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The objective of this study is to compare the effects of climate change on crop yields across different regions. A 

Principal Component Regression (PCR) model is developed to estimate the historical relationships between weather 

and crop yields for corn, soybeans, cotton, and peanuts for several northern and southern U.S. states. Climate change 

projection data from three climate models are applied to the estimated PCR model to forecast crop yield response. 

Instead of directly using weather variables as predictor variables, the PCR model uses weather indices transformed 

from original weather variables by the Principal Component Analysis (PCA) approach. A climate change impact 

index (CCII) is developed to compare climate change effects across different regions. The key contribution of our 

study is in identifying a different climate change effects in crop yields in different U.S. states.  Specifically, our 

results indicate that future warmer weather will have a negative impact for southern U.S. counties, while it has 

insignificant impact for northern U.S. counties in the next four decades.   
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Introduction  

Contemporary, state-of-the art general circulation models (GCM) including the Australian 

CSIRO 3.5, Canadian CGCM 3.1 and Japanese MIROC 3.2 models all predict that average 

temperature will keep rising and precipitation will have a mild change for most states in the 

continental United States for the rest of the century assuming greenhouse gas emissions follow 

the IPCC SRA1B scenario1

                                                           
1 A future world of very rapid economic growth, low population growth and rapid introduction of new and more 
efficient technology. Major underlying themes are economic and cultural convergence and capacity building, with a 
substantial reduction in regional differences in per capita income. In this world, people pursue personal wealth rather 
than environmental quality (IPCC 2007). 

. Climate change has direct impacts on agriculture. For example, 

variations in climatic conditions such as a late spring, a rainy planting season, or a hot and dry 

growing season could all affect crop yields. Although agricultural technologies have been greatly 

improved in recent decades, many researchers believe that these possible variations in both 

temperature and precipitation still have adverse impact on crop yields in many regions (Tao et al. 

2006; Schelenker and Roberts 2006; Lobell, Cahill, and Field 2007; Almaraz et al. 2008). While 

most researchers agree that warmer climate can be harmful to crops in the US, limited studies 

directly compare the effects of climate change on crop yields across different regions. Different 

regions have different agricultural technologies and environmental conditions such as soil 

properties; therefore, climate change is expected to have different effects on different regions. 

For the same reason, it is hard to directly compare assessment results generated in different 

regions. Besides, different studies differ in their scope, climate variable selection, scope and 

methodology. In this study, a PCA approach has been developed to compare the effects of 

climate change across different regions.  



 
 

5 
 

Generally, researchers use two major methodologies to study the relationship between 

weather and crop yields. One is a crop growth model, and the other is regression analysis. Both 

methodologies have their advantages and disadvantages. 

Crop growth modeling is a computer-based simulation approach used by many 

agronomists. It is a mathematical representation of the integration of the disciplines of biology, 

physics, and chemistry (Jones 1993; Hoogenboom 2000; Jones et al. 2003). Based on the 

agronomic knowledge of the crop growing process, this model incorporates weather information 

including temperature, precipitation, solar radiation, and humidity with other factors including 

fertilizer applications and soil properties to simulate their impact on that process through a set of 

mathematical equations. The expected crop yields and their variance are generated by the model 

simulation. The Decision Support System for Agrotechnology Transfer (DSSAT) is a very 

popular software package using this method (Hoogenboom 2000).  

However, crop growth modeling is highly complex and requires extensive information 

such as weather, soil and management options in order to simulate the crop growing process. 

Such information is usually incomplete and sometimes unavailable (Walker 1989). Because of 

this disadvantage of crop simulation modeling, regression analysis is an alternative method used 

for predicting yields in many yield forecasting studies by economists (Horie, Yajima, and 

Nakagawa 1992; Kandiannan et al. 2002; Tannura, Irwin, and Good 2008). 

