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Impacts of Weather and Time Horizon Selection on Crop Insurance Ratemaking:

A Conditional Distribution Approach

May, 2011

Abstract

An important issue in the agricultural actuarial literature is the extent to which sample period
selection affects the accuracy of insurance rating. A conditional Weibull distribution approach is
developed which explicitly models the interaction of weather, technology, and other variables on
probabilistic yield outcomes to address this issue. Results from an application with an extensive
producer-level yield dataset representing commercial-scale Illinois firms suggest that the impact
of weather heterogeneity on risk estimation across reasonable samples is likely not as great as is
often claimed. The results also suggest that yield risk is decreasing significantly through time,
and indicate the presence of trend acceleration. A rating analysis indicates that violations in the
risk evolution assumptions of the rating approaches used in the Federal Crop Insurance
Program—which implicitly assume increasing yield risk through time when yields trend—result
in severely biased rates, with typical overstatements of 200% to 400% for Midwest corn.

Keywords: Conditional Weibull Distribution, Conditional Production Function, Catastrophic
Risk Modeling, Sample Selection, Yield Risk, Crop Insurance, Ratemaking

Introduction

A longstanding question within the crop insurance and yield risk literatures is to what extent the
time horizon of a given sample impacts estimates of production risk and insurance rates.
Similarly, many questions remain as to what the appropriate sample period length “should” be
for determining crop insurance rates. Simple answers to these questions have remained elusive
though. First, the catastrophic nature of adverse weather events can result in high year-to-year
variability in crop losses. Second, these questions are confounded by the dynamic nature of
production technology through time, which arguably has led to crops that are more resistant to
adverse weather and other perils. Addressing these questions is of paramount importance in the
current debate regarding the appropriateness of crop insurance rates in the Federal Crop
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Insurance Program (FCIP), as sample period selection, treatment of data, and model assumptions
(both implicit and explicit) can potentially have large impacts on the assessment of historical loss
performance and in the rating of insurance (see e.g., Woodard, Sherrick, and Schnitkey, 2011;
Woodard et al., 2011). The adequacy of insurance rates (i.e., unit prices of insurance) is
important for government insurance programs such as the FCIP since inaccurate ratings
adversely impact the functioning of insurance markets, resource allocation, and can result in
excess costs to taxpayers (Priest, 1996; Brown, 2010). Inaccurate rates can also impact planting
decisions, which in turn affect land-use and lead to other environmental and economic

consequences (Lubowski et al., 2006).'

Currently, much great disagreement exists regarding the accuracy of FCIP insurance rates
and the appropriateness of associated methodologies used to derive them (see e.g., Woodard et
al., 2011; Woodard, Sherrick, and Schnitkey, 2010; Coble et al., 2010; Woodard, 2008). Many
recent empirical studies cast doubt on the appropriateness of the insurance rating methods
employed by the Risk Management Agency—or RMA, a branch of the USDA charged with
administering the FCIP (Woodard et al., 2011; Woodard, Sherrick, and Schnitkey, 2011; Yu and
Babcock, 2009; Vado and Goodwin, 2010). Meanwhile, other researchers have questioned the
validity of existing empirical studies on the grounds that available data periods could be “too
short” to facilitate empirical evaluation insurance losses (see e.g., Coble et al., 2010; Smith and

Goodwin, 2010).

Despite the obvious importance of the question regarding FCIP insurance rates and the
current disagreement over the issue, no relevant work has been conducted to investigate the

impacts of sample period selection on yield risk estimation and crop insurance ratemaking.

"' See Woodard et al. (2011) for a more in depth discussion of these issues in the context of the FCIP.
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While some work has investigated rate sampling variability in the context of yield distribution
estimation in hypothetical single risk exposure contexts (Ramirez, Carpio, and Rejesus, 2009;
Lanoue et al., 2010) and for Group Risk Insurance Products (Woodard and Sherrick, 2010),

issues related to the interaction of weather and technology in the context of insurance systems

over alternative periods has received much less attention.

The objective of this study is thus to assess the impact that sample period length and
sampling variability in weather have on yield risk estimation. The application employs a rich
farm-level dataset for Midwest corn in a high premium volume region. A conditional Weibull
distribution approach is developed which allows for assessment of yield risk under various sets
of weather events by explicitly modeling the impacts of weather and technology change on
probabilistic yield outcomes. The conditional distribution approach is advantageous as it allows
for straightforward assessment of how sample period selection will likely impact risk estimation
under various levels of technology. This allows the analyst, for example, to model the yield
distribution under a specific weather event (i.e., conditional on a given weather event) given
today’s technology, as well as the distribution over a specific set of weather events (i.e.,
conditional on a given distribution for weather). This is accomplished by manipulating the
conditioning weather distribution once the conditional yield distribution model has been
estimated. That is, the conditioning weather distribution used to fit the model can be substituted
with a weather distribution representing a wider spectrum of weather outcomes. This allows for
assessment of how a yield distribution estimated with, say 30 years of data, would likely differ
from a distribution estimated with 100 years of data. This method may be preferred to the simple
regression approaches that have been used in the literature until now to investigate similar issues

(e.g., Schlenker and Roberts, 2006; Yu and Babcock, 2009; Vado and Goodwin, 2010), as those



studies have primarily focused on assessment of the in-sample conditional mean only, but do not
carefully consider the impact of weather and technology gains on yield risk explicitly, nor the

impacts of the chosen weather/time horizon.

