The scale coefficients are all negative, 

indicating that as the overall volume of citrus in the market increases, prices for these 

varieties decline.  All own-quantity or Antonelli coefficients are negative, consistent with 

the law of demand.  The cross-quantity coefficients were positive indicating (net) 



15 
 
complementary relationships between these varieties at the compensated demand level, 

except the insignificant tangerine quantity effect on the grapefruit price indicating a 

neutral relationship; at the uncompensated level, all cross effects were negative, 

indicating (gross) substitution, as noted below. The net complementary relationship 

suggests that some households may be purchasing combinations of these citrus varieties.  

 All coefficients on the quality measures were positive, suggesting the quality of random 

weight fruit is higher than that for fixed weight fruit.  The RW coefficients may also be 

reflecting a preference for less restricted packaging or the impact of other in-store 

differences in merchandising of RW and FW fruit.  

The uncompensated elasticities (flexibilities) for the inverse citrus demand system 

are provided in Table 3.  The scale elasticities for grapefruit, oranges and tangerines are   

-.93, -.99 and -1.06, respectively, indicating the if all three quantities increased 

proportionately, say by 10% , the price of tangerines would decrease the greatest 

by10.6%, while the price of grapefruit would decrease the least by  9.3%.   The own-

quantity elasticities for grapefruit, oranges and tangerines are -.38, -.73, and -.39, 

respectively, indicating the price of oranges is more sensitive to own-quantity than the 

other two varieties.  The cross-quantity elasticities are all negative, reflecting substitution 

at the uncompensated level.  

The quality estimates indicate that if the RW shares of tangerines, grapefruit  and 

oranges are increased say by 10 percentage points, their prices would increase by 7.6%, 

2.7% and .8%, respectively, excluding cross effects.  The cross-RW estimates indicate 

negative impacts on competing varietal prices, and if, for example, the RW share of 
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tangerines is increased by 10 percentage points, the prices of grapefruit and oranges 

would each decrease by about 2.1%.  To the extent the fruit in each varietal category is 

ranked by quality and the highest quality fruit is sold as RW, the results suggest that the 

retail price and hence revenue might be enhanced by some additional sorting of FW fruit 

by quality and selling more as RW.  Other factors, however, may offset such possible 

benefits.  For example, RW fruit may be subject to a higher spoilage rate as a result of 

consumer handling of the fruit, and the bags and other containers in which FW fruit is 

sold may hide external fruit blemishes to some degree, although internal quality of the 

fruit may be relatively good.  

In the empirical application here, the uniform substitute restrictions or essentially 

equivalent restrictions suggested by Duffy reduce the preference-variable parameter 

space by a factor of n-1 where again n is the number of goods.  Three RW coefficients 

were estimated for the six RW impacts in the model--three RW variables per equation 

times two equations with the impacts for the third equation determined from the adding-

up condition.  More generally, for system of n equations, n coefficients would need to be 

estimated for n x n-1 preference effects.  Thus, to the extent the uniform substitute or 

Duffy assumptions are acceptable, the reduction in the parameter space could be quite 

large. 

The results of this study may also be of interest for demand analyses where it is 

useful to have corresponding estimates of direct and inverse demand elasticities or 

impacts with respect to some preference variables.  Based on equation (11b), the inverse 

demand elasticities with respect to the preference variables are (I - ι w’)γ, while based on 
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equation (10b), the direct demand elasticities with respect to the preference variables are 

-ε*γ.  It was also found that δε* = I - ι w’ where δ is the matrix of uncompensated quantity 

elasticities for the inverse demand equations.  Thus, multiplying -δ-1, which equals –ε or 

the negative of the uncompensated price elasticities for the direct demand equations, 

times the inverse preference variable elasticities (I - ι w’)γ yields the direct demand, 

preference variable elasticities -ε*γ.  In the present analysis, the direct demand, own-RW 

impacts (∂(log qi)/∂zi) at mean budget shares are 1.01 (.27) for grapefruit, .31 (.08) for 

oranges and 3.91 (.76),  with the corresponding inverse demand, own-RW impacts (∂(log 

pi)/∂zi) from Table 3 in parentheses.  The relatively large direct demand impact for 

tangerines is a result of a relatively high (direct demand) own-price elasticity, 

corresponding to the relatively low (inverse demand) own-quantity elasticity, and a 

relatively high impact (γ) of the RW variable on the marginal utility for tangerines. 