 The regression analysis approach applies statistical methods to link historical crop yields 

to weather variables. Compared to the crop growth modeling approach, data limitations are less 

of a concern in the regression analysis approach. Furthermore, Tannura, Irwin and Good (2008) 

found that regression models have high explanatory power.  
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 The first step for constructing a weather-crop yield regression model is choosing the 

appropriate weather factors affecting crop growth. In the literature, temperature and precipitation 

have been demonstrated to have significant impacts on crop yields. Agronomically, high 

temperature would affect soil moisture levels which could decrease crop yields if irrigation water 

supply is not sufficient (Mitchell et al. 1990). On the other hand, precipitation maintains 

necessary soil moisture for crop growth. Different temperatures could change growing season 

lengths inducing variations in crop yields. For example, high temperature tends to shorten many 

crop growing seasons. A short growing season exposes crops to less solar radiation needed for 

photosynthesis. In the long run, temperature and precipitation change could alter cropping 

patterns in many regions (Lotsch et al. 2007). Unstable temperature and precipitation will cause 

unpredictable variations in crop yields. Overall, temperature and precipitation are the two most 

important weather factors affecting crop yields. Therefore, we used monthly temperature and 

precipitation during the growing season as weather variables for our weather-yield model.  

After choosing weather factors, the next step in developing a weather-crop yield 

regression model is to select specific predictor variables. A typical growing season is seven or 

eight months or even longer for different crops in different regions. This means there could be 

about 14 to 16 predictor variables for both temperature and precipitation in the weather-crop 

yield regression model. One disadvantage of having too many predictor variables is a low degree 

of freedom which causes unstable estimation results. Although this issue could be solved by 

increasing the sample size, weather and yield data are not always available for early years. 

In the literature, many methodologies have been utilized to reduce the number of weather 

variables in regression models. Instead of using calendar months, some researchers divide the 

growing season by the stages of crop growth, therefore decreasing the number of weather 
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variables (Dixon et al. 1994; Kafumann and Snell 1997). The active growing season for corn in 

the State of Georgia is from April to October; therefore we have seven monthly temperature 

variables. If we divide the growing season by the four general growth stages for corn, we could 

reduce the number of temperature variables to four. Agronomically, this method makes more 

sense than using calendar months. However, it is hard to specify the exact boundary between two 

crop growth stages. Also, the timing of crop growth stages varies from year to year, and from 

region to region. Alternatively, researchers intensively utilized statistical variable selection 

techniques to reduce the number of calendar months or weeks as predictor variables. 

Researchers have used t-statistics, R-squared, and other statistical techniques to select 

significant weather variables. Statistical methods exclusively lean on data while ignoring 

agronomic implications of different growing season months; therefore, statistical methods alone 

could make agronomic mistakes due to data limitations. For example, utilization of traditional 

statistical variable selection techniques could drop important months and keep unimportant 

months by chance. In addition, the weather variables are correlated, a direct variable selection 

approach will lead to unstable estimated coefficient. Therefore, using statistical variable 

selection techniques alone to select appropriate weather variables is unreliable when developing 

weather-crop yield regression models. 

It is commonly agreed that the effects of weather conditions on crop yields are not simple 

linear relationships (Deschenes and Greenstone 2007; Schlenker and Roberts 2009). For example, 

the response of crop yields to a one degree Celsius increase in temperature depends on the 

baseline temperature. Therefore, some previous studies include quadratic terms for weather 

variables in order to account for the nonlinearity of weather variables effects on crop yields. 
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However, the issue of too many weather variables becomes even more severe when quadratic 

terms for weather variables are introduced into the regression models. 

Agronomically speaking, crop growth is a cumulative process. Weather conditions in any 

growing months would affect final realized crop yields. For this reason, it is preferable to keep 

all growing season months in the regression model. However, as mentioned earlier, keeping too 

many predictor variables in the regression model could lead to low degrees of freedom. To 

balance the choice between keeping all the growing months in the model while reducing the 

number of variables, Principal Component Regression (PCR) is applied in this study. 

Additionally, using PCR model also helps eliminate possible severe multicollinearity issue in 

multiple regression models (Dixon et al. 1994). When severer multicollinearity exists among 

predictor variables, the estimated coefficients are sensitive to the selection of predictor variables.  

Instead of taking original weather variables as predictor variables, the PCR model uses 

Principal Components (PCs) generated by using Principal Component Analysis (PCA) technique. 

PCA is a variable compression technique. It transforms a large number of interrelated variables 

to a new set of uncorrelated PCs which are linear combinations of the original variables (Jolliffe 

2002). Therefore, each principal component contains information on all weather variables. By 

using PCA, none of growing season months will be completely omitted regardless of which 

variable selection technique is applied. Many previous studies have used PCR models (Pandzic 

and Tminic 1992; Yu, Chu, and Schroeder 1997; Hansen, Jorgensen, and Thomsen 2002; 

Martinez, Baigorria, and Jones 2009).   