This study provides several contributions. First, the study takes a step toward resolving
the current debate regarding the appropriateness of RMA rating assumptions and the associated
empirical questions, and also provides a coherent framework within which to approach these key
issues. Second, several results of potential interest to production economists are developed for
the conditional Weibull model, including conditional elasticity derivations for several risk
measures. A bootstrap method to estimate standard errors for conditional distribution elasticities
is also developed—extending the work of Nelson and Preckel (1988). Third, the study explicitly
models the effect of weather when assessing the impacts of technology change on meaningful
measures of yield risk and insurance rates for producer-level yields. Last, the results shed light

on the trend acceleration issue that has been the focus of some recent debate (Tannura, 2008).

The findings suggest that the impact of weather sample heterogeneity on risk estimates is
not likely to be as great as is often suggested in this large premium volume region. Estimates
generated under the weather experienced over the 1980-2009 period are found to be—for all
practical purposes—very similar to those generated when accounting for weather over the longer
period of 1895-2009 in the Midwest. The results also confirm those of Woodard, Sherrick, and
Schnitkey (2011) and Woodard (2008) that yield risk for Midwest corn has declined significantly

through time, a result in contrast with the results of Schlenker and Roberts (2006), albeit for a

* While it is true that a standard Gaussian regression model with conditional variance is essentially a conditional
normal distribution model, previous studies have not carefully modeled and analyzed the conditional and
unconditional variance processes in order to generate the rich risk results developed here. Furthermore, the normal
distribution is questionable as applied to yield distribution estimation (see e.g., Woodard and Sherrick, 2010, for a
thorough discussion). Last, previous studies typically use county yields, which are less relevant for producer rating.

5



different dataset. The results also suggest the presence of trend acceleration. Finally, the results
provide confirmatory evidence that RMA rates in the Midwest are likely severely inflated (see
e.g., Woodard, 2008; Woodard et al., 2011; Yu and Babcock, 2009; Vado and Goodwin, 2010),
and that the geographic inequities in loss experience identified in past work are most likely not
simply due to sample selection issues. Rather, it appears to be due to the fact that the methods
employed by RMA are not appropriate given the evolution of crop production technology and

resulting risks.

Collectively, the evidence to date suggests that a fundamentally different rating approach
or a reweighting of historical loss data to account for the dynamic nature of agricultural
production risk —such as that developed in Woodard (2008)—will be needed to rectify
geographic rating inequities in the FCIP identified in several high premium volume regions. The
geographic rating inequities identified historically are likely to persist if the RMA rating

continues to ignore these important risk features when making rates.

The Rate Debate

Woodard et al. (2011) present evidence that, historically, rates in the FCIP have been
geographically inequitable, and that these inequities are linked to fundamental and persistent
flaws in the approaches employed by the RMA in making rates for the program. Chief among
these is the use of unadjusted loss cost approaches by RMA, which have been shown by
Woodard (2008) and Woodard, Sherrick, and Schnitkey (2011) to result in biased rating
structures unless certain restrictive distributional conditions are met. Specifically, the LCR

approach implicitly assumes that yield risk is increasing through time if yields trend upward.



Those studies test these assumptions against a large representative farm-level database and find
that they are starkly violated for Illinois, a high premium volume market. They also perform
statistical tests that indicate that the impact of weather variability within the sample cannot
explain the violations in the risk assumptions. Last, these studies posit that the rating problems
identified are caused by improvements in crop technology which have resulted in lower yield

risk and trending yields through time.

One criticism of those studies and related work asserts that the sample periods available
(approximately 30 years) are “simply too short” to adequately evaluate losses. The potential flaw
in the logic that 30 years is “simply too short” is that it ignores the fact that thick panels of
producer-level data that are readily available have much higher information content than
aggregate indexes, and thus may allow for more accurate risk estimation. However, if the
distribution of weather over a longer horizon is much different than the recent 30 year period,
differences could arise. The approach in this study allows for assessment of this claim directly by
modeling and evaluating the yield distribution which would likely be generated over a longer

time horizon.

Model

A conditional Weibull model is developed in order to assess the impact of alternative
weather/time horizons on yield risk estimation. In addition, the models are used to explore
changes in the response of crop yield risk to weather stresses. While similar approaches exist for
the normal and Beta distributions, this study employs the Weibull distribution for several

reasons. First, the Beta distribution has been shown to have a tendency to overfit in yield



distribution modeling applications (see e.g., Woodard and Sherrick, forthcoming) due to the
higher number of unconditional distribution parameters in that model (four) versus the Weibull
(two). The Beta is also somewhat more difficult to work with computationally. While the
normal distribution is less prone to overfitting than the Beta due to its two-parameter nature, it
has generally not been found to be a good representation of yield distributions in many regions.
For example, Woodard and Sherrick (forthcoming) find that the normal distribution is rejected in

47% of Midwest corn counties.

