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1 Introduction

Experimental economics (ExE) and agent based economics (ACE) offer the opportunity
of observing and explaining aggregated behavior that was difficult to predict a priori by the
researcher. This difficulty of prediction can be either a result of complex emergent dynam-
ics or scale effects as it is common in ACE simulation or due to non-classical preferences,
cognitive biases or framing effects as often observed in ExE experiments. The purpose of
this paper is to present a case study of the concurrent application of ExE and ACE and a
research methodology behind it.

Complementarity between ExE and ACE approaches have already been discussed. Roth
(2002) discussed how simulation can help experimental economics with the problem of gener-
alizing results beyond the limited scale of what can be implemented in laboratory. Kurzban
and Houser (2005) discussed the role of controlled participatory experiments in validating
agent-based models. This angle has been extended by Duffy (2006) who focused on achiev-
ing the external validity of computational models of learning and decision making, including
both calibration of algorithms using data from human subject experiments and using simu-
lation to eliminate competing hypothesis about unobservable beliefs, cognition or reasoning
processes.

In our work we argue for an additional type of complementarity obtained by an iterative
coupling experiments and simulations the researcher can improve both the experimental de-
sign and the learning rules applied to the artificial agents. The research cycle is laid out
as follows. First, simulations with generic agents are used to identify the best experimental
design necessary to answer a set of hypothesis. Afterwards, the same computational en-
vironment created for agents is used to conduct experiments with human subjects. Next,
acquired data is used to calibrate the behavioral parameters of agents. The cycle concludes
with the next round of simulations used to redesign new treatments for human experiments.
By following such a process, one minimizes the cost of conducting the human experiments
and obtain good estimates for the artificial agents parameters. Additionally, one gathers ev-
idence for robustness of the tested hypothesis. and reinforces the validity of the simulation
by a sequence of out-of-sample prediction and recalibration.

We implement such a research process using a derivative of the Market Entry Game
(MEG) (Rapoport, 1998). MEG is binary decision game where agents (humans) face a
environment with strategic substitutes incentives and multiple equilibria. In this game an
additional entrant generates a negative externality to all those taking the entry decision.
The MEG data from previous studies defies notions of Nash Equilibrium being played by
the individuals, leading to problems with identifying preferences and indicators of strategic
or heuristic reasoning that motivated the observed behavior. Given prevalence of real life
environments with MEG setup, examples of these are not only entrance into new markets
but also traffic congestion (Selten et al., 2007), it is important to find ways in which the
market designs and different policies can alleviate the generally observed levels of over entry
and persistent stochastic behavior:

This paper first outlines the game and applicable approaches to computational modeling
of bounded rationality. Next we present initial results from our previous experiments and
compare them to the behavior of a crudely calibrated artificial market. We conclude the
paper with a presentation of our predictions of an alternative market design, one planned to
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be tested in the next round of experiments.

2 The Market Entry Game

In the MEG, individuals’ payoffs depend on the market capacity, individual cost, number
of other entrants and an entry fee. If they choose to stay out then their payoff is certain, if
they choose to enter then their payoffs depend on the number of agents choosing this option.
We analyze a version of the MEG payoff function where payoffs for entering are linearly
decreasing with the increasing number of entrants. The two possible actions are either enter
or stay out (denoted s1 and s0, respectively):

• Each market has and intrinsic value I, a capacity K and a fixed entry fee f is imposed;

• Each agent i has cost of entry ci and reservation price R.

• Ex post payoffs for agent i depend on number of entrants �s−i� and his decision in a
following way:

– Enter π (s1
i , s−i) = I + v ∗ (K − s−i)− ci − f

– Stay Out π (s0
i , ∗) = R.

The game has multiple Nash equilibria. Denote e∗ as the equilibrium number of subjects
entering the market when the remaining N − e∗ stay out. Given that payoff functions are
homogeneous then any combination of agents behavior that satisfies these conditions is an
equilibrium. In the canonical MEG, subjects have homogeneous payoff functions with no
cost for entry ∀i ci = c = 0 and no entry fees f = 0 as well as I=R. In previous experimental
work (Rapoport, 1998; Amnon Rapoport and Sundali, 1998; Erev and Roth, 1998) the payoff
function and parameters values were such that e∗ was usually e∗=K or e∗=K-1. This feature
of the canonical MEG led Daniel Kahneman to address the observed aggregated behavior as
Magic, given that the observed number of entrants for these values is between K and K-1.
Once an entry fee or subsidy has been introduced in the payoff function then the equilibrium
e∗ may usually be different than K or K-1.

