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Test of Convergence in Agricultural Factor Productivity: A Semiparametric Approach 

 

Abstract 

We tested for club convergence in U.S. agricultural total factory productivity using a sigma 
convergence test.  We used the same club of states as used by McCunn and Huffman as well as 
different states within 10 clubs identified by the cluster analysis.  Results showed convergence 
was evident only in a few club groups. Clusters group identified using a statistical method 
identified only converging clubs. Variables affecting total factor productivity among states were 
identified using parametric, semiparametric and nonparametric methods.  Semiparametric and 
nonparametric methods gave a better fit than a parametric method as indicated by the 
specification test. Our results indicated that health care expenditure, public research and 
extension investment, and private expenditure are important variables impacting total factor 
productivity differences across states.  

Keywords: clubs, sigma convergence, cluster analysis, semiparametric and nonparametric 
methods
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Test of Convergence in Agricultural Factor Productivity: A Semiparametric 
Approach 

 

 Exploration on the idea of convergence in agricultural productivity has been an active topic of 

research (Ball, Hallahan, and Nehring 2004; McCunn and Huffman 2000; Mukherjee and 

Kuroda 2003; Liu et al. 2010; Poudel et al. 2011; Rezitis 2005, 2010; Thirtle et al. 2003). We 

propose to test the presence of convergence in U.S. agricultural total factor productivity using 

recently available data from the ERS/USDA. We also develop a semiparametric model to explain 

the role of different variables on productivity differences across states using panel parametric 

and semiparametric methods. Agricultural productivity has been increasing in the U.S. states for 

several decades although this gain is not the same across states. If productivity is different across 

states, for policy reasons, it is important to identify factors contributing to this difference in total 

agriculture factor productivity. 

There are two types of convergence: β-convergence and σ-convergence.  β-convergence 

refers to situation where a state with lower total factor productivity at the beginning grows faster 

than the other states.  σ-convergence refers to situation where dispersion across a group of 

countries decreases over time.  Convergence can be tested using many types of tests (time series 

test such as using unit root, panel data based test). When testing for a convergence the general 

tendency is to test for absolute or regional convergence.  Previous productivity convergence test 

in the U.S. has adopted grouping based on weather (McCunn and Huffman, 2000), and 

identification of grouping of states using a cluster based approach (Poudel et al. 2011). We also 

use a cluster based approach which is in a way similar to Philips and Sul’s (2007) convergence 

test.  
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Agricultural total factor productivity in the U.S. does not show an absolute convergence as 

found by the previous authors (McCunn and Huffman 2000; Poudel et al. 2011).  These authors 

have found the presence of club level convergence. McCunn and Huffman’s club is based on 

weather difference whereas Poudel et al. let data speak and therefore used a cluster based 

approach to identify these convergence clubs. Club convergence is observed because different 

state level agriculture economies are starting at different points and they converge to a different 

growth path. This idea of club convergence has been advanced by Galor (1996) and Azariadis and 

Drazen (1990).  

Existing literature provides several reasons for differences in total agricultural productivity 

across states. These factors are R&D spending (McCunn and Huffman 2000), farm size, and 

human capital (Liu et al. 2010; Poudel et al. 2011) and R&D spending spillover effect (Liu et al. 

2010).   To identify what factors affect productivity differences across states, researchers have 

developed a parametric panel model.  An ad hoc model specification in a parametric form may 

bring biased and inconsistency in the model.  Therefore, we proposed a test (Blundell and 

Duncan 1996; Poudel et al. 2007) should be performed to identify if a variable in the model 

should in fact be entered in a parametric form.  We estimate parametric, semiparametric and 

nonparametric forms of model and then test for the suitability of these different functional forms 

using a Hong and White’s test.   

 

Methods 

To test for the club convergence of regional differences in productivity, we used the following 

model developed by Sala-i-Martin (1996) 
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ttLnTFPVar εαα ++= 21)(  

 

Here, the dependent variable is the across state variance of the natural log of TFP in period t, αi 

are parameters and ε is a zero mean random error term.  If the coefficient associated with t is 

negative and significant, it indicates convergence. 

Given the fact that previous literature (Poudel et al. 2011 and McCunn and Huffman 

2001) have found no absolute convergence, we test for a sigma convergence among states.  To 

identify the club of states having the similar productivity growth, we used a cluster analysis 

approach.  We selected the same number of clubs of states as McCunn and Huffman and 

identified whether there is convergence among those states.  