The normal distribution is also restricted to have zero skewness, whereas the Weibull
allows for negative skewness. Negative skewness has been identified as a common characteristic
of yields distributions in many regions, including the region under investigation here (see e.g.,
Sherrick et al., 2004). Hennessy (2009a) provides a formalized theoretical motivation for this
common finding, arguing that negative yield skewness is likely to occur in tightly controlled
environments where the left tails of the resource availability distributions are thin. Furthermore,
Hennessy (2009b) develops a theory which implies that negative yield skew is likely to arise in
cases where the weather-conditioned mean yield has diminishing marginal product with respect
to weather. Last, the support of the normal distribution has a lower bound of negative infinity;
thus, it has the potential to imply implausible negative yields, whereas the Weibull distribution’s

support has zero as a lower bound.

As a kick-off point, the (unconditional) Weibull distribution can be expressed as,

fla,b)y=ba"y" e (1)

where y is yield, and a and b are parameters to be estimated. The conditional Weibull is similar

except that a and b are a function of some other variables, a(x,,B,) =g, (x,,B,)and
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b(x,,B,) =g,(x,,B,), where subscripts a and b are used to denote the respective parameter

model, g (+)is some functional form (e.g., linear, Cobb-Douglass, quadratic, etc.) x’s are 1-by-
K design matrices of explanatory variables (e.g., weather, soil, acreage), and B ’s are K-by-1

vectors of parameters to be estimated. If we let a and b have the same set of explanatory

variables x, and same functional form g(e) ,the conditional distribution can be expressed as,

g(x,B,)
SO 1X BBy 2 (9) = g(X,B,)g(x,B,) <8yt exp —(L] , )
g(x,B,)

Parameter estimates can be obtained via maximum likelihood as follows. Letting Y and
X be an N-by-1 and N-by-K sample of N observations, the conditional model parameters can be
estimated as

B=[B,.B,]=arg max(l‘[ [ Xi,ﬁa,ﬂ,,,g(->)j, 3)

BuaBb i=1
where in this case Y, and X, correspond to data for observation i..

Interpretation of the conditional model parameters, p , resulting from changes in x are
somewhat difficult to interpret since the impact of a change in a and b on mean yields and yield
risk are—depending on the distribution type—often some nonlinear function of both
parameters.” Indeed, this is the case with the Weibull. Thus, next we derive mean and variance
elasticities for the conditional Weibull. Assessment of these elasticities provides a means to

assess the impacts of various conditioning variables on the resulting distribution. Here and

? The Normal distribution is an exception.



throughout, it is assumed that a and b have common design matrices, X, and common functional

form g (). The mean of the Weibull distribution can be expressed as a function of @ and b as,

_a(x,B,) 1
/u(y|a:bnxﬂl3aﬂl3b)_b(X,Bb)r[b(X’ﬁb)]a (4)

where I’ (-) is the gamma function. The conditional mean elasticity with respect to x, quantifies
the proportional change in the conditional mean yield, x(v|a,b,x,B,,B, ), resulting from a

proportional change in x,, and can be expressed as,

oo OInu(y|a,b,%B,,By)) _ Ou() x,

‘ dln(x,) ox,  u(*)

BRI GG GG

. () (Y () )
A ) i) o e 679

- ; (5)

where W (®)is the derivative of the log-gamma function (i.., the di-gamma function). Note,

these results are expressed in terms of a(x,P,) and b(X,B, ), but can easily accommodate any
functional form simply by substituting in the specific function g(+) into the equation above.

Thus, all that needs to be known to investigate alternative functional forms is g (¢) itself and its

first derivative with respect to x,. This setup greatly simplifies programming and analysis of
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alternative forms in practice. In a similar vein, the variance of the conditional Weibull

distribution is,

: | o(p®+2) (be)+1Y
o (y|a,b,%B,.B,) = a(®) [r[ b j r{ b jJ (6)

and thus the conditional variance elasticity can be derived as,

oo Oln(c’(e) _
. dln(x,)

(2%a(‘){agi;)jTO(b(b.().ﬂ_zxkb(.)z(agi;) j

e

X a(+)b(+y r(b(b'().;z]—a(.)b(.)z r(bg().;lf

Note, elasticities of scale as well as elasticities of other moments / distributional statistics can be

derived similarly. For example, the median and median elasticity w.r.£. X, can be expressed as,

1

Med(y|a,b,x,B,.B,) = a(*)In(2)"" ®)

and,

ob(*) 2 Ga(*)
o Sn(Med(®) __ln(ln(Z))xka(-){ or J—xk b(.) ( o j o
CT oGy a(*)b(Y |
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Recovery of the Unconditional Distribution

A convenient feature of working with conditional distributions of this form is that the
unconditional distribution can be recovered in a straightforward manner by integrating out the

explanatory variables, x (provided their joint distribution is known). Additionally, any one of

the x, can be integrated out individually, with the resulting conditional distribution being

unconditional on x, , but conditional on all other x_, .* It also allows for manipulation of the

distributions of x. These features are particularly advantageous in answering the question of
sample period/weather regime impact on risk estimation. Specifically, the conditional
distribution approach allows the analyst to employ a longer span of weather data in order to
construct a weather density that embodies longer time-horizons. That is, the models themselves
can be fit with available data (say 1980-present) then an augmented distribution for weather can
be substituted in the model and integrated out in order to assess the impact of sample length.