PCA generates the same number of weather indices as the original weather variables 

(including both original and quadratic terms) and orders them by the magnitude of variances. In 

order to reduce the number of predictor variables, the rule of thumb for most previous related 
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studies is to take only the first several PCs with eigenvalue greater than or equal to one as 

predictor variables. The eigenvalue represents the variance displayed by each PCs axis. Some 

previous researchers even used only the first principal component in a PCR model (Martinez et 

al., 2009). It should be noted that it is not appropriate to use only the PCs with large variances in 

the PCR model (Jolliffe 1982; Jolliffe 2002). Hadi and Ling (1998) showed that it is possible for 

the PCs with the smallest variance to be the only predictor variable correlated to response 

variable. Weather variables with larger variance are not necessary more important than weather 

variables with smaller variance for crop growth. By using only the first several principal 

components with larger variances, it is possible to omit important predictor variables with small 

variances. Therefore, instead of simply taking the first several principal components as predictor 

variables, we use statistical variable selection technique to select an appropriate subset of PCs.  

In previous studies, application of PCA in climatic data modeling has concentrated on 

investigating geographic patterns of temperature and precipitation. The constraints and 

interdependency of spatiotemporal climate data can be identified by the use of PCA 

(Preisendorfer 1988). Since different units and magnitudes could dominate the grouping of 

principal components, temperature and precipitation variables need to be standardized before 

PCA is employed (Jolliffe 2002). 

The study conducted by Kantanantha, Serban and Griffin (2010) is one of few to use PCR 

to study the relationships between crop yields and weather indicators. However, in their study, 

temperature and precipitation variables were processed under PCA separately, which leaves 

multicollinearity issue between precipitation and temperature unsolved. Also, they only use 

original terms for temperature and precipitation variables. In this study, we include quadratic 

terms for temperature and precipitation to account for the nonlinear relationships between crop 
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yields and weather. Besides the mean value of weather indicators, the effects of weather 

variability on crop yields are also likely to decrease crop yields (Porter et al. 2005), such as 

increased extreme weather events. For this reason, we include the difference of mean daily 

maximum and minimum temperatures of the month to account for the effects of extreme 

temperature events on crop yields. 

Technology change has an important role in long-run crop yield changes since it 

improves the crop yields over time. In previous studies, researchers usually add an additional 

trend predictor into the weather-crop yield regression model to represent technology change. 

Possible candidates for this trend predictor include GDP and a linear or nonlinear time trend 

(Buller 1972; Choi and Helmberger 1993; McCarl, Villavicencio and Wu 2008).  Nonlinear time 

trends were also used since yield improvement is not necessary linear which could happen when 

improved crop varieties were used.    

In this study, the primary purpose of the regression analysis is to investigate the 

relationship between crop yields and weather. By adding GDP or a time trend to represent 

technology change, the significance of the model will be mostly explained by this technology 

trend removal instead of weather variables. Although it is statistical appropriate to add GDP or a 

time trend to the regression model, it is better to use de-trended yield to investigate the 

connections between weather variables and crop yields. Another issue related to using GDP or a 

time trend variable is spatial difference. Assuming a linear technology trend, some places could 

benefit from larger technology advances. By using a technology trend predictor, spatial 

differences in technology will determine the main trend when forecasting changes in crop yields. 
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Methodology 

In this study, a weather-crop yield PCR model is developed to study the response of crop yields 

to weather changes. Before presenting the PCR model, it is necessary to show how PCs are 

generated. The following is a generalized expression of the crop yield regression model. It is a 

statistical function that demonstrates the historical relationship between weather variables and 

crop yields. After holding all other inputs such as fertilizers and insect infestations constant, 

equation (1) estimates the connections between crop yields and weather conditions: 

 (1)   y =  X𝛽 + ϵ                                                              

where X is a matrix of p random variables of weather indicators with dimension 𝑛 × 𝑝, y is a 

vector of crop yields with 𝑛 observations, 𝛽 is a vector of p regression coefficients and ϵ is a 

vector of error terms. The weather vectors within X matrix include monthly temperature, square 

term of monthly temperature, monthly precipitation, square term of monthly precipitation, and 

the monthly difference of mean daily maximum and minimum temperatures.  

