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Estimating Non-linear Weather Impacts on Corn
Yield – a Bayesian Approach

Tian Yu and Bruce A. Babcock

Abstract

We estimate impacts of rainfall and temperature on corn yields by fitting

a linear spline model with endogenous thresholds. Using Gibbs sampling and

the Metropolis - Hastings algorithm, we simultaneously estimate the thresholds

and other model parameters. A hierarchical structure is applied to capture

county-specific factors determining corn yields. Results indicate that impacts

of both rainfall and temperature are nonlinear and asymmetric in most states.

Yield is concave in both weather variables. Corn yield decreases significantly

when temperature increases beyond a certain threshold, and when the amount

of rainfall decreases below a certain threshold. Flooding is another source of

yield loss in some states. A moderate amount of heat is beneficial to corn yield

in northern states, but not in other states. Both the levels of the thresholds and

the magnitudes of the weather effects are estimated to be different across states

in the Corn Belt.

Key words: Bayesian estimation, Gibbs sampler, hierarchical structure, Metropolis -

Hastings algorithm, non-linear

JEL codes: C11, C13, Q10, Q54.

In rain-fed agricultural regions, weather conditions have substantial impacts on crop pro-

ductivity. Favorable weather conditions for dryland crop production, including a proper

amount of heat and rainfall during the growing season, are critical factors determining
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yield outcomes (O’Brien 1993). Most previous studies found that corn yield decreases in

temperature and increases in the amount of rainfall (Lobell and Asner 2003; Deschenes and

Greenstone 2007). Understanding how weather variables affect crop yield is essential in

measuring yield risk and rating crop insurance plans (Yu and Babcock 2010).

In quantifying the impact of weather on corn yield, one widely used approach is to esti-

mate a reduced form statistical relationship between corn yield and weather variables. Two

commonly used reduced forms are linear and quadratic functions. The linear specification

seems convenient but it could be restrictive as well. There is evidence that the response of

corn yield to temperature and rainfall may not be constant over the whole range of possible

weather outcomes. In fact, an increase of temperature within the range between 8◦ Celsius

and 32◦ Celsius is found to be beneficial to corn yield, but increasing the temperature fur-

ther beyond 34◦ Celsius leads to yield losses (Schlenker, Hanemann, and Fisher 2006). If

weather factors are beneficial to corn yield in some ranges but not in others, then the lin-

ear specification would generate a misleading result. One way to model the non-linearity

is to include a quadratic term. However, the quadratic functional form restricts the yield

response to be symmetric. There is evidence that bad growing conditions typically cause

more yield losses than good growing conditions cause yield gains. In fact, based on county-

level panel data of corn yield, temperature, and precipitation from 1950 to 2004 in 2000

counties in the U.S., Schlenker and Roberts (2006) found that an increase in temperature

above 25◦ Celsius decreases corn yield growth rates at an increasing rate. Nonparametric

estimation is a viable approach to estimate the asymmetric nonlinear impacts of weather

variables (Schlenker and Roberts 2006). One limitation of the nonparametric approach,

however, is that in some ranges of the weather variable, especially at the two tails of the

distribution, the number of observations might be too small so that the standard errors tend

to be very large.

In this article, we propose to estimate a two-knot linear spline model with endogenous

thresholds. We simultaneously estimate the threshold parameters and other model param-
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eters using a sampling-based Bayesian approach. Our specification captures the nonlinear

and asymmetric feature of weather effects. The endogenous-knot linear-spline specifica-

tion is relatively simple and yet flexible. Estimation in the Bayesian framework brings the

advantages of high computational efficiency and quick convergence. In light of the find-

ings that a modest increase in temperature benefits corn yield in the northern regions of

the U.S. but not in other areas (Adams et al. 1990), we also examine possible geographical

differences in how the weather factors influence corn yield.

The rest of this article is organized as follows: in section two we specify the two-knot

linear spline model. In section three, we describe the Bayesian approach, which is applied

to estimate the model. In section four, we present the estimation results. In the last section,

we present a brief conclusion.

The Yield Model

We specify corn yield to be composed of a linear trend plus a function of weather variables,

specifically:

Yi,t = αi +
R

∑
r=1

β1,r(CRDr×Time)

+β2 min(0,(Tempi,t−θl))+β3Tempi,t +β4 max(0,(Tempi,t−θu))

+β5 min(0,(Raini,t−λl))+β6Raini,t +β7 max(0,(Raini,t−λu))+ εi,t .(1)

Subscripts i, r, and t denote county, Crop Reporting District (CRD), and time, respectively.

We denote the total number of counties as N, the total number of years as T , and the total

number of CRDs as R. Y denotes corn yield. Time is a time trend variable, which takes

values 0 to 28 for years 1980 to 2008. CRDr, r = 1,2, ...,R, denotes the regional dummy

variable. CRDr = 1, if the yield observation is from crop reporting district r, and CRDr = 0

otherwise. Temp and Rain denote mean monthly temperature and mean monthly rainfall in

the growing season, respectively.1 Without loss of generality, we recenter the temperature
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and rainfall variables at zero by subtracting the historical mean from each temperature

or rainfall observation. The recentering process does not affect our estimation of other

parameters except αi. After recentering, αi measures the average corn yield in the base

year (1980) in county i when temperature and rainfall are at their historical mean levels.

We assume that the error term εi,t is i.i.d. normal with mean zero and variance σ2
ε .