This method can also be used to assess changes in various risk measures through time (i.e., under
changing technology through time). Last, it also allows for assessment of the impacts of various

weather events under current technology.

Formally, with estimates of ﬁa and ﬁ , 1n hand, the unconditional distribution (i.e.,

unconditional onx ) can be recovered from the conditional as,
S 1BByg@) = [[ /(2 1%B,.B,.2(9)- 2(X) Ja, (10)

where g(X) is the distribution of interest forx (e.g., a particular weather distribution of interest).

Thus, the resulting unconditional distribution in the case of a continuous (discrete) distribution

* Technically, this may require that the variables being integrated out should be independent of the variables not
integrated out in order for the result to be meaningful.
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for X is essentially an infinite (finite) mixture of Weibull distributions. Similarly, the analyst
can choose to integrate out only some x, ’s, while fixing others. One can also obtain

unconditional elasticities by integrating the conditional moment elasticities (derived above) over
the distribution of X . Analytical solutions are not feasible for those expressions, and thus

numerical methods must be employed, though this is relatively straightforward computationally.

Data and Methods

The producer-level corn yield data used in the study are from the Illinois Farm Business Farm
Management database (FBFM). The data span the period 1972-2008 and contain for 30,467 corn
yield observations from 5 large contiguous production counties in Central Illinois (LaSalle,
Livingston, Marshall, McLean, and Woodford). The database also contains records for acreage
(ACRE) and soil productivity (SOIL), both of which have potential impacts not only on mean
yields, but also risk more generally. SOIL is derived from on-farm soil tests according to the
Circular 1156 Soil Productivity Rating methodology published by the University of Illinois.
Yields are measured in bushels per acre. The use of SOIL and ACRE are also needed to control
for farm heterogeneity as well as non-linear technology/land interactions through time. The
weather data (WEATHER) are from the National Climatic Data Center (NCDC) for the Palmer
Drought Severity Index (PDSI) for the period 1895-2009. The PDSI is published monthly as a

district level index which indicates overall moisture conditions.” A summer average PDSI index

> While other weather measures could have been employed, preliminary analysis did not indicate that using other
PDSI index types, months/month combinations, or straight temperature/precipitation measures had any qualitative
impact on the results. Clearly, while this choice is of second order, it is still potentially an avenue through which
slight improvements in efficiency could be had, and so is left as a potential area for future research.
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(June, July, and August) is constructed and employed here to control for the major weather

events that affect crop yield growth during the critical growing season.

Estimation

The conditional Weibull model is estimated using a common quadratic specification for both
a(x,B,) andb(x,B,) . The quadratic specification is desired as it allows for the modeling of non-

linearities and interactions in the parameter responses among the variables. Logged terms are
used for SOIL and ACRE. A time trend (TREND) is also included to capture changes in
technology through time. When fitting the conditional Weibull model parameters, the
WEATHER index is employed for the 1972-2008 period to match the yield dataset. Later in the
analysis, we compare various horizons for WEATHER when recovering the unconditional
distribution (namely, the periods 1895-2009 and 1980-2009). Explicitly, we have

X =[TREND, LN(ACRE), LN(SOIL),WEATHER].® The model parameters are solved using

maximum likelihood.”

Conditional elasticities are constructed using the equations above. The “unconditional”
elasticities are estimated by numerically integrating out the empirical distribution for WEATHER
(either 1895-2009 or 1980-2009). ACRE and SOIL are evaluated at their medians throughout.
Thus, the elasticities and other results are conditional on ACRE and SOIL at their median values,

but unconditional on the chosen WEATHER distribution.® Results are also presented for various

® This model was selected as it appeared to have the best fit out of candidate models investigated (including Cobb-
Douglass and linear). Overall, the exact choice of model/variables did not appear to have a qualitative impact on the
conclusions of the results.

"MATLAB code to implement the procedures is available from the author upon request.

¥ This choice did not have a qualitative impact on the results of the analysis.
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statistics conditional on different levels of TREND in order to assess impacts of changing
technology through time, net of any WEATHER impacts. Standard errors for the model
parameter estimates are calculated directly from the Hessian using the BFGS method.” Deriving
standard errors for the elasticities, on the other hand, is difficult if not impossible analytically.
Thus, in this study bootstrap methods are used to estimate standard errors for elasticities. This is
done in a straightforward manner by simply resampling observations with replacement from the
main dataset and successively re-estimating the model parameters; the bootstrapped parameter
estimates (N = 1,000) are then used to calculate the bootstrapped elasticities and to derive their

sampling distributions.

