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Abstract

Polluting technologies can be represented using output distance func-
tions. A common approach to estimating such functions is to factor out
one of the outputs and estimate the resulting equation using well-known
stochastic frontier estimation methods, including maximum likelihood. A
problem with this approach is that the outputs that are not factored out
may be correlated with the error term, leading to biased and inconsistent
estimates. This paper addresses the problem in a Bayesian framework.
The methodology is applied to data on U.S. electric utilities. Results
include estimates of technical ine¢ ciencies and the shadow price of a pol-
lutant.

1 Introduction

The economically-relevant characteristics of a multi-input multi-output produc-
tion technology can be represented using a Shephard output distance function.
This function gives the inverse of the largest factor by which a �rm can radially
expand its output vector while holding its input vector �xed. The econometric
approach to estimating Shephard output distance functions typically involves
factoring out one of the outputs and estimating the resulting equation using
conventional stochastic frontier estimation methods, such as corrected ordinary
least squares (COLS) or maximum likelihood. Examples include Reinhard and
Thijssen (1998), Coelli and Perelman (1999) and O�Donnell and Coelli (2005).
A directional output distance function is a slightly di¤erent type of distance

function that can be used to represent technologies that are non-separable in
desirable and undesirable outputs. Examples of undesirable outputs include

�Paper prepared for presentation at the 51st Annual Conference of the Australian Agri-
cultural and Resource Economics Society, Queenstown, New Zealand, 13-16 February, 2007.
The author would like to thank William Weber for providing access to data previously used
by Fare et. al. (2005).
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workplace injuries and agricultural and industrial pollutants. The directional
distance function is useful in these production contexts because it allows for
non-radial expansions of the output vector. Thus, it can register a performance
improvement when �rms increase some outputs (the desirable ones) and decrease
others (the pollutants). Recently, Fare et. al. (2005) used a directional output
distance function to measure the performance of �rms producing sulphur dioxide
(SO2) as a byproduct of electricity generation. Estimation was e¤ected by
factoring out the SO2 output and estimating the resulting parametric frontier
model using COLS.
Estimating output distance functions in a parametric frontier framework is

far from straightforward. A problem that concerns many researchers is that
the outputs that are not factored out may be correlated with the composite
error term (Atkinson, Fare and Primont, 1998; Atkinson and Primont, 1998).
The problem is sometimes referred to as the �endogeneity problem�(e.g., Robias
and Arias, 2005). One solution is to estimate the frontier using the generalized
method of moments (GMM) (e.g., Atkinson, Cornwell and Honerkamp, 2003).
An advantage of this approach is that it obviates the need for distributional as-
sumptions on the error term. Unfortunately, GMM estimates are often sensitive
to the choice of instruments, and the �nite sample properties of the estimator
are unknown.
In this paper, we address the endogeneity problem in a way that does not

involve the use of instruments. Our alternative approach involves the imposi-
tion of inequality constraints on the parameters of an approximating functional
form. Importantly, the approach can be implemented in a Bayesian framework.
One advantage of the Bayesian approach is that it enables us draw exact �nite
sample inferences concerning nonlinear functions of the unknown parameters.
As an illustration, we use the approach to draw inferences concerning the tech-
nical ine¢ ciencies of U.S. electric utilities. We also draw exact �nite sample
inferences concerning the shadow price of the pollutant.
The structure of the paper is as follows. Section 2 formally introduces the

directional output distance function and its properties. These properties in-
clude representation and monotonicity. Section 3 shows how the representation
property can be used to derive an empirical model that can be estimated using
either sampling theory (i.e., GMM) or Bayesian methods. However, to avoid
problems associated with choosing instruments, and to facilitate the impostion
of monotonicity constraints, this paper adopts the Bayesian approach. Section 4
derives the joint posterior density for the unknown parameters and unobserved
ine¢ ciency e¤ects. The conditional posterior densities to be used in a Gibbs
sampling algorithm are also derived. Section 5 describes the data and reports
the empirical results. The results are compared to nonparametric estimates
obtained by Fare et. al. using the same data set. The paper is concluded in
Section 6.
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2 The Directional Output Distance Function

Let St denote the set of all output and input vectors yt 2 RN+ and xt 2 RM+ that
are technically feasible in period t 2 f1; :::; Tg. The production technology can
be represented by the directional output distance function