In our specification, corn yield is expressed in an additive form of a linear trend and two-

knot linear spline functions of rainfall and temperature. For the linear trend, we permit the

intercept term αi to vary across counties. Thus, αi captures time-invariant county-specific

factors that influence corn yield. Since fixed-effect estimation in a Bayesian setting is

inefficient, we specify a hierarchical structure for αi. Specifically, we assume that αi,

for i = 1,2, ...,N, is independently and identically distributed from a normal distribution

N(α,σ2
α). α and σ2

α are hierarchical parameters, which are estimated simultaneously with

other model parameters. We allow the trend slope to vary across CRDs by including an

interaction term between the regional dummy variable and the time trend variable. β1,r is

fixed for any given CRD but differs across CRDs. Coefficients β2 to β7 are restricted to

be constant across all counties. Equation (1) is essentially a mixed model, with a random

effect αi and a fixed effect β . In a Bayesian framework, we simultaneously estimate model

parameters α , β , θ , and λ .

The two-knot linear spline functions of rainfall and temperature capture the potentially

asymmetric and nonlinear feature of weather effects. We allow weather effects to be dif-

ferent when temperature (or the amount of rainfall) is lower than usual, within the middle

range, or higher than usual. This is achieved by introducing endogenous threshold parame-

ters. λl (or θl) and λu (or θu) denote the lower and upper thresholds that divide the domain

of the weather variable into three ranges. The min and max operators serve as switches

that turn on the specific β that we want to estimate when the weather variable falls into the

specific range. The yield model allows a changing yield response as the weather regime

4



changes. To better illustrate this feature, we rewrite model (1) as:

Yi,t = α̃i +
R

∑
r=1

β1,r(CRDr×Time)+βtemp,sTempi,t +βrain,sRaini,t + εi,t

βtemp,s ≡


βtemp,cl = β2 +β3 if Temp≤ λl

βtemp,nt = β3 if λl < Temp < λu

βtemp,ht = β3 +β4 if Temp≥ λu

βrain,s ≡


βrain,dr = β5 +β6 if Rain≤ λl

βrain,nr = β6 if λl < Rain < λu

βrain, f l = β6 +β7 if Rain≥ λu

(2)

Subscript s denotes the state of nature, which is defined by the weather variable falling

into one of the threshold-divided ranges. βtemp,s (or βrain,s) measures the marginal effect of

temperature (or rainfall) in each state of nature. The marginal effect can potentially change

depending on the weather condition. For example, one inch of rainfall in drought years

could result in a different amount of change in corn yield than in normal years.

The Bayesian Approach

We now turn to the estimation methodology. Note that (1) is non-linear in threshold pa-

rameters λ and θ . Non-linear least square estimation (NLS) and maximum likelihood

estimation (MLE) could potentially be used to estimate (1). In this article, we take the

sampling-based Bayesian approach. The advantages of Bayesian estimation include easy

implementation, fast convergence, and computational efficiency. We apply the Markov

chain Monte Carlo (MCMC) in estimating (1). The implementation of the MCMC is es-

sentially sequentially taking draws from (sequentially updated) conditional posterior distri-

butions of model parameters. The ease of applying the MCMC to our model results from

the observation that conditional on threshold parameters, (1) becomes a well known lin-

ear regression model with a hierarchical structure. Under conjugate priors, the conditional
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posterior distributions of parameters except λ and θ are readily derived. And it is easy

to apply the Gibbs sampling to simulate draws from the conditional posterior distributions

(Lindley and Smith 1972; Gelfand et al. 1990; Chib and Carlin 1999). The conditional

posterior distributions of λ and θ require some derivations and are not of any recognizable

distributional forms. Thus, we apply the Metropolis - Hastings algorithm (Chib and Green-

berg 1995; Gelman, Roberst, and Gilks 1995) in the step of drawing λ and θ from their

conditional posterior distributions. The estimation process would become clear once we

have the prior distributions, the likelihood function, and the posterior distributions, which

will be specified and derived in the following sections.

Priors

Following Chib and Carlin (1999), we assume normal priors for α and β , and inverse

gamma priors for the variance parameters. These are conjugate priors in the sense that

the posterior distributions belong to the same family as the prior probability distributions.

We assume conjugate priors due to the computational ease associated with this specifi-

cation. Results are not sensitive to the specific form of the prior distribution. For no-

tation simplicity, we stack all the fixed-effect parameters into one vector and define as:

β ≡ [β1,1,β1,2, ...β1,R,β2,β3, ...,β7]
′. We assume the prior distribution of β to be N(µβ ,Vβ ),

where N denotes the normal distribution. As specified above, αi is of normal distribution

N(α,σ2
α). We assume the prior distributions of the hierarchical mean and variance parame-

ters α and σ2
α to be N(µα ,Vα) and IG(a1,a2), respectively. IG denotes the inverse gamma

distribution. We assume the prior distribution of the variance of the error term σ2
ε to be

IG(e1,e2). We assume that µβ and µα equal to the corresponding OLS estimates of a lin-

ear yield model, Yi,t = αi + ∑
R
r=1 β1,r(CRDr × Time) + βtempTempi,t + βrainRaini,t + εi,t ,

with µ = β OLS
temp × [1,1,1,0,0,0]′ + β OLS

rain × [0,0,0,1,1,1]′. We assume Vα = 1600 and

Vβ = 100 so that the normal priors are reasonably diffused. For the inverse gamma dis-

tributions, we set e1 = a1 = 3 and e2 = a2 = 1
2×100 so that the standard deviation of
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the inverse gamma distribution is 10.2 Finally, we assume the prior distribution of the

lower and upper thresholds to be the joint uniform distribution over the domain of the

weather variable, with the restriction that the upper threshold is larger than the lower

threshold. Specifically, p(θl,θu) =
2

(Tempmax−Tempmin)2 I(Tempmin < θl < θu < Tempmax)

and p(λl,λu) =
2

(Rainmax−Rainmin)2 I(Rainmin < λl < λu < Rainmax), where I(.) denotes the

index function. We set Tempmax (or Rainmax) at the recentered 95% percentile of all tem-

perature (or rainfall) observations and Tempmin (or Rainmin) at the recentered 5% percentile

of all temperature (or rainfall) observations.