We use three types of estimation procedures (i.e. parametric, nonparametric, and 

semiparametric) to estimate relevant coefficients and shape of distribution of private research 

investment, public research investment, extension investment, farm size, private agricultural 

spillover, public agricultural research spillover, spillover from other industries to agricultural, 

farmers educational level, and health care supply level in rural areas on agricultural productivity 

growth i.e. total factor productivity (TFP ) in the U.S. states. Generally, the TFP relations with 

these variables are studied using a parametric model. However, validity of parametric models 

have been questioned in the literature because of their ad hoc nature. 

Nonparametric/semiparametric specification enables us to estimate shapes of the relationship 

avoiding an ad hoc choice of parametric functional forms.  We use nonparametric and 

semiparametric functional forms using the method suggested by Racine (2007). 
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Parametric Estimation of Panel Data Model 
Consider a parametric model of the form 

     

Here, Y is the index for the productivity growth i.e. total factor production (TFT) and is the 

matrix of parametric independent variables. In this model, we assume that all the available 

explanatory variables (private research investment, public research investment, extension 

investment, farm size, private agricultural spillover, public agricultural research spillover, 

spillover from other industries to agricultural, farmers’ educational level, and health care supply 

level in rural areas) are parametric and  is a vector of their respective coefficient.  is 

individual specific effects which makes heterogeneity among the individuals. Since 48 states 

consider in the study are fixed so we use a fixed effect model rather than a random effect model. 

This implies  is fixed for all the states. We can estimate fixed effect model by a least square 

method with dummy variables included for each states. However, Green (2006) suggests using 

mean difference of each variable which removes heterogeneity. One can then run an OLS model 

on the transformed data. This method, however removes time invariant independent variables, 

but the entire explanatory variable in our case are continuous, so we can estimate parametric 

coefficient competently from fixed effect model which are consistent and efficient. 

Nonparametric Estimation of Panel Data Model 
Let us consider the following nonparametric panel model in which  are included as 

nonparametric variables. 
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Where g(.) is an unknown smooth function, We assume that data are independent across the  

states.  is of dimension q. In particular, in pure nonparametric model all the explanatory 

variables mentioned in above section enter as nonparametric variables and all other variables are 

scalars. Racine 2007 suggests that the standard approach to introduce individual effect . 

Assuming  is strictly exogenous. i.e.  

           

for all t. Under this assumption a standard nonparametric estimate g(.) , the local constant 

method is  

          

Where,  is product kernel function. 

For fixed effect model, i.e., states are fixed so we consider a case of one-way error component 

model with  

           

Here  is independently and identically distributed with mean zero and constant variance 

 and has zero mean and finite variance.  To estimate nonparametric estimate of 

, we need to choose an appropriate kernel function with correct bandwidth. Many kernel 

function are available, However, it is well known that, compared to the selection of the 

bandwidth, the choice of the kernel function has only a small impact on the properties of the 

resulting estimate (Van and Azomahou, 2007). We use the Gaussian kernel with the following 

forms 
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Where, h is the bandwidth.  The least square cross validation method is used to select bandwidth 

of the kernel function.  

Semiparametric Estimation of Panel Data Model 
One of the disadvantages of nonparametric regression is that nonparametric regression suffer 

from the curse of dimensionality. When there are large number of observations and explanatory 

variables, the tendency is to estimate a semiparametric model. In fact, a semiparametric model is 

one for which some explanatory variables parametric, while the remaining components have 

unspecified functional forms. The choice of variables in parametric and semiparametric 

components comes from economic theory, however a prior assumption of variables does not 

always hold true, so we need to check whether to incorporate an explanatory variable as a 

parametric or a nonparametric form in the model. We illustrate two basic approaches for the 

choice of variable in parametric and semiparametric models. We use Robinson’s kernel based 

partial linear model as a semiparametric model. The partially linear panel data regression model 

with fixed effect is given  

      1 

Let  be the nonparametric estimator of equation (2).  And let   be the 

nonparametric estimator of  component of , when it is considered as a dependent variable 

with  as an independent variable.  Let us define new variable by taking difference form their 

nonparametric estimate as  
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So that  

  

  

The advantage of this transformation is that it eliminates both nonparametric part and individual 

effects. Then the original regression equation takes the following forms 

  

Then one can estimate  by using least square estimation procedure. The estimated coefficient 

are: 