D (xt; yt; g) = sup f� : (xt; yt + �g) 2 Stg (1)

where g = (g1; :::; gM )� is a direction vector. The m-th output is considered
desirable if gm > 0 and undesirable if gm < 0. If the technology satis�es mild
regularity conditions then the following properties hold (e.g., Fare et. al., 2005):

1. Representation: D (xt; yt; g) � 0 if and only if (xt; yt) 2 St.

2. Translation: D (xt; yt + �g; g) = D (xt; yt; g)� �.

3. g-homogeneity: D (xt; yt;�g) = �
�1D (xt; yt; g) for � > 0:

4. No free lunch: D (0; 0; g) = 0:

5. Weak disposability: D (xt; �yt; g) � 0 for (xt; yt) 2 St and 0 � � � 1.

6. Monotonicity: GryD (xt; yt; g) � 0M ; where G = diag(g1; :::; gM ):

The representation property says that the directional distance function is
non-negative for all feasible input-output combinations. It also implies the dis-
tance function takes the value zero if and only if the �rm lies on the boundary
of the production possibilities set. Such a �rm is said to be e¢ cient in the
g-direction, or g-e¢ cient. The translation property says that expanding the
output vector by an amount �g has the e¤ect of reducing the directional dis-
tance by �. This property is the additive analogue of the homogeneity property
of the Shephard output distance function. The g-homogeneity property says
that a radial expansion of the direction vector causes an equiproportionate re-
duction in the directional distance, while the no free lunch property says that
production of non-zero output is impossible without committing some inputs to
the production process. The weak disposability property says that any propor-
tional contraction of outputs is possible. Finally, the monotonicity property
says that the directional distance function is non-increasing in desirable outputs
and non-decreasing in undesirable outputs.
The Shephard output distance function is a limiting special case of the di-

rectional output distance function corresponding to g = yt.

3 The Empirical Model

The representation property can be used to write D (xt; yt; g) = ut where ut � 0
is a random variable with mean � � E (ut) > 0: Let F (xt; yt; g) be a function
that can provide a local approximation to D (xt; yt; g) at the variable means.
We follow standard practice in the applied economics literature and treat the
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observation-varying error of approximation, vt � D (xt; yt; g) � F (xt; yt; g), as
an independent symmetric random variable with zero mean. It follows that

F (xt; yt; g) = ut � vt (2)

where �t � ut � vt is a random variable with mean �: All �exible functional
forms are available for use in empirical work. In this paper we use the quadratic
approximating function

F (xt; yt; g) = � + a�yt + b�xt + yt�Ayt + xt�Bxt + xt�Hyt (3)

where � is an unknown scalar and a, b, A, B and H are unknown matrices. For
identi�cation purposes, the matrices A and B are assumed to be symmetric.
There is no theoretical requirement that the function F exhibit the trans-

lation, g-homogeneity or no free lunch properties of the unknown function D.
However, if F is to provide a �rst-order approximation to D at the variable
means, it must satisfy the monotonicity property at that point. In this paper,
where we normalise all input and output variables to have unit means, the pa-
rameters of F must satisfy GryF (�N ; �M ; g) � 0M , where �N denotes a unit
column vector of order N . Unconstrained estimation is possible using GMM,
where an obvious moment condition is E fF (xt; yt; g)� �g = 0. However, no
other moment conditions are immediately apparent. Moreover, there is no sat-
isfactory method for imposing the monotonicity constraint. This sparks our
interest in an alternative estimation strategy.
Our alternative strategy involves the construction of a nonnegative aggre-

gate output, qt � wt�yt. Since the approximating function is quadratic, it is
convenient to de�ne the weight vector

wt � Ayt �ryF (xt; yt; g) = � (a+Ayt +Hxt)�� 0M (4)

The assumption that wt � 0M is particularly useful for estimation purposes, not
least because it ensures the aggregate output is non-negative for all yt 2 RN+ .
Also germaine to the estimation problem is the fact that equations (2), (3) and
(4) combine to form an empirical model that resembles a conventional stochastic
frontier model:

qt = � + b�xt + xt�Bxt + vt � ut: (5)

This equation suggests that the unknown parameters and ine¢ ciency e¤ects can
be estimated using conventional frontier estimation techniques. Unfortunately,
conventional frontier estimation is complicated by the fact that the aggregate
output is unobserved. In this paper, we solve this particular problem in a
Bayesian framework.