As previously mentioned, the PCR model uses PCs of weather indicators as predictor 

variables. The first step of the PCR model is generating PCs of the original variables. PCA 

derives the same number of PCs as the original variables. These PCs are ranked by the 

magnitude of their variances. The first PC of weather indicators with the largest variance could 

be represented as a linear combination of original variables: 

(2)   𝑿𝜶𝟏�
(𝒏×𝟏)

= 𝒙𝟏𝜶𝟏𝟏 + 𝒙𝟐𝜶𝟏𝟐 + ⋯+ 𝒙𝒑𝜶𝟏𝒑 = ∑ 𝜶𝟏𝒋𝒙𝒋,
𝒑
𝒋=𝟏  

where 𝜶𝟏 is an eigenvector of covariance matrix  𝚺  of 𝑿  corresponding to its 1st largest 

eigenvalue 𝜆1. The second and following PCs could be generated in a similar way. A list of PCs 

of weather indicators is: 
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(3)  𝒁⏟
(𝒏×𝒑)

= 𝑿⏟
(𝒏×𝒑)

𝑨⏟
(𝒑×𝒑)

= [𝑿𝜶𝟏,𝑿𝜶𝟐, … ,𝑿𝜶𝒑],                                                                     

where all the PCs are mutually independent.  

Since 𝑨 is orthogonal, we can rewrite equation (1) as: 

(4)  𝐲⏟
(𝒏×𝟏)

=  𝐗𝛃 + 𝛜 = 𝐗𝑨𝑨′𝛃 + 𝛜 =  𝒁⏟
(𝒏×𝒑)

𝜸⏟
(𝒑×𝟏)

+ 𝛜                                                             

Equation (4) is a general expression of the PCR model. The PCs matrix 𝒁 replaces the 

original weather variables matrix 𝑿. 𝒁 has the exact same dimension n × p as 𝑿. Since a key 

advantage of the PCR model compared to a standard regression model is reducing the number of 

predictor variables, it is preferable to select a subset of principal components to use as predictor 

variables in the PCR model. Besides, if all the PCs are used as the predictor variables, the 

resulting model will be equivalent to the standard regression model (Jolliffe 2002). As mentioned 

previously, many studies only selected the first several principal components claiming that these 

components explain most of the variance in the data. This selection rule for PCs is not 

appropriate since even if a particular principal component explains only a small variance in the 

weather variables, this does not necessarily mean it has weak power in explaining the variance in 

crop yields (Jolliffe 1982). However, there is no general advice existing about the PCs selection 

rules. Out of the several variable selection techniques discussed by Jolliffe (2002), we chose to 

use p-value criterion where the coefficients with a p-value less than 10% be kept in the model.           

A PCR model for which p-k components have been eliminated is: 

(5)  𝒚⏟
(𝒏×𝟏)

=  𝒁𝒌�
(𝒏×𝒌)

𝜸𝒌�
(𝒌×𝟏)

+ 𝝐𝒌,                                                                                                  

where γk is a vector of 𝒌  PCR coefficients,  𝒁𝒌  is an  (𝑛 × 𝑘)  matrix whose columns are the 
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corresponding subset of columns of 𝒁, and ϵk is the appropriate error term. These k PCs that 

remained in the model of equation (5) are not necessarily the first k PCs. 

Compared to many other research areas, climate change study is special in that future 

observations (climate change projection data) are usually already available before conducting the 

research. This also requires a different approach in PCR forecasting. To predict future crop 

yields with estimated PCR model, a direct approach is to generate a new set of PCs by directly 

transforming future weather variables. However, a new set of PCs would have completely 

different eigenvectors from those transformed from historical weather variables. Therefore, this 

approach is not appropriate. An alternative approach (Approach 1) is to use eigenvectors 

associated with historical weather variables to construct PCs for future weather variables. 

However, using eigenvectors based on historical data to generate PCs for future data is 

inappropriate, since previous eigenvectors are uniquely selected for historical data. 

To solve above issue of utilizing a PCR model for forecasting purposes, we propose to 

transform weather variables into PCs using both historical climate data and future climate change 

data simultaneously (Approach 2). One set of future climate change data is specifically related to 

a particular estimated PCR model. Thus, although we only have one set of historical weather 

data, there will be three different PCR models for forecasting based on three climate change 

projection data sets. Approach 2 avoids applying historical eigenvectors to future data sets. 