  

The asymptotic distribution of  is given by , 

Where  is a positive definite matrix. Moreover,  is a consistent 

estimator of V, where  and , and Where 

 

Variable Selection 
In case of a semiparametric model, it is important to identify which variable should be included 

as a parametric variable and which should be included as a nonparametric variable. Although, 

nonparametric variable classification can be accomplished using an established economic theory, 

these theories sometimes fail to place variables in appropriate categories (either parametric or 
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nonparametric). For this reason, categorization of variables as either parametric or nonparametric 

in the semiparametric model must be conducted before the model fitting. One of these methods is 

developed by Blundell and Duncan (1998). Poudel, Paudel, and Bhattarai (2009) have used this 

method to identify a semiparametric variable in pollution-income relationship. According to this 

method, we chose non endogenous variable as a nonparametric variable. Let  be the residual of 

reduced form of the equation, then significance of coefficient of  in augmented nonparametric 

regression equation implies the choice of variable as parametric components in semiparametric 

model.  

 If we estimate nonparametric regression using a spline function, we can use another 

approach to select parametric and nonparametric variables. In this approach variables are 

contrasting the deviance (equivalent to likelihood ratio test) for a model that fits a term 

nonparametrically with the deviance for an otherwise identical model that fits the term linearly 

(Fox, 2002; Keele, 2008; Hastie and Tibshirani 1990). The likelihood ratio test for additive 

nonparametric and semiparametric models takes the usual form: 

  

Where,   is the log-likelihood for the restricted model and is 

the log-likelihod for the unrestricted model, the nonparametric regression model. The test 

statistics under the null hypothesis follows an approximate chi-square distribution, and the 

degree of freedom is the difference in the number of parameters across the two models. The 

deviance for a model is simply -2 times the log likelihood.. The resulting tests statistics also 

follows a chi-square distribution with the same degree of freedom of likelihood ratio test. 

Model Specification test 
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Existing studies have proposed several test statistics to compare the suitability of 

different functional forms (Hong and White, 1995; Fan and Li, 1996; and Zheng, 1996; Li & 

Wang, 1998). However, these tests statistics consider models with continuous nonparametric 

variables. Hsiao et al. (2007) modified these tests statistics compatible with both continuous and 

categorical variables. We used this test to identify the best functional form (parametric, 

semiparametric and nonparametric). Assume that parametric model is correctly specified. Then, 

the null and alternative hypotheses are: 

H0: Parametric Model 

H1: Nonparametric/Semiparametric Model 

The test statistic purposed by Hsiao, Li and Racine (2007) is  

Ω= /)...( 2/1
1 nqn IhhnJ  

Where  

∑∑
≈
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Where is residual from parametric model.  is distributed N(0,1) under null hypothesis. Jn 

test diverges to +¶, if H0 is false. Thus we reject null hypothesis for large value. 

Data 
Total factor productivity data for each state between 1960 and2004 were obtained from the USDA/ERS. 

The TFP values are calculated taking Alabama 1996 as the base period.  Explanatory variables to describe 
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the difference in productivity across states are obtained from Liu et al. (2011).  Explanatory variables in 

the model are Private agricultural spillovers, Public agricultural spillovers, Private research investment, 

Spillovers from other Industries, Education, Health care supply level, Extension investment, Public 

research investment and Farm size. The details on these variables can be found in Liu et al. (2011).  

Summary statistics of these variables are provided in Table 5.  

 

Results 

Table 1 provides the list of states in each club (clusters).  We have identified 10 clubs of states to 

be consistent with McCunn and Huffman’s regional groups.  We identified these clusters for the 

case of 42 states and 48 states.  Tables 2,3, and 4 provide results from the sigma convergence test 

for each of the cluster group for the case of McCunn and Huffman group of states as well as for 

the club of states we have identified using a cluster analysis method. 

In the McCunn and Huffman identified group of clubs, we found that four clusters (1, 2, 

4, and 10) had convergence, four clusters had divergence (5, 7, 8, 9) and two had neither 

convergence not divergence as the parameter associated with t variable was insignificant.  

Compare this to statistically derived group of clubs.  In 42 states and 10 clubs, we found that 

clusters (3, 10) of states showed convergence of TFP variance over time.  Similarly in 48 states 

and 10 clubs, we found that clusters 2, 3, and 7 showed convergence in productivity over time.  It 

is clearly evident that the statistical method identified right type of clusters and statistical test 

showed the convergence among these identified clubs.     