The Likelihood Function

The other piece of information we need in order to derive the posterior distributions is the

likelihood function. For notation simplicity, we stack the explanatory variables as:

X(θ ,λ )i,t ≡[(CRD1×T ),(CRD2×T ), ...,(CRDR×T ),

(min(0,(Tempi,t−θl))),Tempi,t ,(max(0,(Tempi,t−θu))),

(min(0,(Raini,t−λl))),Raini,t ,(max(0,(Raini,t−λu)))].(3)

Then the likelihood function is:

L(.) =
N×T

∏
i=1

p{Yi,t |αi,β ,σ
2
ε ,Xi,t(θ ,λ )}

= (2πσ
2
ε )
−N×T

2 exp[− 1
2σ2

ε

N

∑
i=1

T

∑
i=1

(Yi,t−αi−Xi,t(θ ,λ )β )
2].(4)

Notation Xi,t(θ ,λ ) emphasizes the fact that Xi,t depends on thresholds θ and λ . To be

succinct, we drop θ and λ and simply note Xi,t when referring to Xi,t(θ ,λ ) in the following

text.
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Conditional Posteriors

Based on the priors and the likelihood function specified above, we derive the condi-

tional posterior distributions. As mentioned above, standard results for the linear regres-

sion model apply to our model once we condition on the threshold parameters. Following

Chib and Carlin (1999), the posterior distributions are derived by applying conclusions by

Lindley and Smith (1972). Specifically, p(αi|β ,α,σ2
ε ,σ

2
α ,θ ,λ ,Y ) ∼ N(D1d1,D1), where

D1 = ( T
σ2

ε

+ 1
σ2

α

)−1, d1 =
ι ′T (Yi−Xiβ )

σ2
ε

+ α

σ2
α

.3 Similarly, the posterior distribution of β is

also normal. p(β |αi,α,σ2
ε ,σ

2
α ,θ ,λ ,Y )∼ N(D2d2,D2), where D2 = (X ′X

σ2
ε

+V−1
β

)−1, d2 =

X ′(y−ᾱ)

σ2
ε

+V−1
β

µβ , ᾱ ≡ [(ιT α1)
′,(ιT α2)

′, ...,(ιT αN)
′]. Again, the posterior distribution of

α is normal. p(α|αi,β ,σ
2
ε ,σ

2
α ,θ ,λ ,Y ) ∼ N(D3d3,D3), where D3 = ( N

σ2
α

+V−1
α )−1, d3 =

ι ′N [α1,α2,...,αN ]
′

σ2
α

+V−1
α µα .

Conditional posterior distributions of the variance parameters are inverse gamma. p(σ2
α |

αi,β ,σ
2
ε ,θ ,λ ,Y ) ∼ IG(N

2 + a1,(
1
a2

+ 0.5∑
N
i=1(αi − α)2)−1). p(σ2

ε |αi,β ,σ
2
α ,θ ,λ ,Y ) ∼

IG(N×T
2 +e1,(

1
e2
+0.5(Y−[ιtα1, ιtα2, ..., ιtαN ]

′−Xβ )′(Y−[ιtα1, ιtα2, ..., ιtαN ]
′−Xβ ))−1).

The posteriors for θ and λ are not derived in the same fashion, but are straightforward un-

der uniform priors. Since the conditional posterior is proportional to the likelihood function

multiplied by the prior for θ and λ , the kernel of the conditional posterior of θ and λ is

simply the likelihood function as specified in (4).

Implementing the Gibbs Sampling and the Metropolis - Hastings Algorithm

We take a sampling-based approach to estimate the hierarchical model (1). We implement

the Gibbs sampler to draw β , {αi}, α , σ2
ε , and σ2

α . Since the conditional posterior distribu-

tion of θ and λ are not of any recognizable distributional form, we employ the random-walk

Metropolis-Hastings algorithm to draw θ and λ . The procedure of implementing the Gibbs

Sampler and the Metropolis - Hastings algorithm is as follows. (1) Start with initial values

of model parameters: β , {αi}, α , σ2
ε , σ2

α , θ , and λ . Calculate X(θ ,λ ) with θ and λ evalu-
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ated at initial values. (2) Draw β̃ from its conditional posterior distribution, conditional on

the initial values of other model parameters. (3) Draw {αi} from their conditional posterior

distributions, conditional on the most recent draw of β̃ and other model parameters at their

initial values. (4)-(6) Draw α , σ2
ε , and σ2

α one by one from their conditional posterior dis-

tributions, conditional on other parameters, which are updated to their most recent draws.

(7) Sample θ ∗ = θ [−1]+εθ , where θ [−1] denotes the last draw of θ in the chain and εθ is a

draw from normal distribution N(0,σθ ). Draw u∼U(0,1). Denote p(.) as the conditional

posterior distribution of θ , conditional on the most recent draws of other model parame-

ters. Calculate the index function I(Tempmin < θ ∗l < θ ∗u < Tempmax). If u ≤ p(θ∗)
p(θ−1)

and

the index function is equal to one, then keep θ ∗ as a draw from the conditional posterior,

that is, θ̃ = θ ∗. Otherwise, use the last draw from the chain θ̃ = θ [−1]. Update X(θ̃ ,λ ).

(8) Draw λ̃ in a similar fashion as with θ̃ in step (7), and update X(θ , λ̃ ) accordingly. (9)

Repeat steps (2)-(8) 20,000 iterations, updating the posterior conditionals at each iteration

using the most recently simulated values in the chain. (10) Discard an early set of parame-

ter simulations (the first 5,000 iterations) as the burn-in period. Use the subsequent draws

to make Bayesian posterior inferences.