3 Experimental Design and Data

We use the data of new version of the MEG for our analysis. This one is modified from the
canonical one in two ways. First, we added a new treatment called Expected Market Entry
Game (EMEG) in this treatment the capacity of the market is uncertain. This uncertainty
is represented by a random variable that has equal probability for three possible values
1. Second, different that the canonical MEG this experiment introduced different costly
entry fees. The main effect of this introduction is that separates the number of entrants in
equilibrium e∗ from the capacity of the market K by numbers that are greater than one.

1In the MEG treatments the traditional strategic risk presented to players in a simultaneous move game.
On the other hand, the EMEG two types of risk are present. The uncertainty regarding the capacity of the
market adds to the strategic risk.
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We conducted 7 experimental sessions where 84 undergraduate and graduate students
participated as subjects at the Interdisciplinary Center for Economic Sciences at George
Mason University. Upon arrival to the laboratory the subjects were seated at one of the
12-computer terminal separated by partitions. Communication between subjects was pro-
hibited. Written instructions and a series of record sheet were given to each participant.
The participants first read the instructions in private. After they read the instructions the
lab coordinator come back and read the instructions out loud. A short hypothetical example
and a following quiz was performed. After checking that the participants answered the quiz
correctly the experiment started. The experimental sessions lasted approximately two hours.
Subjects earned an average of 16.5 dollars in addition to a 5 dollars show up fee.

Each session consisted on 150 rounds of a binary decision environment. The experiment
was programmed and conducted with the software z-Tree (Fischbacher, 2007). The rounds
session is divided in six blocks of 25 rounds. For each block the parameters remain constant
and are those displayed in Table 1, but the order of block may be permutated to control for
possible artifacts.

The payoff function we implement in our experiment is a representation of the payoff
function described in the former section. In each sub-treatment of our experiment, the
subjects will face the following payoff function.

• Enter π (s1
i , s−i) = 15 + 2 ∗ (K − �s−i�)− 2− f ;

• Stay Out π (s0
i , ∗) = 17.

Contrary to the classical approach, entering the market in our experiments carries an
implicit cost. The experimental design checks different values K and f . K is deterministic
in MEG treatments or is a random variable in the EMEG treatments. The expected market
capacity can either be of one third of the number of participants or two thirds. If the
expected value of K is 4 and EMEG condition is active, then the realizations of this random
variable can take the values 2, 4 and 6 all with equal probability. For those sub-treatments
where expected capacity equals 8, then the momentary market capacity is 6, 8 or 10.

Treatment R I c K f lower RNNE upper RNNE

1 17 17 2 4 -1 2.5 3.5
2 17 17 2 4 0 2 3
3 17 17 2 4 2 1 2
4 17 17 2 8 0 6 7
5 17 17 2 8 2 5 6
6 17 17 2 8 4 4 5

Table 1: Values of default parameters for all treatments. Last column, RNNE, contains
calculations of the Risk Neutral Nash Equilibrium. For each treatment, exactly two RNNE
exists.
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4 Applicable Behavioral and Learning Models

Traditionally, modeling of procedural rationality has aimed to represent learning pro-
cesses. T. Brenner in (Tesfatsion and Judd, 2006, Chapter 18) categorizies learning models
into non-conscious learning, routine-based learning and belief learning. In recent years, ex-
perimental economics and psychology have made increasingly larger contributions to this
knowledge, but no model has been found to be uniformly superior to others ((Tesfatsion and
Judd, 2006, Chapters 18 and 19)). Learning-based approaches reviewed by Brenner suffer
from two common problems. First, they are geared towards situations where each of the
agents does not distinguish between individual opponents and treats them as a part of a
noisy environment. Second, the applications are most often limited to iterated single-stage
(stateless) games.

The field of artificial intelligence offers solutions that do not suffer from these weaknesses,
but with limited behavioral support. The first interesting approach is variable learning
rate reinforcement learning such as AWESOME Sandholm and Conitzer (2003) and GIGA-
WoLF Bowling (2005). Those approaches account for the fact that the optimal policy at
any moment depends on the policies of the other agents. A variable learning rate is only
a partial solution to the issue of learning a moving target. Another venue is joint action
reinforcement learning. Suematsu and Hayashi (2002) and Hu and Wellman (2003) offer
frameworks EXORL and Nash-Q for learning in stochastic games2. Given a stochastic game,
the proposed algorithms converge to a Nash equilibrium when other agents are adaptable,
otherwise an optimal response will be played. All those approaches have been demonstrated
to lead to better performance than the traditional single agent learning methods in case of
strategic interactions.