For comparisons and interpretation, we also estimated a panel parametric model to 

identify variables affecting TFP.  First, we assumed that each state has fixed effects on the total 

factor productivity. The F-test statistics for the null of absence of fixed state-specific effect on 
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agricultural productivity growth was 64.61 which was significant at less than 1% level of 

significance implying the rejection of a null hypothesis. Therefore, state-specific effects do 

exists.  We also performed Hausman test to examine whether random effect model provided 

consistent estimators. The test statistics is significant at less than 0.001 suggesting that a random 

effects model is inconsistent so we should use a fixed effects model. The estimated coefficients 

for parametric and semiparametric coefficients are provided in Table 3. All three model fit 

curves for different explanatory variables are shown in Figure 1. 

 As we discussed in the methods section, we used both Blundell and Duncan’s approach 

and Deviance test to identify parametric and nonparametric variables in semiparametric model. 

The test results are shown in Table 6. Blundell and Duncan approach test indicated that only 

public agricultural research spillover is not significant at 5% level of significance which implies 

that agricultural research spillover is entered as nonparametric component in a semiparametric 

model. In contrast, likelihood ratio test showed that all the explanatory variables used in this 

research have nonlinear relationship with TFP. Hence, all the variables are entered as 

nonparametric components. Based on this test result, we estimated a nonparametric model. The 

entire nonparametric fitted curves with each explanatory variable are shown in Figure 1.  

 We conducted Hsiao, Li and Racine (2007) test to compare estimates from parametric, 

semiparametric and nonparametric model. The test statistics results are provided in table 8. The 

Jn test statistics value for the comparison of parametric and semiparametric is 10.44 with a 

significance level less than 0.01, hence we concluded that a semiparametric model  is better than 

a parametric model. Similarly, the test statistics for the comparison between nonparametric and 

parametric model is 20.24 which is significant at 1% level. Therefore, nonparametric model is a 

superior parametric model. The output from each model is shown graphically in Figure 1. 
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Different explanatory variables have different effects on total factor productivity.  We found that 

a semiparametric model is better than parametric model so we interpret coefficients from a 

semiparametric model. Further we describe nonparametric estimates of each variable graphically. 

 The estimated coefficient of private agricultural spillovers is positive and significant at 

5% level, which implies that increase in private agricultural spillover increases total factor 

productivity. Similarly, the public agricultural spillovers is also positive and significant in 

parametric model, however this variable is entered as nonparametric components in a 

semiparametric model. The graphical estimate in Figure 1(b) shows that public agricultural 

spillover is also an important factor that increases TFP. In contrast, the estimated coefficient for 

spillover from other industries is negative and significant. This results shows that other industries 

has negative influence on TFP.   

 Private and public research investment also play important roles in factor productivity 

(McCunn and Huffman, 2000; Liu et al. 2011). Our result suggests public research investment 

has significant and positive influence on TFP. The nonparametric estimates also match with the 

result from the semiparametric model as the curve is increasing as shown in Figure in 1. In 

contrast, semiparametric and nonparametric estimates show that private research investment has 

negative impact on TFP. 

 Farmers’ education level plays an important role in the agricultural production as 

educated farmers can use their knowledge to produce commodity efficiently that help to increase 

agricultural productivity. As expected, our result implies that education has positive impact on 

total agricultural productivity. Farmers activity on farms depend their health status. We assume 

that more healthy workers can spend more time and pay more attention on their farm. 
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Consequently, it helps to produce more output. Our result is consistent with our anticipations the 

estimated coefficient for health is positive and significant.  

Farm sizes capture not only the gross value of product but also the productivity of a farm (Liu et al 

2011). The estimated coefficient for farm size is positive and significant with the highest value among all 

explanatory variables. Figure 1(i) shows that value of TFP in all the three fitted model increases with 

increase in farm size. Moreover, the nonparametric curve does not goes decline suggesting that 

agricultural productivity growth always increases with increase in farm size. 

Conclusions 
 

Our study indicated that there are only few converging group of states when comes to agriculture 

total factor productivity. The regional grouping of countries based on weather gave convergence 

and divergence group of the clubs whereas the statistical method identified only converging 

group of states. 