Following Chib and Carlin (1999), we improve the above process by drawing the ran-

dom effect parameters {αi} and fixed effect parameter β in a single block. We replace

steps (2)-(3) by drawing ({αi},β ) from p({αi},β |α,σ2
ε ,σ

2
α ,Y ). Specifically, we draw the

group via the method of composition. We first draw β̃ from p(β |α,σ2
ε ,σ

2
α ,θ ,λ ,Y ) and

then draw each αi independently from its complete posterior distribution evaluated at β̃ :

p(αi|β̃ ,α,σ2
ε ,σ

2
α ,θ ,λ ,Y ). Denote Σ = σ2

ε IT +σ2
α ιT ι ′T . Then p(β |α,σ2

ε ,σ
2
α ,θ ,λ ,Y ) ∼

N(D4d4,D4), where D4 = (X ′(IN ⊗ Σ−1)X +V−1
β

))−1, d4 = X ′(IN ⊗ Σ−1)(Y − ιNT α) +

V−1
β

µβ . The strategy of grouping together correlated parameters will generally facilitate

the mixing of the chain and thereby reduce numerical standard errors associated with Gibbs

sampling estimates.
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Data

We collected weather and yield data in major non-irrigated corn-production states from

1980 to 2008. Those states are Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri,

Ohio, and Wisconsin. County-level production and planted acreage data were collected

from the National Agricultural Statistics Service (NASS) to calculate yield per planted

acre. Observations with zero production or missing acreage data were deleted. To focus our

attention on major production areas, only counties with yield data in all years from 1980 to

2008 were kept. Weather data were collected from the National Oceanic and Atmospheric

Administration (NOAA). We obtained data of monthly mean temperature (MNTM) and

total monthly precipitation (TPCP) from all weather stations located in the eight states.

For most of the weather stations, NOAA identified the county where each weather station

was located. For stations not identified to any county, we found the nearest station with

a county name (by calculating the distance between weather stations using latitude and

longitude information) and assigned the unidentified station to the county of the nearest

station. Most of the counties are matched with at least one weather station. For counties

with multiple weather stations, we took the simple average of weather records from all

weather stations located in the county. For each year, county level corn yields were matched

with county-level weather data. We substituted missing values of rainfall or temperature

with the average value of the CRD that the county belongs to.4

Estimation Results

Using a panel of county-level corn yield with matched rainfall and temperature data, we

estimate model (1) state by state. For each state, we apply the MCMC as described above.

We run 20,000 iterations with the first 5000 iterations as the burn-in period. Parameters

simulated by the Gibbs sampler converges very fast. The posterior distributions of thresh-

old parameters are insensitive to changes in initial values, which indicates that simulations
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using the M-H algorithm also converge. In applying the M-H algorithm, we tune the vari-

ance parameter of the random walk chain so that the acceptance rate is maintained at around

0.3.5 Based on the 15,000 kept draws for each parameter, we calculate the mean and stan-

dard deviation of the posterior distributions. Table 1 and table 2 present these results.

In table 1, β1,r, for r = 1,2, ...,R, measures the CRD-specific slope of the linear trend.

There are nine CRDs in each state except Michigan and Minnesota, where we only have

data for seven CRDs for each state. Trend estimates range from low of nearly zero in CRD

6 in Ohio to as high as about 2.5 bushels per acre per year in Illinois, Iowa, and Minnesota.

Trend estimates are positive and statistically significant in most CRDs as expected. α0

measures the state average of the county-specific intercept term αi. Since we re-centered

weather variables at zero, α0 indicates the state average yield in 1980 if temperature and the

amount of rainfall were at the historical mean levels. α0 is estimated to be around 70-120

bushels per acre. σ2
α is the variance parameter of the distribution of αi. Variance of the

county-specific intercept ranges from 77 in Iowa to 477 in Minnesota, averaging around

200. The variance parameter of the residual term is around 200.

Table 2 presents the posterior mean and standard deviation of parameters that capture

the impacts of weather. β3 is the estimate of the marginal effect of temperature on corn

yield when temperature is between the lower and the upper thresholds. β3 is estimated to

be negative in all states and is statistically significant in all states except Minnesota and

Michigan. As temperature increases one degrees Fahrenheit within the range, corn yield

is estimated to decrease about 8 bushels per acre in Ohio and around 6 bushels per acre in

Illinois, Iowa, Missouri and Wisconsin. β2 measures the difference between the marginal

effect of temperature when temperature is below the lower threshold and the marginal ef-

fect of temperature when temperature is between the two thresholds. β2 is estimated to be

positive and statistically significantly in all states except Missouri. This indicates that, on

the margin, heat is less harmful in cooler weather conditions. The difference in marginal

effect is about 3 to 8 bushels per acre. β4 measures the difference between the marginal
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effect of temperature when temperature is above the upper threshold and the marginal ef-

fect of temperature when temperature is between the two thresholds. β4 is estimated to

be insignificant in Illinois, Michigan, Missouri, Ohio, and Wisconsin, indicating that the

marginal damage of excess heat remains about the same once temperature reaches beyond

the lower threshold. In other words, the upper temperature threshold is redundant for these

states.6 However, β4 is useful in identifying the extra damage due to excessive heat when

temperature reaches beyond the upper threshold in Iowa and Minnesota. β4 is negative and

statistically significant in these two states. As temperature increases every degree Fahren-

heit beyond the upper threshold, corn yield losses an additional 9.6 bushels per acre in

Minnesota and an additional 6 bushels per acre in Iowa as compared with the marginal

effect of temperature when temperature is between the two thresholds. Note that the es-

timated values of β2, β3, and β4 indicate that in Indiana the marginal loss from heat is

largest when temperature is within the middle range, which is against common sense. We

suspect that the estimated values of the lower and upper temperature thresholds in Indiana

are too close so that estimation of β3 might be dominated by noise. As we will present

later, in cases when the two thresholds are close, the one-knot specification offers a better

estimation.