In order to assess impacts on insurance rates over time and under different weather

horizons, expected loss cost ratios, E(LCR), are also calculated and analyzed. E(LCR) is

sometimes referred to as the actuarially fair insurance rate, and is expressed as,
E(LCR) = IMax(O,E(Y) -Cov—1y) -f(y)dy/(E(Y) . Cov) , (11)
0

where E(Y)is the expected yield, Cov is the coverage level (which defines the deductible), y is
yield, and f(y) is the desired yield distribution (the conditional notation is suppressed here). As

outlined in Woodard, Sherrick, and Schnitkey (2011), the RMA uses an empirical loss cost
approach as the basis of their rating system, whereby annual average loss costs from historical

data are first calculated, and then a simple average of the annual average loss costs is used as a

? Bootstrapped standard errors and significances were also calculated to verify the accuracy of the BEGS method.
With the exception of LN(ACRE)’ in the b(®) model—which was only significant at the 5% level under the

bootstrap method instead of the 1% level under the BFGS direct Hessian method—all the other conclusions
regarding parameter significance and the level of significance were identical.
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proxy for E(LCR). The yield distribution must follow a restrictive and specific process through
time in order for RMA’s method to result in unbiased forward-looking rates, £(LCR). In short,

if yield risk is decreasing through time, the loss cost ratio will decrease through time, with the

implication that a simple average will result in a persistently biased forward looking E(LCR).

Results

Results for the parameter estimates for the conditional Weibull models are presented in Table

1."° The first column presents parameter estimates for a(x,B,) while the second column

presents those for b(X,B,). In general, most of the terms are significant at a high level of

significance, indicating a reasonable choice of functional form. Of course, results from the
parameter estimates are difficult to interpret directly due to the presence of non-linear and
interaction terms. Thus, Table 2 presents production elasticities for the model conditioned on the
1895-2009 WEATHER distribution and 2008 technology (i.e., setting TREND to 2008 levels);
elasticities for three distribution statistics are reported: expected yield E£(Y), standard deviation,
o(Y), and coefficient of variation (“relative risk™), o(Y) / E(Y). We present elasticities for

standard deviation instead of variance for ease of interpretation.!’ Note, since
o \Un n . ..
In(e"x)—In(x)=n [ln((e’x) )— ln((x)l/ )} ,V x eR, the variance elasticity can be recast as the

standard deviation elasticity simply by dividing the variance elasticity by # (in this case, n=2

' Standard errors for the parameter estimates are calculated directly from the Hessian using the BEGS method
approximation. Bootstrapped standard errors and significances were also calculated to verify the accuracy of the
BFGS method. With the exception of LN(ACRE)’ variable in the model—which was only significant at the 5%
level under the bootstrap method instead of the 1% level under the BFGS direct Hessian method—all the other
conclusions regarding levels of significance were identical.

" Derivation of the coefficient of variation elasticity is available from the author upon request.
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since standard deviation is the square root of variance). The production elasticities w.r.z. to
TREND are presented such that the change in time is converted to an equivalent 1-year basis,

. . . 12
again for ease of conceptualization.

As expected, the elasticities of E(Y) w.r.t TREND and SOIL are positive, large, and
significant, reflecting the fact that yields trend through time, and that better soil results in higher
yields. For example, the percentage increase in the expected yield over a 1-year horizon is
0.9293%, and 2.5924% for every 1% increase in soil quality.> ACRE is also positive and
significant, but relatively small (0.0829), indicating small positive scale effects. Referring to the
second row of results in Table 2, the elasticity of o(Y) w.r.t. TREND is negative and significant,
indicating that yields are becoming less risky through time in an absolute sense on the order of
0.3615% per year. The same is also true for the elasticity of o(Y) / E(Y) w.r.t. TREND. Note,
these elasticity estimates are net of the impacts of weather, indicating that yield risk in the
Midwest is decreasing currently, and that this is not simply an appearance due to recent weather
patterns. The elasticity of o(Y) w.r.t. ACRE was also negative but insignificant. However, the
elasticity of o(Y) / E(Y) w.r.t. ACRE is negative and significant, reflecting the fact that larger
units will tend to have lower yield risk due to aggregation. Improving soil quality also is

estimated to reduce risk significantly.

Next, we turn attention to the issue of the impact of weather over alternative sample

periods. Figure 1 presents the PDSI data from 1895-2009. While it is often suggested that the

12 For TREND, this is approximated by multiplying the elasticity by the number associated with the trend year,
TREND. This result can be interpreted directly as the percentage change in the risk statistic as a result of a 1 year
change in technology/time. Since the model was estimated in logs for SOIL and ACRE, so that the resulting
elasticities can be interpreted in terms of their true values, an adjustment is made to the reported elasticities whereby
it is the elasticity is divided the logged value of SOIL or ACRE value. These interpretations and adjustments follow
straight from the definition of elasticity.

" Note that “soil quality” is dependent on the index, so the magnitude is somewhat arbitrary. Thus, the magnitude
of the elasticity estimates may vary among indexes, but would likely still be significant. The magnitude relative to
the index is likely to also be identical among competing soil indexes.
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last 30 years is not representative enough, or not adequately representative of longer horizons,
this is not apparent from Figure 1. Figure 2 presents kernel density estimates of the WEATHER
values from 1895-2009 and 1980-2009. While the recent period appears to have a slightly higher
occurrence of wet conditions, the variances of the two appear to be similar, as does the frequency

of droughts (as indicated by the secondary mode in the left tail).