We used parametric, nonparametric and semiparametric models to explain the role of 

different variables on productivity differences across 48 states using panel data. Our results show 

that public research spillover behaves nonparametrically in semiparametric model. The 

comparison of a parametric model with nonparametric and semiparametric models indicates that 

nonparametric and semiparametric model is better than parametric model. This paper examines 

the impact of public and private research spillover and investment on the total factor 

productivity. We find that private research investment and spillover from other industries have 

negative impact on the TFP. This may indicate that funds for research are diverted from 
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agriculture to other alternative uses impacting agriculture negatively. We also examined the 

impact of health care supply on agricultural productivity growth. The farm size has the highest 

impact on agricultural production growth.  
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Table 1: Cluster of States in the Convergence Check (10 clusters) 
Based on Cluster Analysis 

Cluster 
Based on McCunn and 

Huffman (2000) 42 States 48 States 
1 NY, NJ, PA, DE, MD MT, NM, OK, TN, TX AR, IA, ID, IL 

2 MI, MN, WI KY, LA, MI, MO, ND, NV, OH, 
OR, PA, SD, UT, VA, WI WV, WY 

3 OH, IN, IL, IA, MO AL, AZ, IN, MN, NE, NJ, SC AL, AZ, IN, MA, MD, NE, 
NJ, SC 

4 ND, SD, NE, KS CA CA, FL 

5 VA, WV, KY, NC, TN CO, KS, MD, MS, NY 
KS, KY, LA, MO, ND, 
NH, NV, PA, SD, TN, TX, 
UT, VA, VT, WI 

6 SC, GA, FL, AL DE CO, CT, ME, MI, MN, 
MS, NY, OH, OR 

7 MS, AR, LA FL DE 
8 OK, TX GA, NC, WA RI 

9 MT, ID, WY, CO, NM, 
AZ, UT, NV AR, IA, ID, IL GA, NC, WA 

10 WA, OR, CA WV, WY MT, NM, OK 
 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

Table 2. Convergence Check Based on 10  Clusters 
for 42 states 
 Estimates Standard Error
Cluster1       

 -0.21820  0.141610

 0.00011  0.000072
Adj.  -0.00580   
Cluster2       

 0.03234  0.093820

 -0.00001  0.000047
Adj.  -0.02210   
Cluster3       

 0.24209 *** 0.068820

 -0.00012 *** 0.000035
Adj.  0.12070   
Cluster5       

 0.11176  0.080520

 -0.00005  0.000041
Adj.  0.04690   
Cluster8       

 -0.12196  0.080510

 0.00006  0.000041
Adj.  0.04330   
Cluster9       

 0.06515  0.072830

 -0.00003  0.000037
Adj.  -0.01520   
Cluster10       

 1.99115 *** 0.158850

 -0.00100 *** 0.000080
Adj.  0.60720     
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Table 3. Convergence Check Based on 10 Clusters for 
48 states 
 Estimates Standard Error
Cluster1    

 0.06515  0.072830

 -0.00003  0.000037
Adj.  -0.01520   
Cluster2       

 1.99115 *** 0.158850

 -0.00100 *** 0.000080
Adj.  0.60720   
Cluster3       

 0.16145 ** 0.076630

 -0.00008 ** 0.000039
Adj.  0.08860   
Cluster4    

 -0.00914  0.071850

 0.00001  0.000036
Adj.  -0.02270   
Cluster5       

 -0.07641  0.083720

 0.00004  0.000042
Adj.  -0.00220   
Cluster7       

 0.64472 *** 0.105810

 -0.00032 *** 0.000053
Adj.  0.54240   
Cluster9       

 -0.12196  0.080510

 0.00006  0.000041
Adj.  0.04330   
Cluster10       

 -0.17063  0.231630

 0.00009  0.000117
Adj.  -0.01780     
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Table 4. Convergence Check Based on McCunn and 
Huffman  
 Estimates Standard Error
Cluster1       

 0.38527 * 0.211970

 -0.00018 * 0.000107
Adj.  0.02650   
Cluster2       

 1.24417 *** 0.192670

 -0.00062 *** 0.000097
Adj.  0.53590   
Cluster3       

 0.13926  0.148120

 -0.00006  0.000075
Adj.  -0.00950   
Cluster4       

 0.63492 ** 0.286940

 -0.00031 ** 0.000145
Adj.  0.05260   
Cluster5       

 -2.04282 *** 0.281260

 0.00107 *** 0.000141
Adj.  0.37640   
Cluster6       

 -0.00086  0.279710

 0.00002  0.000141
Adj.  -0.02280   
Cluster7       

 -0.50431  0.307920

 0.00026 * 0.000155
Adj.  0.06260   
Cluster8       

 -0.40022 *** 0.088790

 0.00020 *** 0.000045
Adj.  0.28250   
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Cluster9       