Meanwhile, a concern about its prediction performance is raised since estimated model is a 

function of future observations, which is different from traditional econometric approaches. To 

test the prediction performance for Approach 1 and Approach 2, a Monte Carlo experiment is 

designed to compare their mean squared errors (Monte Carlo experiment procedure and results 

are showed in the Appendix section). After running the experiment for 1000 times, it is observed 
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that the differences between the averages mean squared error for both approaches are 

insignificant. Therefore, Approach 2 is chosen for its advantage mentioned earlier. To the best of 

our knowledge, this approach has never been conducted in previous literature. 

Based on the above discussion, we modify equation (5) to a PCR model that is applicable 

to forecasting purpose. Suppose we have three sets of climate change data 𝚽𝟏,𝚽𝟐, and 𝚽𝟑 each 

with dimension of (𝒎 × 𝟏). Each of them are combined with historical weather data 𝑿 to 

generate three sets of weather data 𝚿1, 𝚿2 and 𝚿3 as follows: 

(6a)    𝜳1�
((𝒏+𝒎)×𝒑)

= � 𝜲′⏟
(𝒑×𝒏)

, 𝜱𝟏
′�

(𝒑×𝒎)

�
′

                       

(6b)                            𝜳2 = �𝜲′,𝜱𝟐
′ �

′
 

(6c)                             𝜳3 = �𝜲′,𝜱𝟑
′ �

′
 

 𝚿1, 𝚿2 and 𝚿3 were then transformed into PCs matrices 𝒁𝟏, 𝒁𝟐 and 𝒁𝟑: 

(7a)                     𝒁𝟏�
((𝒏+𝒎)×𝒑)

= 𝜳1�
((𝒏+𝒎)×𝒑)

𝑨𝟏�
(𝒑×𝒑)

= �𝜳1𝜶𝟏𝟏,𝜳1𝜶𝟏𝟐, … ,𝜳1𝜶𝟏𝒑� = [𝒁�̇�′,𝒁�̈�′]′ 

(7b)                       𝒁𝟐 = 𝜳2𝑨𝟐 = �𝜳2𝜶𝟐𝟏,𝜳2𝜶𝟐𝟐, … ,𝜳2𝜶𝟐𝒑� = [𝒁�̇�′,𝒁�̈�′]′ 

(7c)                         𝒁𝟑 = 𝜳3𝑨𝟑 = �𝜳3𝜶𝟑𝟏,𝜳3𝜶𝟑𝟐, … ,𝜳3𝜶𝟑𝒑� = [𝒁�̇�′,𝒁�̈�′]′ 

The PCR model will result in the following, where each of them have a unique PCs 

matrix 𝒁�̇�, 𝒁�̇� and 𝒁�̇�, depending on the climate change data that will be used for yield 

forecasting. Although the PCs used in the PCR model are still based on historical weather data, 

they are different since future weather data are combined to generate PCs. 
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(8a)  y⏟
(𝒏×𝟏)

=  𝒁�̇��
(𝒏×𝒑)

𝜸𝟏�
(𝒑×𝟏)

+ ϵ                                              

(8b)        y =  𝒁�̇�𝜸𝟐 + ϵ 

(8c)        y =  𝒁�̇�𝜸𝟑 + ϵ 

After estimation, these three climate models were then used to predict crop yields based 

on the estimated PCR models (see equations 8a, 8b, and 8c).  

The predicted yields from the PCR model using future climate change data were used to 

generate a Climate Change Impact Index (CCII). Forty one predicted yields for certain crops in 

selected counties were compared between three climate change models. The number of years for 

which MIROC 3.2 (warmest climate scenario) generates lower crop yields as compared to the 

CSIRO 3.5 (coldest climate scenario) was recorded. The CCII is generated by dividing the 

number of these particular years by total years and the state-level CCII is generated by take the 

average of county-level CCII. The equation for a state-level CCII is as follows:  

(9)  𝑪𝑪𝑰𝑰𝒔 = ∑ 𝝋𝒄
𝒊=𝟏
𝒄

∗ 𝟏
𝟒𝟏

                                                           

where s denotes specific states, c denotes number of counties in specific states, 𝜑 denotes the 

number of years for which MIROC 3.2 (warmest) generates lower crop yields as compared to 

CSIRO 3.5 (coldest). Each county has different crop acreage; CCII for a county with higher crop 

acreage should have more weight than a county with lower crop acreage in equation (9). 