In order to shed more light on what impacts the distribution of weather over various
horizons will have on risk estimation, we compare conditional Weibull yield distributions which
are conditioned on different distributions for WEATHER. Figure 3 presents the conditional
Weibull yield distributions (under 2008 Technology), for both the 1895-2009 and 1980-2009
weather conditioning distributions. The Figure illustrates that there is only a small difference
between the generated yield distributions, indicating that little is to be gained by taking into
account the longer horizon of weather events in this application. This finding is in direct conflict
with assertions by other researchers that a 30 year sample period is “too short” of a horizon for

evaluating yield risk.

Next, we also explore the impacts of changing technology through time on expected
yields (sometimes referred to as “trend yield”’) and yield standard deviation, unconditional on
weather. Figures 4 and 5 present expected yields and standard deviation conditional on different
levels of TREND (i.e., technology). Again, the yield distribution is conditional on the median
values of SOIL and ACRE, but are unconditional on weather (i.e., WEATHER is integrated out of
the conditional yield distribution; but is still conditional on TREND, SOIL, and ACRE). Results
are presented for both the 1895-2009 and 1980-2009 weather conditioning distributions. Again,

there is little difference between the 1895-2009 and 1980-2009 distribution results.
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The implied yield trend in Figure 4 is non-linear, and also appears to be growing at an
increasing rate, a phenomenon referred to as “trend acceleration”.'* The increase in mean yields
over the last 30 years is quite dramatic, with an increase in expected yields of over 50% from
1980 to 2008. Turning attention to Figure 5, after appearing to increase slightly early in the
period, since the early 1990’s yield risk has steadily decreased. Note, under some mild
distributional assumptions (Woodard, Sherrick, and Schnitkey, 2008), the RMA loss cost method
requires that standard deviation grow at a rate proportional to the expected yield in order for it to
result in unbiased rates. This requirement clearly does not hold here. While mean yields have
increased over 50% for the period, standard deviation has decreased by almost 10%. Figures 6
and 7 present the entire yield distribution under technology for each year from 1980-2008
(presented as the inverse for ease of exposition). Figure 6 conditions the yield distribution on the
distribution of WEATHER for the 1980-2009 period, while Figure 7 conditions on the
WEATHER distribution for 1895-2009. Again, there is little difference between which
conditioning distribution is employed for WEATHER. The Figures illustrate that yields have
consistently increased over time at all quantiles of the yield distribution. Consistent with the
assertion that yield risk in extreme stress events has decreased significantly, the Figures illustrate
that the lower tail area has increased at a faster rate than the upper tail. Of course, in particularly

acute events, large yield losses are still possible under 2008 technology, albeit not on the order of

magnitude as under 1980 technology obviously.

In order to investigate the impact that a 1988 style drought would have under current

technology versus older technology, Figure 8 presents simulated distributions conditional on a

' This functional form does not impose trend acceleration, but rather can exhibit constant, decelerating,
accelerating, and even negative trends. Simple calculations using the first and second derivatives of the mean with
respect to time can be conducted to easily show that all of these cases and combinations thereof are supported.
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1988-type drought event occurring under both 1988 technology and 2008 technology. Figure 8
also presents results for both levels of technology (2008 and 1988) conditional on a weather
event occurring that is similar to that which occurred in 2008 (a year with quite favorable
weather). Focusing on the 2008 technology results, the Figure illustrates that a 1988 style
drought event would indeed result in large yield losses. However, yields fair much better under

2008 technology than under the 1988 technology.

The next natural question is, “what would the insurance losses be today if a 1988 style
event occurred, versus what occurred under 1988 technology?” Table 3 presents results for the
simulated expected loss cost ratio under these scenarios. As suggested by the elasticity results,
the rate results indicate that a 1988 event would result in significant losses, but substantially less
than those that occurred under 1988 technology. For example, under 2008 technology, a 1988
drought event would only be expected to result in a loss cost ratio of 0.0551, 0.1133, and 0.1902
at the 65%, 75%, and 85% coverage level, versus an expected loss cost ratio of 0.1861, 0.2428,
and 0.3004 in the event of a 1988 drought under 1980 technology. Thus, this finding suggests
that if one were to estimate 2008 rates by means of a simple average loss cost approach by
incorporating historical loss cost information that was observed in 1988, one would expect such
loss information to be over-weighted by a factor (0.1861 / 0.0551 =) 337.5%, 214.3%, and
158.0%, at each respective coverage level. Yet, this is essentially the process that the RMA

employs. With this in mind, it is not difficult to see why RMA rates have performed poorly.

In order to generate a clearer picture of the evolution of expected loss costs over time,
Figure 9 and 10 present expected loss costs (unconditional on weather) through time. Consistent
with earlier results regarding decreasing yield risk, the Figures clearly indicate a strong

downward trend in the E(LCR). Again, both time horizons (1895-2009, and 1980-2009) result in
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very similar £(LCR) evolution, suggesting that 1980-2009 is indeed adequate in this case.
Clearly, if the E(LCR) is declining over time due to changes in technology, then taking a simple
average of historical loss costs would necessarily be expected to result in persistently upward
biased rates. Table 4 presents the expected bias one would expect under a simple average LCR
approach. Overall, the results suggest that premium biases ranging between 218.93% and 420%
are to be expected. This level of premium bias is consistent with the levels identified in
historical data for the region, and is also consistent in magnitude with the results of Woodard,

Sherrick, and Schnitkey (2008).