The marginal effect of rainfall is captured by parameters β5, β6, and β7. β6 measures the

marginal effect of rainfall when rainfall is between the lower and upper thresholds. β6 is

positive and statistically significant in Illinois and Wisconsin but is negative in Minnesota.

Within this middle range of rainfall, one inch increase in rainfall increases corn yield by

7 bushels per acre in Illinois and 4 bushels per acre in Wisconsin but decreases corn yield

by 2.5 bushels per acre in Minnesota. β6 is insignificant in other states. β5 is positive and

statistically significant in all states except Michigan and Missouri. This indicates that the

marginal effect of rainfall is very different in dry weather conditions as compared with the

‘normal weather’ (the amount of rainfall between the two thresholds). The difference is

that one inch increase in rainfall when the amount of rainfall is below the lower threshold
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brings in an additional marginal benefit of 10 to 12 bushels per acre to corn yield in Illinois,

Indiana, Iowa, Minnesota, Ohio, and Wisconsin. β7 measures the difference in marginal

effects of rainfall between flooding and the middle range rainfall. It is negative and sig-

nificant in all states except Michigan. β7 ranges from 5 bushels per acre to 17 bushels per

acre.

The bottom part of table 2 presents estimation results for threshold parameters. Since we

recentered rainfall and temperature variables to zero, θ and λ indicate the distance between

the threshold and the historical mean of the weather variable. Results show that the lower

threshold of temperature is about 2.5 degrees Fahrenheit below the mean temperature in

Illinois and Michigan, and about 1 to 2 degrees Fahrenheit above the mean temperature

in Ohio and Wisconsin. The lower threshold is around the historical mean temperature in

Iowa and Minnesota. The upper threshold of temperature also varies across states, ranging

from the mean temperature to 3.6 degrees Fahrenheit above the mean temperature. As

pointed out above, β4 is insignificant in Illinois, Michigan, Missouri, Ohio, and Wisconsin.

The upper threshold of temperature in these states are ineffective. In other words, there is

a statistically significant change in temperature effect around the lower threshold but not

around the upper threshold. In most states, the lower threshold of rainfall is less than an inch

below the historical mean rainfall. The upper threshold of rainfall ranges from 0.5 inches

to 2 inches above the mean. To compare across states the absolute values of the thresholds

instead of the relative distances, we add back the historical mean of rainfall and temperature

to the posterior mean of θ and λ and present the results in table 3. Temperature thresholds

vary significantly across states, with lower values in northern states such as Michigan,

Minnesota and Wisconsin. Rainfall thresholds exhibits less variation. The lower threshold

of rainfall is around 3.5 inches. And the upper threshold of rainfall is around 6 inches in

Iowa, Minnesota, and Missouri, and is about 4.5 to 5.5 inches in other states.
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The Marginal Effect

To better evaluate the marginal effect of weather variables in each weather regime, we sim-

ulate βtemp,s and βrain,s. For each of the 15,000 kept draws of β2 to β7, we simulate βtemp,s

and βrain,s according to equation (2). We present the mean and standard deviation of the

simulated βtemp,s and βrain,s in table 4. The marginal effect of temperature when tempera-

ture is below the lower threshold is measured by βtemp,cl . βtemp,cl is positive and significant

in northern states such as Michigan, Minnesota, and Wisconsin, but negative and signifi-

cant in Illinois, Iowa, Missouri, and Ohio. One degree Fahrenheit increase in temperature

in this weather regime increases corn yield by 1.6 bushels per acre in Wisconsin, by 2.5

bushels per acre in Minnesota, and by 3 bushels per acre in Michigan. On the other hand,

the marginal effect is to decrease corn yield by 1.7 bushels per acre in Illinois, by 2 bushels

per acre in Iowa, by 2.7 bushels per acre in Ohio, and by 5.7 bushels per acre in Missouri. In

Illinois, Michigan, Ohio, and Wisconsin, the marginal effect of temperature stays roughly

the same once temperature is above the lower threshold. Once temperature is above the

lower threshold, the marginal damage of increasing temperature by one degree Fahrenheit

is about 6-8 bushes per acre in Illinois, Ohio, and Wisconsin and around 1.5 bushels per

acre in Michigan. On the other hand, in Iowa and Minnesota, the adverse marginal effect

of heat is much higher when temperature increases beyond the upper threshold compared

with when temperature is between the two thresholds. The marginal effect of tempera-

ture is about 11 bushels per acre in Iowa and Minnesota in the hot weather condition. In

Missouri, the marginal effect of temperature remains at about -6 bushels per acre over the

whole range of temperature.

The marginal effect of rainfall when the amount of rainfall is below the lower thresh-

old is universally positive and significant. The marginal benefit of one inch of rainfall in

this rainfall regime ranges from 7 bushels per acre in Missouri to 18.7 bushels per acre

in Illinois. The marginal effect of rainfall when the amount of rainfall is above the upper
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threshold is negative and significant in Indiana, Iowa, Minnesota, Missouri, and Wisconsin.

The marginal damage of rainfall in this rainfall regime is around 5 bushels per acre in In-

diana, Missouri, and Wisconsin and reaches 13-14 bushel per acre in Iowa and Minnesota.

In Illinois, Michigan, and Ohio, the marginal effect of rainfall when rainfall reaches above

the upper threshold is insignificant.