Therefore, weighted state-level CCII was also generated. The CCII was generated by using the 

above formula for several northern and southern U.S. states. A high value of CCII indicates that 

global warming is a serious influence on crop yields, while a low value of CCII indicates that 

global warming is less of a concern.  
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Data 

Climate represents long-run weather patterns. Therefore, to study the historic effects of climate 

on agriculture, the longest possible period is preferred. Due to data availability, 1960 is the 

earliest year with both of the required crop yield and weather data available. Thus, our study 

observes the period 1960-2009. 

Because they are the top producing states for corn, soybeans, cotton and peanuts, we 

selected the northern U.S. states of Minnesota, Nebraska, Indiana, Illinois, Iowa, and the 

southern U.S. states of Georgia , Alabama, Texas for our empirical application. County-level 

crop yields and weather data in these states were analyzed using the PCR model. County-level 

data were used since there are large variations in crop yields due to different local environmental 

conditions.  

The historical weather data which includes monthly average temperature, monthly 

average temperature difference and monthly total precipitation were retrieved from the National 

Climate Data Center (NCDC). We selected monthly temperature and precipitation as weather 

variables because of the availability of these variables in the climate data for our time period of 

analysis. Data was retrieved only for months during which crops are grown. The following table 

summarizes planting months used in the PCR model associated with specific crops and states.  

Monthly average temperatures used in this study were the difference between monthly 

mean maximum temperature and monthly mean minimum temperature. It is also preferable to 

include some predictors to account for variations in precipitation. Although daily precipitation 

data is available to calculate precipitation variation within a month, it is not available in the 

NCDC data. Thus, for the purpose of forecasting yield response under climate change, we did 

not account for precipitation variation.  
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To predict future climate change with alternative greenhouse gas scenarios, many climate 

change models have been developed by atmospheric scientists. Different climate change models 

provide different climate change projections based on different approaches and underlying 

scenarios. In this study, three climate change projections were developed by the United States 

Department of Agriculture (USDA) Forest Service as part of the 2010 Renewable Resources 

Planning (RPA) Act assessment of natural resource demand and supply in the U.S.  The 

projections were derived from global climate models: CGCM 3.1, CSIRO 3.5 and MIROC 3.2 

which are based on the SRA1B scenario from the Special Report on Emission Scenarios (SRES) 

of IPCC (Coulson et al. 2010; IPCC 2007; Nakicenovic et al. 2000). Climate change projections 

from these three climate models provide monthly projection of temperature and precipitation up 

to the year 2100. In general, as the time horizon increases, crop yield response forecasting will 

become more unreliable. Therefore, we only use the climate change data up to the year 2050. 

The following weather indicator projections were used for crop yield forecasting: total annual 

precipitation, monthly mean maximum temperature and monthly mean minimum temperature.   

Annual corn, soybeans, cotton and peanuts yield data was collected from USDA’s 

National Agricultural Statistical Service (NASS) for the past 50 years for Illinois, Minnesota, 

Nebraska, Iowa, Indiana, Georgia, Texas and Alabama at county-level. Yield data were de-

trended to a 2009 technology level.  

A large amount of data including historical weather and crop yield data and climate 

change projection data are needed for crop yield response estimation. However, most of original 

data are not in the correct form; therefore, SAS was used to reconstruct the original data in a 

manner compatible with estimating the relationships between climate change and crop yields. 
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Results and Discussion 

Yield prediction is the main concern in this paper; therefore, we don’t discuss the loadings of 

weather variables in the specific PCs and estimated coefficients in the PCR model which are of 

less importance for prediction. We used the estimated coefficients from our estimated PCR 

model to predict future crop yields up to the year 2050, incorporating predicted changes in 

temperature and precipitation based on the US Forest Service climate change predictions. The 

corn yield response to climate change projected by three climate change models: CSIRO 3.5 

(coldest scenario), CGCM 3.1 (middle scenario), MIROC 3.2 (warmest scenario) under the 

SRA1B scenario were forecasted and compared for both counties.  

For Mitchell County, Georgia (see figure 1), 31 out of 41 forecast years showed lower 

predicted corn yields under MIROC32 (warmest scenario) compared to predicted corn yields 

under CSIRO35 (coldest scenario). Consistent with previous studies, this result indicates that 

warming temperatures under future climate change scenarios will tend to reduce corn yields. For 

Hancock County, Illinois (see figure 2), 18 out of 41 forecast years showed lower corn yields 

under MIROC32 (warmest scenario) compared to predicted corn yields under CSIRO35 (coldest 

scenario). This result for Hancock County is different from Mitchell County which indicates the 

existence of different effects of climate change on different regions. Farms in the northern U.S. 

may actually benefit from warming temperatures compared to farms in the southern U.S. where 

temperatures are comparatively higher. 