4 Bayesian Estimation

Bayesian estimation involves sampling from the joint posterior probability den-
sity function (pdf) of the unknown parameters and unobserved ine¢ ciency ef-
fects. In this section we derive the likelihood function and specify the prior pdf.
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We also specify the conditional posteriors needed for a Markov Chain Monte
Carlo (MCMC) sampling algorithm.

4.1 The Likelihood Function

The T equations represented by (5) can be written in the compact form

q = X� + v � u (6)

where q = (q1; :::; qT )�; X is a T � (1 + 0:5N)(N + 1) matrix with t-th row
comprising a constant, the elements of xt, and the distinct elements of xtxt�; �
is a conformable vector containing �, the elements of b, and the distinct elements
of B; and the remaining de�nitions are obvious. For inference in models of this
type, it is common to assume v is an independent normal random vector with
pdf1

p (v j h) = fN
�
v j 0T ; h�1IT

�
(7)

where IT denotes an identity matrix of order T . Thus, the conditional joint
density for the unobserved aggregate outputs is

p (q j �; u; h) = fN
�
q j X� � u; h�1IT

�
(8)

where, for notational convenience, the conditioning on X has been suppressed.
Unfortunately, this T -variate density is not enough to de�ne a sampling density
for the M � T matrix of observed outputs, Y = (y1; :::; yT ). To de�ne such a
sampling density we must introduce M � 1 new random variables to drive sto-
chastics in another M � 1 dimensions. We do this using an approach employed
in a similar context by Fernandez, Koop and Steel (2000) (hereinafter referred
to as FKS).
Let wmt and ymt denote the m-th elements of wt and yt, and let �mt �

wmtymt=qt denote the m-th �output share�. Non-negativity of wt and yt means
that the elements of �t = (�1t; :::; �Mt)� lie in the unit interval and sum to one.
Accordingly, we assume that �t is independently distributed with Dirichlet pdf

2

p (�t j s) = fD (�t j s) (9)

where s = (s1; :::; sM )�2 RM+ . Given xt and the parameters of the weight vector
(4), the inverse function theorem says there is a one-to-one mapping between
yt 2 RM+ and

�
�1t; :::; �M�1;t; qt

�
�2 RM+ . The conditional joint density for yt is

therefore

p (yt j �; �; h; s; ut) = fN
�
qt j � + b�xt + xt�Bxt � ut; h�1

�
fD (�t j s) jJtj (10)

1The notation fN (a j b; c) indicates that a is a normal random variable with mean b and
variance c, while the notation fG (a j b; c) indicates that a is a gamma random variable with
shape parameter b and scale parameter c (so a has a mean of b=c and a variance of b=c2).

2The notation fD (a j b) is the notation for a Dirichlet pdf used by Poirier (1995, p.132).
Other distributional assumptions are possible, including the additive logistic normal.
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where jJtj is the absolute value of the Jacobian of the transformation from�
�1t; :::; �M�1;t; qt

�
to yt; and � is an M(N +0:5M +1:5)� 1 vector containing

the elements of a, A and H. The Jacobian in this case is

Jt = q
1�M
t

 
MY
m=1

ymt

!����0:5A+ diag�w1ty1t ; :::; wMt

yMt

����� : (11)

Finally, the conditional likelihood function for the matrix of observed outputs
is

p (Y j �; �; h; s; u) = fN
�
q j X� � u; h�1IT

� TY
t=1

fD (�t j s)
TY
t=1

jJtj : (12)

This likelihood function has the same structure as one speci�ed by FKS (p.55)
and used in a banking application. However, the FKS likelihood function has
a di¤erent Jacobian term (FKS use a nonlinear output aggregator function
and the logarithm of aggregate output as the dependent variable in the latent
stochastic frontier model).

4.2 The Joint Prior

Fernandez et. al. (1997) show that proper priors on the parameters of frontier
models are generally needed to ensure the existence of the posterior density. We
therefore specify a joint prior of the form p (�; �; h; s; u) = p(�)p(�)p(h)p(s)p (u)
where each of the component priors is proper:

p(�) = fN (� j 0H ; k1IL) I (� 2 R) (13)

p(�) = fN (� j 0K ; k2IK) : (14)

p(h) = fG (h j 1; k3) (15)

p(s) =
MY
m=1

fG (sm j 1; k4) (16)

p
�
u j ��1

�
=

TY
t=1

fG
�
ut j 1; ��1

�
(17)

and

p(��1) = fG
�
��1 j 1; ��

�
(18)

where K is the row dimension of �, L is the row dimension of �, and R is the
region of the parameter space where the constraints GryF (�; �; g) � 0M and
wt � 0M are satis�ed. In our empirical example we set k1 = k2 = 104 and k3 =
k4 = 10�4 to ensure the priors for �; �; h and s are relatively noninformative.
The pdf (18) is centred on ��, a prior estimate of the mean of the ine¢ ciency
distribution. In our empirical example we set �� = 0:2.
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4.3 Posterior Inference