Features of Weather Effects

To intuitively see the impact of weather on corn yield, we plot the posterior mean of corn

yield against temperature and rainfall, state by state, in figure 1 and figure 2. For the plot of

yield against temperature, we generate 500 values of temperature evenly distributed over

the observed range of temperature. We then evaluate model (1) with the time variable being

28 (year 2008), the rainfall variable being the state average, and the temperature variable

being each one of the 500 generated values. For each temperature value, we simulate

15,000 corn yield draws using the simulated coefficients from the 15,000 MCMC iterations.

To represent corn yield at the state average level, we use α0 as the intercept term of the

linear trend and use the average of CRD-specific trend slopes to calculate the trend yield.

For each of the 500 temperature values, we calculate the posterior mean of corn yield from

the 15,000 simulations. We then plot the 500 posterior means of corn yield against the

500 values of temperature. We also plot the posterior mean of corn yield against rainfall in

a similar way except that we instead use the state average temperature and 500 values of

rainfall.

The plots reveal several features of the impacts of weather on corn yield. First, the

impacts of both weather variables are nonlinear in most states. The exceptions are that

corn yield is almost linear in temperature in Indiana and Missouri. If a linear specification

were applied to estimate the weather impacts, the estimated slope would be the weighted

average of slopes of the three linear splines in our specification, with frequencies of the

occurrences in each weather regime as weights. Given that the distribution of temperature
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is almost symmetric and that the distribution of rainfall is positively skewed, the average

impact is likely to be negative for temperature and positive for rainfall, which is consistent

with findings in literature. As the plots indicate, the underlining weather impacts actually

vary across weather regimes. Thus, our specification is a more comprehensive and pre-

cise way to estimate weather impacts. Secondly, the impact is asymmetric in most cases.

Particularly, an excessive amount of heat causes more damage to corn yield than does a

moderate amount of heat benefits corn yield in the northern states. Similarly, corn yield is

more responsive to a lack of rainfall than to excessive rainfall in Ohio, Illinois, Indiana, and

Michigan. And there are several plots that indicate yield could be monotone in the weather

variable. Thus, a quadratic specification would be too restrictive. With endogenous thresh-

olds, the linear spline specification is reasonably flexible and simple. Thirdly, corn yield is

concave in both rainfall and temperature. Consider lack of heat as a favorable input to corn

growth, then as this input increases (as temperature decreases), the marginal benefit from

the favorable weather input decreases. Similarly, the marginal benefit of rainfall decreases

as rainfall increases. The notion of decreasing marginal benefit, which is valid for other

agricultural inputs, is true for the weather input, arguably the most important production

input for crops. Finally, there is not a universal pattern of how weather variables affect corn

yield. Rather, there exist several patterns, depending on the geographical location of the

state. There are three patterns of the temperature effect. In Illinois, Iowa, and Ohio, the

temperature effect is always negative, but with a flatter slope below the threshold at around

73 degrees Fahrenheit and a steeper slope above the threshold. In Indiana and Missouri,

the temperature effect is negative and linear. In northern states, including Michigan, Min-

nesota, and Wisconsin, corn yield increases as temperature increases until a threshold, and

then decreases. Patterns of rainfall fall into two general categories. In both categories, corn

yield increases sharply as the amount of rainfall increases until it reaches the lower thresh-

old. The difference between the two categories is how yield responds to rainfall above

the threshold. In Illinois, Indiana, Michigan, and Ohio, corn yield becomes insensitive
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to rainfall above the threshold. In Minnesota, Missouri, Iowa, and Wisconsin, corn yield

decreases sharply when the amount of rainfall reaches beyond the upper threshold.

The plots also reflect three main sources of yield losses. One is excessive heat, that is,

when temperature reaches beyond a threshold. This threshold is about 73, 75.5, 66.5, 72,

72.5, 70.5 degrees Fahrenheit in Illinois, Iowa, Michigan, Minnesota, Ohio, and Wisconsin

respectively. The second cause is a lack of rainfall, that is, when the amount of rainfall is

less than the lower threshold, which is between 2.5 to 4 inches. Flooding could also induce

an equally large yield loss in Iowa, Minnesota, Missouri and Wisconsin.

The One-knot Specification

The plot of corn yield against temperature in Indiana raises the issue that the two thresholds

might be too close to facilitate valid estimation. We instead estimate a yield model with

a one-knot linear spline function of temperature and a two-knot linear spline function of

rainfall using data in Indiana. Estimation results are presented in table 5.

Trend parameters and variance parameters are similar to the two-knot specification re-

sults. The rainfall thresholds and marginal effects of rainfall are also similar to the two-knot

specification results. The lower threshold of rainfall is about 0.5 inches below mean (about

3.6 inches in absolute value). The upper threshold of rainfall is about 1.3 inches above mean

(about 5.4 inches in absolute value). When the amount of rainfall is within the thresholds,

the marginal effect of rainfall is insignificant. The differences of the marginal effect of rain-

fall in both dry condition and flooding condition are statistically different from the marginal

effect of rainfall in normal weather condition. In particular, when the amount of rainfall

is below the lower threshold, one inch of rainfall increases corn yield by 14 bushels per

acre. On the contrary, about 4 bushels per acre corn yield is lost as the amount of rainfall

increases every inch beyond the upper threshold. The threshold of temperature is around

the mean, which is about 73.6 degrees Fahrenheit. The marginal effect of temperature is

negative and significant both blew and above the threshold. However, there is a statistically
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significant difference in marginal effects in the two temperature regimes. The marginal

damage is about 3 bushels per acre when temperature is below the threshold and is about 5

bushels per acre when temperature is above the threshold. The overall weather impact on

corn yield in Indiana is revealed in the middle two subplots in figure 3.