To provide stronger evidence for the above hypothesis, county level studies were 

conducted for all available counties in the eight specified states. Similar analyses were replicated 

for soybeans, cotton and peanuts. Generated state-level CCIIs are presented in Table 1. We 

observe that CCII weighted by county acreage has close value to the unweighted CCII. It is 
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observed that northern states have a lower CCII value compared to southern states in terms of 

corn and soybeans. For corn, CCII for northern states range from 0.506 to 0.546, while CCII for 

southern states range from 0.560 to 0.692. Especially, CCII for Georgia and Alabama are both 

close to 0.70 which is significant higher than CCII for northern states. For soybeans, CCII for 

southern states range from 0.488 to 0.561, while CCII for southern states range from 0.598 to 

0.706. Again, CCII for Georgia and Alabama are both close to 0.70, much higher than that of 

northern states. The results indicate that corn and soybeans’ yields generally have a mild 

decrease due to predicted global climate change in the northern U.S. states studied, and a 

relatively more pronounced negative effect in the southern U.S. states studies where warm 

temperatures and periodic drought already pose significant constraints to crop production. This 

result is consistent with the expectation that a probable impact of global climate change, should it 

occur as predicted, would be to shift some cropping patterns from the southern U.S. to the 

northern U.S.. Cotton and Peanuts yield data are not available in the Corn Belt states, therefore 

their CCII are only compared between Georgia and Texas. Cotton CCII value is higher in 

Georgia compared to Texas, while Peanuts CCII value is higher in Texas compared to Georgia.  

 

Conclusions 

In this research, we conducted an econometric analysis of weather factors influencing crop yields 

using county level data from major producing states for corn, soybeans, cotton and peanuts. 

Specifically, a PCR model was developed with weather indices for monthly temperature and 

precipitation and their quadratic terms. We used an estimated PCR model to forecast the future 

crop yields in response to weather  change projections based on three climate change models: 

CSIRO 3.5 (coldest), CGCM 3.1 (middle) and MIROC 3.2 (warmest). The southern U.S. 
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counties generally displayed lower predicted corn and soybeans yields associated with warming 

temperature climate change projections, while the coldest climate change projections tend to 

result in higher predicted corn and soybeans yields. This indicates that global warming could 

have a negative impact on southern counties. In the northern U.S. counties studied, the warmest 

climate change projections resulted in slightly higher predicted corn and soybeans yields 

compared to predicted corn and soybeans yields under the coldest climate change projections. 

This demonstrates that global warming trends may benefit corn and soybeans production in the 

northern U.S., while negatively impacting corn and soybeans production in the southern U.S.. 

The results suggest that farmers in the south could cope with climate change by switching to 

crops with better warm tolerance.  

Overall, this research contributes to the literature in a number of ways. First, it is one of the 

first applications of PCA to estimate the relationships between weather and crop yields. We 

improve upon previous PCR models by adding quadratic terms for weather variables and 

temperature variations. Although these terms have been considered in traditional regression 

models, they have never been applied in the PCR models. We also argue that previous related 

studies made mistakes by generating separate PCs for temperature and precipitation. To the best 

of our knowledge, this research is the first to note that it is inappropriate to apply different future 

data sets (for example, climate change data under different scenarios) to the same estimated PCR 

model. Future data is a determinant in estimating the PCR model (e.g., future data affects the 

PCR model by influencing how PCs are standardized and transformed).We also contribute to the 

literature by demonstrating different effects of climate change in northern and southern U.S. 

regions, while most previous climate change impact studies focused only in one region.  
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Crop yield response modeling is complex due to the growth process of crops; therefore, it is 

hard to implement a comprehensive model that considers all the influential factors. The results 

reported in this study are subject to several limitations.  First, we assumed that there is no CO2 

fertilization effect for crop growth. Although numerous previous studies have demonstrated 

improvements in crop yields with CO2 fertilization, most of these studies are based on crop 

simulation models. Some actual field research indicates a much smaller increase in crop yields 

under a higher CO2 concentration environment (Long et al., 2006). In order to focus our study on 

weather and crop yield connections, we decided to exclude increased CO2 effects not just to 

simplify the model, but also because of the inability to specify these effects.  