 

Conclusions 

This paper extends the Tintner-Ichimura-Basmann relationship to specifying preference 

variable shifts in inverse demand systems.  The Tintner-Ichimura-Basmann relationship 

indicates how effects of preference variables on quantities demanded are related to price 

effects and effects of the preference variables on the marginal utilities.  This relationship 

has been a source of restrictions on preference coefficients in direct demand systems.  

The extension here is based on the relationship between the direct and indirect demand 

systems and the corresponding preference variable impacts in each system.  In both 

systems, a change in a preference variable has the same basic impacts on the marginal 
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utilities, but in the direct demand system, the impacts on the marginal utilities results in 

demand impacts through the price effects, while in the inverse demand system the 

marginal utility impacts result in impacts on prices through the budget shares.   

 The addition of a set of preference variables like product specific advertising 

levels results in a relatively large increase in the parameter space of direct and inverse 

demand systems, which may make estimation of the preference variable impacts difficult. 

 For such demand models, theoretically based restrictions on the preference variable 

impacts may be of interest.  This paper shows that restrictions on the impacts of 

preference variables on marginal utilities offer an approach to estimating the effects of 

preference variables in not only direct demand systems but also inverse demand systems. 

 An empirical study of the demand for fresh citrus illustrates the modeling approach.  

Varietal specific, quality variables are assumed to impact prices through the marginal 

utilities similarly as has been suggested for direct demand systems. The preference 

variable specifications of this study may not only be of interest for estimation but may 

also be useful for converting direct demand system impacts to inverse demand system 

impacts and vice versa, to help in understanding market behavior. 
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Table 1.  Summary Statistics: Weekly U.S. Retail Orange Grapefruit and Tangerine 

Sales, Week Ending 1/8/2006 through 2/15/2009. 

 Variable Variety  Unit Mean Std Dev

Volume Grapefruit mil. lbs 4.242 2.146

Oranges mil. lbs 16.797 8.057

Tangerines mil. lbs 6.032 6.337

Price Grapefruit $/lb 1.006 0.146

Oranges $/lb 1.134 0.254

Tangerines $/lb 1.405 0.229

Expenditure mil. $ 28.689 11.786

Budget Share Grapefruit % 14.4% 2.7%

Oranges % 63.7% 12.5%

Tangerines % 21.9% 13.8%

RW Sharea Grapefruit % 59.6% 5.1%

Oranges % 60.0% 8.9%

  Tangerines % 15.6% 12.0%

a Percentage of total pounds sold that is random weight. 
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Table 2.  Inverse Rotterdam Model Estimates, Equations 4 and 13.  
 

Equation Explanatory Var. Coeff. Est. Std Error T-Statistic P-Value 
 
Grapefruit P. Scale (g1) -0.1360 0.0085 -16.0066 [.000] 

Grapefruit Q. (h11) -0.0352 0.0045 -7.7330 [.000] 

Orange Q. (h12)a 0.0327 0.0042 7.7916 [.000] 

Tangerine Q. (h13)b 0.0024 0.0019 1.2779 [.201] 

  Gft. RW % (a1)c,d 0.3200 0.1069 2.9945 [.003] 
 
Orange P. Scale (g2) -0.6300 0.0227 -27.7246 [.000] 

Orange Q. (h22) -0.0641 0.0070 -9.1997 [.000] 

Tangerine Q. (h23)b 0.0314 0.0063 4.9517 [.000] 

  Oran. RW % (a2)c,d 0.2219 0.0918 2.4165 [.016] 
 
Tangerine P. Scale (g3) -0.2340 0.0233 -10.0211 [.000] 

Tangerine Q. (h33) -0.0338 0.0069 -4.9231 [.000] 

  Tan. RW % (a3)c,d 0.9746 0.3676 2.6515 [.008] 
 
Autocorrelation Coeff. (ρ) 0.9008 0.0297 30.3505 [.000] 
 

a Parameter h12 shared by equation (2) by symmetry. 

b Parameters h13 and h23 shared by equation (3) by symmetry. 

c Percentage of total pounds sold that is random weight. 

d Parameters a1, a2 and a3 shared by all equations. 
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Table 3.  Inverse Rotterdam Model Elasticities.a
 