Results were also investigated for the conditional elasticities (not presented)—that is,
conditional on a particular weather event such as a 1988 drought. The results were similar to
those discussed above (i.e., “unconditional” on a single weather event) in that the conditional
mean elasticities were large, positive and significant; however, in many cases the conditional
variance elasticities with respect to time were positive. At first glance, it may then seem that the
elasticity of risk in say a drought situation is increasing, meaning that risk in droughts is
increasing. This is somewhat misleading though, since the conditional means over all weather
events not only offset much of the increase in conditional variance, but are also converging. The
net effect is that—conditional on an extreme weather event occurring—the net expected shortfall
in the yield relative to the expected yield is still decreasing through time, both in an absolute and
a relative sense. That is, relative to the expected yield (which is of importance for insurance),
risk in extreme weather situations as well as under “normal” weather is decreasing. This is
shown more clearly by analyzing the expected loss cost results (Figures 9 and 10). Again, the
period used for conditioning the weather distribution (1895-2009 or 1980-2009) did not appear

to have any meaningful impact on the results.
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Conclusion

There is currently much disagreement over the impact of sample period selection when
estimating yield distributions and making crop insurance rates, as the presence of non-constant
weather and occasional catastrophic risk significantly confound their estimation. This
consideration severely complicates the assessment of yield risk evolution through time. This
study develops a conditional Weibull model for modeling yield risk which explicitly takes into
account the number of droughts and other major weather events over the standard 1980-present
period typically used when making crop insurance rates, as well as a longer period of 115 years
spanning 1895-2009. The results for this dataset of Illinois corn producers do not suggest that
there are any important differences between these periods, in terms of the severity of weather
events observed, nor that such differences have any important impacts on the rating of insurance
or the evaluation of yield risk in this sample. This finding suggests that the use of the recent 30
year sample period in the Midwest is likely adequate for empirically evaluating producer-level
crop insurance risk in this region. In some sense, the results generated under the 1895-2009
weather distribution would be expected to be more efficient on theoretical grounds. However, in
this application, the efficiency gains appear to be small relative to using the 1980-2009 period.
Of course, in other regions this may not always be the case. That is simply an empirical

question, which this framework can be applied to investigate.

The results also suggest that even after controlling for weather that yield risk is
significantly declining through time due to technology gains in this sample, both in an absolute
and relative sense. The implication of this result is that the current RMA procedures will result
in biased rates since the simple average annual expected loss cost approach is inappropriate when

relative yield risk is declining through time. A rating analysis indicates that these violations are
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expected to result in overstatements in RMA rates of 200% to 400% for this region. The fact
that this study explicitly takes into account non-constant weather through time and also longer
weather horizons adds credibility to this conclusion. The results also lend credence to the trend
acceleration argument that not only have yields trended upward through time in this region, but
also that the trends themselves are increasing through time due perhaps to dramatic
improvements in biotechnology. Last, this work corroborates the findings of earlier related

studies (Woodard, 2008; Yu and Babcock, 2010; Woodard, Sherrick, and Schnitkey, 2011).

The models developed here have potentially useful practical applications. For example,
such models could be used to derive weighting factors in order to reweight historical loss
experience data using the reweighting methodology illustrated in Woodard (2008). In practice,
instead of working with yields directly, the methods here could perhaps also be applied to loss
cost data as well. The policy implications of this study and related supporting research for RMA
rating are also far reaching. Since yield risk appears to be decreasing through time (even after
accounting for weather) in this high premium volume region, this suggests that methods should

be investigated by RMA to correct the significant rating problems identified in previous work.

Some qualifications are in order. First, the presence of adverse selection and moral
hazard in some insurance pools could manifest in other data differently. For example, the data
investigated here are production data for enterprise units, which cover the entire crop produced
on the farm. While it is doubtful that other data from this region would give starkly different
results, the occurrence of switching fraud (Atwood et al., 2006) in smaller optional unit
structures and the presence of classical information asymmetries in some markets could lead to
different findings in some datasets. I also caution that the results regarding declining yield risk

are specific to this region, and should not be generalized to other areas unless supported by
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empirical evidence. Thus, future research should focus on investigations for other crops,
regions, and datasets, and on the implementation of such models into crop insurance rating
systems. The methods developed here also have many potential uses outside the insurance arena.
For example, noting that a weather distribution essentially just describes “climate”, the methods
used here could be applied to investigate the impacts of climate change under various climatic
and technology evolution scenarios by manipulating the distributions used to describe weather
(to reflect climate change) and the parameters governing the technology process. Application of
these approaches to the evaluation of other risk exposures (e.g., property insurance losses) could
also be promising, as results for markets that are exposed to lower frequency catastrophic risks

would in many cases differ greatly across various time horizons.
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Table 1 - Parameter Estimates for Conditional Weibull Model