As pointed out above, the upper threshold of temperature is redundant for Illinois, Michi-

gan, Missouri, Ohio, and Wisconsin. Will inclusion of the redundant knot affect our esti-

mation? The answer is no. We estimated the one-knot specification model and compared

results to the two-knot specification. The estimated weather effects are very similar. For

example, we plot the posterior mean of corn yield against weather variables based on the

one-knot specification for Illinois and Michigan in figure 3. There is no recognizable dif-

ference between the corresponding subplots for these two states in figure 1 and figure 3.

Conclusions

Using a sampling-based Bayesian approach, we estimate a yield model with a hierarchical

structure. The linear trend has a county-specific random effect and a CRD-specific slope.

Weather impacts are captured by flexible linear-spline functions with endogenous thresh-

olds. We find the impacts of rainfall and temperature on corn yields to be non-linear and

asymmetric in most states in the Corn Belt. The temperature effect is linear in only two out

of eights states. Rainfall effect is non-linear in all states. Weather impacts are also asym-

metric. An excessive amount of heat causes more damage to corn yields than a moderate

amount of heat benefits corn yields in the northern states. Corn yield is more responsive to

droughts than to flooding in Ohio, Illinois, Indiana, and Michigan.

In general, corn yield deceases sharply as temperature increases above a threshold, al-

though estimated thresholds vary across states. A moderate amount of heat is beneficial to

corn yield in northern states. Drought is a big threat to corn yield in all states. Below a

threshold of about 2.5 to 4 inches, the marginal benefit of increasing the amount of rainfall

is large. In some states, corn yield stays insensitive to rainfall once the amount of rainfall
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reaches a certain level. But in other states, an excess amount of rainfall (more than 5-6

inches) causes severe losses. Patterns of weather impacts tend to cluster in geographically

neighboring areas. Temperature effects differ between the north and the south, while rain-

fall effects differ between the east and the west. Universally, corn yield is concave in both

weather variables, which is consistent with the notion of decreasing marginal benefit of

good weather.
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Table 1. Posterior Mean and Standard Deviation of Trend and Variance Parameters
IL IN IA MI MN MO OH WI

β1,1 2.43 1.93 2.42 2.37 1.74 1.44 0.74
( 0.09 ) ( 0.11 ) ( 0.10 ) ( 0.22 ) ( 0.12 ) ( 0.10 ) ( 0.12 )

β1,2 1.87 1.85 1.97 1.05 1.69 1.39 0.98
( 0.12 ) ( 0.11 ) ( 0.10 ) ( 0.21 ) ( 0.14 ) ( 0.11 ) ( 0.14 )

β1,3 2.47 1.59 2.08 1.71 1.61 0.88 0.63
( 0.11 ) ( 0.11 ) ( 0.10 ) ( 0.21 ) ( 0.15 ) ( 0.12 ) ( 0.16 )

β1,4 2.31 1.65 2.29 2.80 1.83 1.62 1.25
( 0.10 ) ( 0.11 ) ( 0.09 ) ( 0.12 ) ( 0.16 ) ( 0.11 ) ( 0.11 )

β1,5 2.15 1.61 2.40 1.28 2.09 1.53 1.57 1.03
( 0.12 ) ( 0.08 ) ( 0.09 ) ( 0.15 ) ( 0.11 ) ( 0.12 ) ( 0.10 ) ( 0.13 )

β1,6 1.84 1.58 2.14 1.68 1.25 1.63 0.16 0.74
( 0.11 ) ( 0.14 ) ( 0.10 ) ( 0.12 ) ( 0.14 ) ( 0.16 ) ( 0.19 ) ( 0.11 )

β1,7 1.82 1.78 1.99 1.51 2.75 2.00 1.45 1.39
( 0.09 ) ( 0.09 ) ( 0.11 ) ( 0.12 ) ( 0.14 ) ( 0.20 ) ( 0.11 ) ( 0.12 )

β1,8 1.77 1.39 1.89 1.45 2.14 2.37 0.84 1.63
( 0.12 ) ( 0.12 ) ( 0.10 ) ( 0.09 ) ( 0.13 ) ( 0.40 ) ( 0.32 ) ( 0.13 )

β1,9 1.63 1.24 1.92 1.79 2.24 2.19 0.73 1.09
( 0.12 ) ( 0.21 ) ( 0.10 ) ( 0.10 ) ( 0.13 ) ( 0.18 ) ( 0.12 ) ( 0.14 )

α0 104.76 119.33 109.90 79.12 88.71 77.11 105.99 95.50
( 3.12 ) ( 6.28 ) ( 3.10 ) ( 4.91 ) ( 4.04 ) ( 6.20 ) ( 5.23 ) ( 8.81 )

σ2
α 180.69 111.02 77.31 243.85 476.99 273.82 202.47 249.87

( 30.64 ) ( 21.36 ) ( 13.43 ) ( 59.21 ) ( 95.85 ) ( 54.95 ) ( 39.01 ) ( 50.75 )
σ2

ε 231.81 206.65 253.67 179.96 295.39 355.59 222.87 220.81
( 6.92 ) ( 6.79 ) ( 6.90 ) ( 7.87 ) ( 10.81 ) ( 12.44 ) ( 7.52 ) ( 7.88 )

Note: Standard errors are in parenthesis.
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Table 2. Posterior Mean and Standard Deviation of Parameters of Weather Impacts

IL IN IA MI MN MO OH WI
β2 4.19 8.16 3.32 4.49 4.05 0.07 5.17 8.11

( 1.54 ) ( 2.85 ) ( 0.94 ) ( 2.20 ) ( 1.27 ) ( 3.51 ) ( 2.92 ) ( 2.89 )
β3 -5.88 -11.59 -5.39 -1.52 -1.58 -5.80 -7.82 -6.53

( 1.40 ) ( 2.89 ) ( 1.04 ) ( 2.18 ) ( 1.28 ) ( 2.81 ) ( 3.00 ) ( 2.97 )
β4 -1.04 7.62 -5.92 -0.05 -9.59 -1.10 -0.03 -1.70