The likelihood function combines with the joint prior to yield a joint posterior
density for the unknown parameters and the unobserved ine¢ ciency e¤ects.
Analytical integration of this posterior appears impossible, so posterior inference
is conducted using MCMC simulation methods. The Gibbs sampling algorithm
partitions the vector of unknown parameters and ine¢ ciency e¤ects into blocks,
then simulates sequentially from the conditional posterior distribution for each
block. Details concerning the algorithm are available in Gelfand and Smith
(1990). In the present case, the conditional posteriors are

p(� j �; h; s; u; ��1; Y ) (19)

/ exp
�
�0:5he�e� 0:5k�11 ���

	
�

TY
t=1

fD (�t j s)�
TY
t=1

jJtj � I (� 2 R)

p(� j �; h; s; u; ��1; Y ) = fN (� j hV X�(q + u); V ) (20)

p(h j �; �; s; u; ��1; Y ) = fG (h j 1 + 0:5T; k3 + 0:5e�e) (21)

p(s j �; �; h; u; ��1; y) =
TY
t=1

fD (�t j s)
MY
m=1

fG (sm j 1; k4) (22)

p(u j �; �; h; s; ��1; Y ) / fN
�
u j X� � q � (h�)�1�T ; h�1IT

�
I(u � 0T ) (23)

and

p(��1 j �; �; h; s; u; Y ) = fG
�
��1 j T + 1; �� + �T�u

�
(24)

where e � q � X� + u and V �
�
hX�X + k�12 IK

��1
. Simulating from the

densities (20), (21), (23) and (24) is straightforward using non-iterative simula-
tion methods. Indeed, simulating from (23) can be accomplished by sampling
independently from T univariate truncated normal distributions. Although the
remaining densities are nonstandard, they can be simulated using a Metropolis-
Hastings algorithm. Details concerning this algorithm can be accessed from
Chen et. al. (2000).

5 Empirical Example

As an illustration, we estimate the productive performance of U.S. fossil fuel-
�red electricity utilities for a period (1993) just prior to implementation of Phase
I of the U.S. acid rain program. Electricity utilities use inputs of labour, cap-
ital and fuel to produce outputs of electricity and SO2. We set g = (1;�1)�to
indicate that megawatt hours (MWh) of electricity and tons of SO2 are desir-
able and undesirable outputs respectively. The data were assembled by Fare
et. al. (2005) from various reports published by the U.S. Energy Information
Administration (EIA) and Environmental Protection Agency (EPA). The 209
�rms in the sample produced an average of 1.719 million MWh of electricity
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and 32,188 tons of the pollutant in 1993. More details concerning the data can
be found in Fare et. al.
The Gibbs sampler was used to draw 104 observations on the unknown pa-

rameters and ine¢ ciency e¤ects. The parameter estimates were constrained
so that the output weights were non-negative and monotonicity was satis�ed
at the variable means, as discussed in Section 4. All programs were written
in GAUSS. In this section we report the means, medians and/or standard de-
viations of (functions of) our MCMC samples. Means and medians of the
estimated posterior pdfs are optimal Bayesian point estimates under quadratic
loss and absolute loss respectively.

Point estimates of the unknown parameters are presented in Table 1. Since
the individual estimates have no meaningful economic interpretations, we sim-
ply note that the sample standard deviations associated with the inequality-
constrained parameters (elements of �) are generally small relative to their
sample means. This is not the case for the unconstrained parameters (elements
of �). This illustrates the bene�ts of incorporating non-sample information into
the estimation process when only a few observations are available for estimating
a relatively large number of unknown parameters.
Estimates of technical ine¢ ciency e¤ects are of particular interest. The