Weibull Model Parameters
Conditioning Variable (x) B, B,
INTERCEPT 61.311%** 191.683%**
(12.3168) (35.3533)
TREND -3.011%%* -1.354%%*
(0.6631) (0.1600)
LN(ACRE) 3.578 -3.987%%*
(4.1475) (1.5394)
LN(SOIL) -60.798*** -82.997#**
(8.2514) (16.0117)
WEATHER 36.648*** -2.742% %%
(4.1435) (0.5096)
TREND’ 0.064%** 0.011%%**
(0.0015) (0.0004)
TREND * LN(ACRE) -0.124%%** 0.006
(0.0200) (0.0050)
TREND * LN(SOIL) 0.645%%** 0.2307%**
(0.1468) (0.0355)
TREND * WEATHER 0.084 % 0.029%*:*
(0.0085) (0.0021)
LN(ACRE)’ 0.290** -0.080%**
(0.1247) (0.0297)
LN(ACRE) * LN(SOIL) 0.065 1.196%%*%*
(0.9251) (0.3316)
LN(ACRE) * WEATHER -0.036 0.095%#*
(0.1007) (0.0186)
LN(SOIL)’ 16.011%%%* 9.097%**
(1.5803) (1.8339)
LN(SOIL) * WEATHER -7.351%%* 0.493 %%
(0.9123) (0.1134)
WEATHER’ -1.633%%* -0.060%**

Table presents parameter estimates from maximum likelihood
estimation for conditional Weibull parameter models a(e) and b(e),
using FBFM yield data from 1972-2008. Significance is denoted as ***
= 1%, ** = 5%, and * = 10%. Standard errors estimated are below the
parameter estimates in parentheses.
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Table 2-Production Elasticities, 2008 Technology, 1895-2009 Weather Conditioning Distribution

Risk Measure TREND ACRE SOIL
EY) (0.8293*** 0.0829%** 2.5924***
(0.0168) (0.0145) (0.0684)
o(Y) -0.3615%** -0.1375 -2.77435%%*
(0.0986) (0.1041) (0.2697)
o(Y)/E(Y) -1.1810%** -0.2202** -5.2010%**
(0.1037) (0.1104) (0.2798)

Table presents weather unconditional elasticity estimates for expected yield, yield standard deviation, and
yield coefficient of variation (relative risk). Significance is denoted as *** = 1%, ** = 5%, and * = 10%.
Bootstrap standard errors are located below the parameter estimates in parentheses. Elasticities are
evaluated at the median of ACRE and SOIL, and at the year 2008 for TREND to reflect current technology.

Table 3-Expected Loss Cost Ratios Conditional on Specific Weather Events (1988 and 2008) and under

Different Technology Levels (1988 and 2008)

1988 Weather,
1988 Technology

2008

2008 Technology

2008 Weather,
1988 Technology

E(Y) 125.7747
65% E(LCR|WEATHER) 0.1861
75% E(LCR|WEATHER) 0.2428
85% E(LCR|WEATHER) 0.3004

Weather, 1988 Weather,
2008 Technology

181.1213 181.1213
0.0001 0.0551
0.0005 0.1133
0.0022 0.1902

125.7747
0.0046
0.0123
0.0282

Table 4-E(LCR) and RMA LCR Method Rate Comparison, 2008 Crop Year

Coverage Level

1980-2009 Weather Distribution 65% Cov. 75% Cov. 85% Cov.
Simple Avg. LCR (RMA Method) 1.18% 2.13% 3.70%
E(LCR) 0.29% 0.73% 1.67%
RMA Method LCR Rate Bias 403.39% 292.52% 222.07%
Coverage Level
1895-2009 Weather Distribution 65% Cov. 75% Cov. 85% Cov.
Simple Avg. LCR (RMA Method) 1.31% 2.33% 3.99%
E(LCR) 0.31% 0.79% 1.82%
RMA Method LCR Rate Bias 418.58% 293.81% 218.93%
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Figure 1-Palmer Drought Severity Index, 1895-2009
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Figure 2-Palmer Drought Severity Index Kernel Density Distributions, 1895-2009 versus
1980-2009 Sample Periods
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Figure 3-Conditional Weibull Yield Distributions under 2008 Technology, 1895-2009
versus 1980-2009 WEATHER Conditioning Distributions (Median SOIL and ACRE)
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Figure 4-Expected Yield, 1895-2009 versus 1980-2009 WEATHER Conditioning
Distribution, (Median SOIL and ACRE), under Differing Technology Levels through Time
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Figure 5-Yield Standard Deviation, 1895-2009 versus 1980-2009 WEATHER Conditioning
Distribution, (Median SOIL and ACRE), under Differing Technology Levels through Time
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Figure 6-Conditional Weibull under Differing Levels of Technology (Median SOIL and

ACRE), 1980-2009 Conditioning WEATHER Distribution
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Figure 7-Conditional Weibull under Differing Levels of Technology (Median SOIL and

ACRE), 1980-2009 Conditioning WEATHER Distribution
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Figure 8-Conditional Weibull Yield Distribution under 1980 versus 2008
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Figure 9-Expected Loss Cost Ratios, E(LCR), 1895-2009 WEATHER Conditioning
Distribution, (Median SOIL and ACRE), under Differing Technology Levels through Time
at Various Coverage Levels
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Figure 10-Expected Loss Cost Ratios, E(LCR), 1980-2009 WEATHER Conditioning
Distribution, (Median SOIL and ACRE), under Differing Technology Levels through Time
at Various Coverage Levels
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