Agronomically, the timing of precipitation is relatively more important than the amount of 

precipitation. Due to the availability of climate change data, we did not include the distribution 

of precipitation in the model. Although extreme temperature events were considered by 

including maximum and minimum temperature, extreme precipitation events such as drought or 

flood were not considered in this study. In future climate change studies where adequate climate 

change data is available, we recommend considering such extreme precipitation events. 

Another important issue is the availability of irrigation water. Adequate irrigation water 

could mitigate the negative effects of drought and heat. Therefore, adverse weather could have 

smaller effects on regions with high irrigation water availability. This study is limited in 

excluding the effects of irrigation. 
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Figure 1. Forecasted corn yields in Mitchell County, Georgia from 2010 to 2050 
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Figure 2. Forecasted corn yields in Hancock County, Illinois from 2010 to 2050 
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Table 1. Climate Change Impact Index (by states, by crops) 

  Corn Soybeans Cotton Peanuts 

   Original Weighted  Original Weighted  Original Weighted  Original Weighted 

MN 0.511 0.528 0.4112 0.421 

   

 

IA 0.549 0.561 0.448 0.445 

   

 

NE 0.506 0.488 0.528 0.516 

   

 

IL 0.531 0.526 0.500 0.505 

   

 

IN 0.536 0.532 0.514 0.520 

   

 

TX 0.56 0.598 0.634 0.626 0.556 0.542 0.548 0.534 

AL 0.691 0.706 0.545 0.590 

   

 

GA 0.692 0.687 0.594 0.630 0.634 0.633 0.497 0.489 
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Appendix  

Monte Carlo Experiment: 
1. Obtain data set (𝑥𝑖 ,𝑦𝑖 ), i= 1, …, 50. 
2. Bootstrap 𝑥𝚤�  from data set in step 1, i= 1, …, 130. 
3. Generate 𝑦𝚤�  = 𝑥𝚤� �̂� + 𝑒𝚤� , where �̂� is estimated from (𝑥𝑖, 𝑦𝑖 ), 𝑒𝚤�  is random normal error 
4. Separate (𝑥𝚤� ,𝑦𝚤� ) into three groups: 

  (𝑥1𝑖 ,𝑦1𝑖  ), i= 1,…, 50,  
(𝑥2𝑖 ,𝑦2𝑖  ), i= 1,…, 40,  

            (𝑥3𝑖 ,𝑦3𝑖  ), i= 1,…, 40,  
5. Generate Principal Components for 𝑥1𝑖 (𝑃𝐶1𝑖) based on PCA method 
6. Estimate 𝛽1�  using (PC1𝑖, 𝑦1𝑖) 
7. Generate Principal Components for  𝑥2𝑖  (𝑃𝐶2i) based on mean, standard deviation, and 

eigenvectors from PC1 
8. Forecast 𝑦2𝚤�  = 𝑃𝐶2𝑖𝛽1�   
9. Generate Principal Components for  𝑥3𝑖  (𝑃𝐶3𝑖) based on mean, standard deviation, and 

eigenvectors from PC1 
10. Forecast 𝑦3𝚤�  = 𝑃𝐶3𝑖𝛽1�   
11. Generate Principal Components for 𝑥1𝑖  𝑎𝑛𝑑 𝑥2𝑖(𝑃𝐶12𝑖) based on PCA method 
12. Estimate 𝛽12�  using (PC12𝑖, 𝑦1𝑖) 
13. Forecast 𝑦12𝚤�  = 𝑃𝐶12𝑖𝛽12�  
14. Generate Principal Components for 𝑥1𝑖  𝑎𝑛𝑑 𝑥3𝑖(𝑃𝐶13𝑖) based on PCA method 
15. Estimate 𝛽13�  using (PC13𝑖, 𝑦1𝑖) 
16. Forecast 𝑦13𝚤�  = 𝑃𝐶13𝑖𝛽13�  
17.  Compare Mean Squared Error (MSE) in step (8), (10), (12), and (16) 

 
 
 

Monte Carlo simulation results  
(average MSE based on 1,000 times of experiments) 

 
Mean Squared Error 

 
Approach 1 Approach 2 

Y2 378.77 379.81 
Y3 384.56 383.29 
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