estimated posterior pdf for industry technical ine¢ ciency is depicted in Figure 1,
and has a median of 0.216. This indicates that in 1993 it was technically possible
for the industry to produce 0:216 additional units of electricity and 0:216 fewer
units of SO2 while holding input levels �xed. Recall that outputs were scaled to
have unit means. Thus, our estimate of 0:216 represents 1:719� 0:216 = 0:371
million additional MWh of electricity and 32; 188� 0:216 = 6; 952 fewer tons of
SO2. By comparison, Fare et al. estimate that �rms could have produced an
extra 0.320 MWh of electricity and 5,987 fewer tons sulphur dioxide using 1993
input levels.
E¢ cient �rms that operate on the production frontier must forego electricity

production in order to reduce emissions of SO2. The value of the electricity
foregone in order to achieve a one ton reduction in SO2 is given by the shadow
price of the pollutant (Fare et. al., 2005):

p2t = �p1t
�
@D (xt; yt; g) =@y2t
@D (xt; yt; g) =@y1t

�
(25)

where p1t and p2t denote the prices of electricity and SO2 respectively. Only
the market price of electricity is observed.
In this paper, we estimate the shadow price of the pollutant by evaluating

the right-hand side of equation (25) at the variables means, the only point at
which our estimates of the derivatives of the distance function are guaranteed
to satisfy the monotonicity property. Our estimate of the shadow price is
$6,470 per ton, almost six times higher than the estimate reported by Fare et.
al. ($1,117), and almost double that reported by Lee et. al. (2002) ($3,107).
Di¤erences in the estimates may be due to the fact that these other authors
implicitly assume that the �nite sample distributions of their estimators are
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Table 1: Parameter Estimates
Parameter Mean Median St. Dev.

a1 -640.67 -648.49 38.73
a2 9.45 9.41 1.06
a11 -24.75 -24.79 1.91
a12 23.73 0.21 1.68
a22 4.88 4.83 0.83
h11 -67.61 -68.63 10.25
h21 45.49 46.17 10.30
h31 -33.39 -33.56 6.03
h12 -22.29 -22.37 3.45
h22 -37.24 -37.20 4.77
h32 -6.68 -6.70 2.09
� 46.41 46.44 47.72
b1 -7.33 -7.72 38.58
b2 562.02 564.65 49.84
b3 10.52 10.48 18.90
b11 -9.19 -9.15 6.69
b12 92.69 93.18 17.91
b13 16.30 16.27 7.08
b22 -23.03 -23.44 13.60
b23 26.17 26.13 8.44
b33 -1.72 -1.72 1.37
h 1.43E-5 1.42E-5 1.73E-6
��1 4.55 3.21 4.43
s1 10.82 10.76 1.34
s2 1.76 1.75 0.18
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symmetric, even though they are only known to be symmetric asymptotically.
In contrast, our estimate of the shadow price is the median of an estimated
�nite-sample distribution which is highly skewed. The estimated posterior pdf
for the shadow price of the pollutant is depicted in Figure 2. Observe that the
mode of this estimated pdf is approximately $2,500 per ton.

6 Conclusion

Output distance functions representing multi-output technologies can be esti-
mated in a parametric framework. In practice, it is common to algebraically
manipulate the distance function into a form that resembles a single-output sto-
chastic production frontier model, and then estimate the model by the method of
maximum likelihood. Unfortunately, except in restrictive special cases3 , maxi-
mum likelihood estimates are biased due to the fact that outputs that are used
as explanatory variables are correlated with the error term. The generalised
method of moments can be used to overcome the problem, but �nding suitable
moment conditions can be di¢ cult. Moreover, the �nite sample properties of
GMM estimators are unknown.
This paper addresses the endogeneity problem using Bayesian methodology.

The approach does not require the identi�cation of moment conditions, and it
is possible to draw exact �nite sample inferences concerning nonlinear functions
of the unknown parameters. As an illustration, the approach was used to
estimate the technology of U.S. electricity utilities in 1993. We estimated that
ine¢ cient electric utilities could have increased production of electricity and
reduced emissions of sulphur dioxide by more than 20% without using more
inputs. In addition, we estimated that e¢ cient utilities could have reduced
sulphur dioxide emissions at a cost of $6,470 per ton. This estimate is more
than double the size of estimates reported elsewhere in the literature (where the
endogeneity problem is typically gnored).
One of the aims of this paper was to develop and apply improved methodol-

ogy for estimating distance functions. The directional output distance function
was chosen to explain and illustrate the approach. However, with trivial mod-
i�cation, the approach can also be used to estimate other types of distance
functions, including Shephard output and input distance functions.
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