All multi-agent reinforcement learning algorithms require agents to build internal rep-
resentations of their environment and opponents, progressively updated as experience is
accrued. Those internal models are based on principles of stochastic optimization and do
not incorporate any domain specific knowledge. This induces a high sample complexity
(measuring duration of ”burn-in” phase necessary for agents to become model-consistent),
possibly too high for realistic economic modeling applications3. This relates to an observa-
tion by Costa-Gomes in Costa-Gomes et al. (2009), where he argues that adaptive methods
produce good fits to the long-run behavior, but short term dynamics often seem to underes-
timate rates of human learning, because adaptive methods forego a great deal of background
information available to humans and rarely assume that agents perform introspection or
counterfactual reasoning.

A way of fixing this issue is belief or fictitious learning. A fictitious player observes (a)
the strategies of all players and (b) can calculate the payoffs he would have obtained had
he and the other players played any other possible combination of strategies. This requires
such a player to have access to an accurate model of the environment. Fictitious players
have no manner of anticipating the behavior of opponents and each derives his behavior by
myopically best responding to the history. The best understood and tested fictitious learners
include models of Experience Weighted Attraction Camerer and Ho (1999); Ho et al. (2004),

2A stochastic game is a set of n-agent normal-form games augmented with rules for transitions depended
on actions of agents. See (Shoham et al., 2004, Section 2) for the definition.

3Y. Shoham raises this point with respect to the Trading Agent Competition (Shoham et al. (2004)).
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which also generalize reinforcement learning models.
An interesting extension of the fictitious learning that goes beyond removing myopia of

players is presented in Camerer et al. (2002). That model assumes a mixture of adaptive
learners and sophisticated players. An adaptive learner adjusts his behavior the EWA way.
A sophisticated player rationally best-responds to her forecasts of all other behaviors and
can be either myopic or farsighted. A farsighted player develops multiple-period rather than
single-period forecasts of others’ behaviors and how those would change in response to her
initial actions and engages in strategic teaching of others by choosing a COA that gives her
the highest discounted net present value.

Last remaining is so called n-th order rationality. A formal definition is presented in
Michihiro (1997). An agent is first-order rational if it calculates the best response to his
beliefs about strategies of zero-order agents4 and the state of the world. An agent is n-th
order rational if it determines its best response assuming that the other agents are (n−1)-th
order rational.

The most advanced example of this class of reasoning mechanisms is constituted by
the Cognitive Hierarchies (later CH) model, presented in Camerer et al. (2004)5. The CH
model consists of iterative decision rules for players doing n steps of thinking, and the
frequency distribution f(k) of order k players. The iterative process begins with step 0
types who don’t assume anything about their opponents and merely choose according to some
probability distribution. Step k thinkers assume their opponents are distributed, according
to a normalized Poisson distribution (with mean τ), from step 0 to step k− 1. CH has been
validated with human-based experiments where it has been found that τ = 1.5 fits data from
many canonical games much better than extant learning-based approaches.

Several papers have already computationally analyzed behavior in the MEG, for example
in Amnon Rapoport and Sundali (1998); Erev and Roth (1998). Erev and Rapoport have
also documented results from previous experimental studies. It has been found that variants
of the basic reinforcement learning model of reinforcement learning accounts for the quick
convergence to equilibrium play in market entry games with a large number of agents has
been found and explain variations in the population strategies for different treatments. In
order to dock our results with those of the previous studies, we will use reinforcement learning
approaches called Q-learning Sutton and Barto (1998), but also augment it with two other
approaches: CH and EWA. Default parameters for each of those algorithms are listed in
Table 2.

5 Experimental and Computational Dynamics

In Figure 1 and Figure 2 we observe how closely the presence and the dynamic of over en-
try in the experimental data predicted is replicated by the agents with each of the three learn-

4As discussed later, the exact choice of behavioral rule for zero-order agent’s is usually case-specific and
could include random behavior, continuation of historical behavior (our default) or any non-strategic learning
rule.