 -2.07778 *** 0.249760

 0.00107 *** 0.000126
Adj.  0.62110   
Cluster10       

 2.77165 *** 0.355690

 -0.00136 *** 0.000179
Adj.  0.51850     
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Table 5. Summary statistics of variables 

Variables Mean Std. Dev Minimum Maximum 
Year 1977.5 10.3913 1960 1995
TFP ($1/100) 74.4180 20.0384 32.7909 162.6036
Private agricultural spillovers  2.4826 4.2242 0.0146 20.8566
Public agricultural spillovers ($000,000) 77.4574 30.4800 11.0034 146.0720
Private research investment 0.2951 0.4743 0.0025 5.7093
Spillovers from other Industries 158.2515 172.1669 1.9439 584.8289
Education 2.7941 1.7857 1.3971 72.2694
Health care supply level 10.6793 4.2106 4.7571 29.7347
Extension investment  ($000,000) 7.2662 5.6433 0.2540 35.0620
Public research investment  ($000,000) 19.5155 16.8833 0.7508 111.6128
Farm Size (,000) 0.2818 0.2586 0.0139 3.1732
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Table 6. Variable Selection 

  Blundel & Approach Devience Method 
Variable ρ Variable Type Devience Vartiable type 
Private agricultural spillovers 0.0067 Parametric -4563.312 Nonparametric 
 (0.032)  (0.000)  
Public agricultural spillovers -0.0001 Nonparametric -2352.2872 Nonparametric 
 (0.377)  (0.000)  
Private research investment -0.4013 Parametric -3574.1678 Nonparametric 
 (0.000)  (0.000)  
Spillovers from other Industies -4.2079 Parametric -1045.4639 Nonparametric 
 (0.000)  (0.000)  
Education -0.1373 Parametric -564.0259 Nonparametric 
 (0.000)  (0.010)  
Health care supply level -0.0105 Parametric -4504.484 Nonparametric 
 (0.000)  (0.000)  
Extension investment -0.0087 Parametric -1069.5197 Nonparametric 
 (0.000)  (0.000)  
Public research investment -0.0029 Parametric -1989.6391 Nonparametric 
 (0.000)  (0.000)  
Farm Size -0.0001 Parametric -2265.0694 Nonparametric 
  (0.000)   (0.000)   
Note: Number in parenthesia are P-value   
            Significant variable implies they are selected as parametric functional forms in Blundel and Duncan approach 
            Significant variable implies they are selected as nonparametric functional forms in Devience method  
          Ρ = coefficient of reduced form equation     
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Table 7. Parametric and semiparametric model to identify the variables affecting total 
factor productivity 

Variable Parametric  Semiparametric
Intercept 26.6716 -0.2631
 (0.000) (0.000)
Private agricultural spillovers 0.0817 1.7101
 (0.574) (0.000)
Public agricultural spillovers 0.1053  
 (0.000)  
Private research investment 9.0412 -7.6487
 (0.000) (0.000)
Spillovers from other Industries 0.0695 -0.0394
 (0.000) (0.000)
Education 0.1527 0.2658
 (0.708) (0.066)
Health care supply level 2.5407 0.9778
 (0.000) (0.000)
Extension investment 0.8934 1.0962
 (0.000) (0.000)
Public research investment 0.2169 0.3722
 (0.000) (0.000)
Farm Size 0.5918 22.5972
  (0.675) (0.000)
Note:  
           Test for there is no fixed effect is 64.61 with P-value <0.0001  
           Housman test for random effect vs. fixed test is 16.89 with P-value 0.0047 
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Table 8. Model Comparisons 

Model Jn 
Parametric vs. Nonparametric 20.2466
 (0.000)
Parametric vs. Semiparametric 10.4454
  (0.000)
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Figure 1 : Parametric, nonparametric, and semiparametric estimation of the relationship 
between TFP and explanatory variables. 
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Figure 2 : (Continued.) 
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Figure 3 : (Continued.) 
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 Figure 4 : (Continued.) 
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Figure 5 : (Continued.) 

 

 

 

 

 

 

 

 

 

 

 