Equation Explanatory Var. Estimate Std Error 
 
Grapefruit P. Scale -0.931 0.058 

Grapefruit Q. -0.377 0.037 
Orange Q. -0.365 0.030 
Tangerine Q. -0.189 0.017 

Gft. RW %b 0.273 0.091 

Oran. RW %b -0.141 0.058 

  Tang. RW %b -0.215 0.081 
 
Orange P. Scale -0.995 0.036 

Grapefruit Q. -0.094 0.009 
Orange Q. -0.731 0.023 
Tangerine Q. -0.170 0.013 

Gft. RW %b -0.047 0.016 

Oran. RW %b 0.081 0.034 

  Tang. RW %b -0.215 0.081 
 
Tangerine P. Scale -1.061 0.106 

Grapefruit Q. -0.144 0.018 
Orange Q. -0.529 0.068 
Tangerine Q. -0.387 0.042 

Gft. RW %b -0.047 0.016 

Oran. RW %b -0.140 0.058 

  Tang. RW %b 0.759 0.286 
 

a At sample budget share means. 

b Percentage of total pounds sold that is random weight (z); estimates for RW variables are 

∂(logpi)/∂zj. 
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1 Barnett, Byron, and Mountain show that the Rotterdam model is a flexible specification 

comparable to other popular functional forms such as the Almost Ideal Demand System or 

AIDS (Deaton and Muellbauer, 1980a,b).  

 

2 Alternative popular demand models based on the cost or expenditure function such as, 

for example, the recent nested PIGLOG model (Piggott) which embeds the AIDS and 

related models were not used as their relationship to the Tintner-Ichimura-Basmann 

relationship is less direct.  The AIDS cost function, for example, does not have an 

associated closed form direct utility function, making  the linkage between  its demand 

equations, first-order conditions and the Tintner-Ichimura-Basmann relationship less 

straightforward. 

 

3 The preference variable results for the Rotterdam model can also be extended to AIDS-

like models.  The AIDS model’s dependent variable is the budget share wi = piqi /x.  

Taking the log of this budget share results in (i) log wi = log pi + log qi - log x, and its 

total differential is (ii) d(log wi) = d(log pi) + d(log qi) - d (log x), or noting d(log wi) = 

dwi /wi , (iii) dwi = wid(log pi) + wid(log qi) - wid(log x).  The latter equality implies (iv) 

dwi /d(log zj)  =  wid(log qi )/d(log zj), and since wid(log qi) is the dependent variable of 

the direct Rotterdam demand system, this result implies that preference variable effects 

are the same in each model.  That is, the Rotterdam preference variable term, 3jβij d(log 

zj), in equation (1), is also applicable for AIDS-like models.  An approximation of the 
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differential AIDS model is (v) dwi = 3j cij Dpj + bi DQ + 3jβij Dzj (Deaton and 

Muellbauer, 1980a; Barten, 1993).     Substituting equation (v) into (iii) and rearranging 

results in (vi) wiDqi = (bi + wi)DQ + 3j (cij - wi ∆ ij + wi wj)Dpj + 3jβij Dzj, where ∆ij is the 

Kronecker delta (∆ij = 1 if i = j, otherwise ∆ij = 0).  From equation (vi) we conclude that 

(vii) πij = (cij - wi ∆ ij + wi wj).  Thus, in equation (v), the preference variable coefficient 

can be specified as (vii) βik = -3j (cij - wi ∆ ij + wi wj) γjk, based on equation (2).  In 

estimating AIDS-like model (v) with βij defined by (vii), budget shares used as 

explanatory variables might be replaced by their lagged values to avoid endogeneity.  If 

direct estimates of the coefficients of an AIDS-like model (bi, cij, and γij) are available, 

the corresponding inverse demand relationship could be found for some set of budget 

shares as shown in this paper with θi = (bi + wi ),  πij = (cij - wi ∆ ij + wi wj), and βik = -3j 

(cij - wi ∆ ij + wi wj) γjk. 

 

4  Adding an n x 1 vector of error terms e to the direct demand equations (5a), the error 

terms in the inverse demand equations (12) are ŵδŵ-1e.  Given e is independent of the 

Divisia volume index DQ in the direct demand equations (rational random behavior), 

ŵδŵ-1e is independent of DQ in the inverse demand equations. 