5The first review articles with empirical support for CH and related concepts of n-th order rationality
as plausible cognitive architecture for individuals appeared in early 2000s, see Crawford and Iriberri (2007)
and Costa-Gomes et al. (2001).
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Algorithm Parameter Default range Meaning
R

L
α 0.25 Learing step size

τ 1 Payoff sensitivity

γ 0.75 Discounting factor

C
H τ 1.5 Average depth of recursion

E
W

A

δ 0.1 Weight of counterfactual observations

φ 0.75 Discounting factor

ρ 0.8 Observation-experiences discount

λ 1 Payoff sensitivity

Table 2: Simulation parameters used to calibrate behavioral algorithms.

ing rules. Each learning rule has shown the potential to predict the direction of population-
level adaptation in response to treatment switches. Nevertheless, CH approach overestimates
the initial speed of adaptation, whereas RL and EWA approaches underestimate the speed
and magnitude of movements for an experienced population.

For treatments with non-stochastic capacity of the market the predictions are more accu-
rate. In these treatments the agents are able to closely replicate the variance of the number
of total entrants, although the experimental data shows a faster convergence to a small over
entry of one subject. The analysis is slightly different for those treatments with stochastic
capacity. The introduction of variable capacity K but keeping the mean constant does not
changes the expected profit of entrance but it does change the observed profits at each round
of the experiment. This feature seems to have a large effect on the human participants and
CH agents, making their behavior more erratic than the one observed by the RL and EWA
agents, see Figure 4.

6 Conclusions and Future Outlook

We found that the ACE with different learning rules constituted a useful tool for assess-
ing human behavior in an experimental design with varied treatment effects. Introduction
of capacity risk seems to alter the human behavior increasing the observed individual het-
erogeneity, but had little effect on the average number of entrants. Learning algorithms
consistently mis-estimated the range of human heterogeneity and had problems with cap-
turing how the speed of population adaptation changes in time.

The fact that the human behavior observed during the experiments presents much more
heterogeneity than the one generated by the learning rules calls for an approach that allow for
distribution of different agents to be implemented instead of just representative agents. This
implementation might not be essential for environments like the one analyzed here where
subjects where presented with homogeneous payoff functions. Then on aggregate level, the
heterogeneity of human behavior does not have an important effect on the social welfare and
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humans achieve similar performance as homogeneous computational agents. Nevertheless, we
plan to adapt approaches which include heterogeneous populations of computational agents,
in particular through the estimation of CRRA utility functions Geweke (2001). We also want
to implement and test a different learning rule, one which actively tracts the environment
and conditions the learning rates on the it’s dynamics.

Lastly, we plan to investigate treatments where individual entry costs are asymmetric.
We performed a number of computational experiments to investigate how the amount of cost
asymmetry influences the population outcomes, see Figure 5. In line with results of Am-
non Rapoport and Gisches (2008); Rapoport et al. (2002), it seems that a careful application
of assymetry may help overcome coordination failures. After the computational framework
is improved, we plan to use it to design the next round of experiments.
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(a) Average profits
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Cog. Hier. 2.7 2.6 2.7 3.3 3.4 3.4 3.1
EWA 3.3 3.1 2.9 3.0 3.1 3.3 3.2
Experiment 2.2 3.1 2.8 2.5 3.0 3.0 2.8
Q-learning 3.3 3.0 2.8 2.6 3.1 3.3 3.2
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(b) Standard deviation of profits

1.5 2.5 3.0 4.5 5.5 6.5
Cog. Hier. 3.1 3.5 4.2 5.5 6.1 7.1 4.9
EWA 4.5 4.9 5.0 5.6 6.2 6.5 5.4
Experiment 2.9 4.3 4.2 5.3 6.0 7.0 4.9
Q-learning 4.7 5.0 4.9 5.4 5.7 5.9 5.3
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(c) Average number of entrants
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EWA 1.8 1.9 1.8 1.9 1.8 1.9 2.0
Experiment 1.3 1.7 1.7 1.5 1.6 1.6 2.0
Q-learning 1.6 1.6 1.6 1.5 1.6 1.6 1.6
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(d) Standard deviation of number of entrants

Figure 1: Summary statistics of profits per participant per round and number of entrants.
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(a) Treatment order 1, 2, 3, 4, 5, 6.
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(b) Treatment order 5, 3, 6, 4, 2, 1.

Figure 2: Predicted and observed average number of entrants for each of the tested treatmet
permutations. All time series are simple averages across multiple independent runs.
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Figure 3: Predictions and observations of distance to the average RNNE as a function of
time elapsed since the treatment change.
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Figure 4: Predictions and observed frequencies of changes of individual decisions.
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