( 1.64 ) ( 2.97 ) ( 1.73 ) ( 2.48 ) ( 1.63 ) ( 3.44 ) ( 3.37 ) ( 3.39 )
β5 11.60 11.33 12.60 9.62 10.97 5.35 11.13 10.00

( 2.99 ) ( 2.48 ) ( 1.69 ) ( 6.98 ) ( 1.64 ) ( 4.19 ) ( 3.28 ) ( 2.32 )
β6 7.04 2.28 1.89 3.13 -2.57 1.72 5.11 3.67

( 2.88 ) ( 2.40 ) ( 1.26 ) ( 5.57 ) ( 1.39 ) ( 3.89 ) ( 3.41 ) ( 1.78 )
β7 -8.42 -6.37 -16.67 -2.93 -10.85 -7.31 -5.50 -7.85

( 2.34 ) ( 2.25 ) ( 1.12 ) ( 5.79 ) ( 2.49 ) ( 3.34 ) ( 3.06 ) ( 1.94 )
θl -2.43 1.65 0.89 -2.30 -0.15 -1.11 1.08 2.18

( 0.63 ) ( 0.29 ) ( 0.77 ) ( 0.72 ) ( 0.53 ) ( 2.18 ) ( 0.55 ) ( 0.53 )
θu 1.46 2.33 3.59 0.69 2.49 0.80 2.21 3.28

( 1.56 ) ( 0.38 ) ( 0.35 ) ( 2.03 ) ( 0.36 ) ( 2.29 ) ( 0.72 ) ( 0.51 )
λl -1.33 -0.48 -0.95 -0.20 -0.19 -0.18 -0.70 -0.73

( 0.45 ) ( 0.22 ) ( 0.28 ) ( 0.35 ) ( 0.28 ) ( 0.73 ) ( 0.27 ) ( 0.23 )
λu 0.42 1.28 1.67 0.72 2.06 1.52 0.84 0.70

( 0.55 ) ( 0.65 ) ( 0.21 ) ( 0.58 ) ( 0.23 ) ( 0.87 ) ( 0.83 ) ( 0.29 )
Note: Standard errors are in parenthesis.

Table 3. Comparing Thresholds Across States

IL IN IA MI MN MO OH WI
lower threshold of temperature 71.51 74.55 72.90 66.41 69.24 74.79 72.43 70.50
upper threshold of temperature 75.40 75.22 75.60 69.40 71.89 76.70 73.57 71.60
lower threshold of rainfall 2.55 3.62 3.49 3.18 3.87 4.04 3.22 3.40
upper threshold of rainfall 4.30 5.37 6.11 4.10 6.12 5.74 4.76 4.83
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Table 4. Marginal Effects of Temperature and Rainfall

IL IN IA MI MN MO OH WI
βtemp,cl -1.69 -3.42 -2.07 2.97 2.47 -5.73 -2.66 1.58

( 0.87 ) ( 0.26 ) ( 0.31 ) ( 1.06 ) ( 0.48 ) ( 1.25 ) ( 0.41 ) ( 0.29 )
βtemp,nt -5.88 -11.59 -5.39 -1.52 -1.58 -5.80 -7.82 -6.53

( 1.40 ) ( 2.89 ) ( 1.04 ) ( 2.18 ) ( 1.28 ) ( 2.81 ) ( 3.00 ) ( 2.97 )
βtemp,ht -6.92 -3.97 -11.32 -1.57 -11.17 -6.90 -7.86 -8.23

( 0.73 ) ( 0.90 ) ( 1.22 ) ( 1.01 ) ( 1.33 ) ( 1.16 ) ( 1.18 ) ( 1.16 )
βrain,dr 18.65 13.61 14.49 12.75 8.40 7.08 16.24 13.67

( 3.92 ) ( 1.34 ) ( 2.22 ) ( 2.21 ) ( 1.73 ) ( 1.32 ) ( 2.00 ) ( 1.95 )
βrain,nr 7.04 2.28 1.89 3.13 -2.57 1.72 5.11 3.67

( 2.88 ) ( 2.40 ) ( 1.26 ) ( 5.57 ) ( 1.39 ) ( 3.89 ) ( 3.41 ) ( 1.78 )
βrain, f l -1.38 -4.09 -14.77 0.20 -13.42 -5.59 -0.39 -4.18

( 1.00 ) ( 1.88 ) ( 0.83 ) ( 1.75 ) ( 1.85 ) ( 1.63 ) ( 1.96 ) ( 1.00 )
Note: Standard errors are in parenthesis.

Table 5. Estimation Results for the One-Knot Specification, Indiana

β1,1 β1,2 β1,3 β1,4 β1,5 β1,6 β1,7 β1,8 β1,9
1.93 1.85 1.58 1.66 1.60 1.59 1.78 1.39 1.25

( 0.11 ) ( 0.11 ) ( 0.11 ) ( 0.11 ) ( 0.08 ) ( 0.13 ) ( 0.09 ) ( 0.12 ) ( 0.21 )
α0 σ2

α σ2
ε β2 β3 β5 β6 β7

106.86 111.76 207.27 1.99 -5.31 11.40 2.28 -6.47
( 1.89 ) ( 21.81 ) ( 6.76 ) ( 0.53 ) ( 0.44 ) ( 2.32 ) ( 2.19 ) ( 2.06 )

θ λl λu βtemp,cl βtemp,nt βrain,dr βrain,nr βrain, f l
0.75 -0.50 1.31 -3.32 -5.31 13.68 2.28 -4.19

( 0.60 ) ( 0.22 ) ( 0.57 ) ( 0.32 ) ( 0.44 ) ( 1.25 ) ( 2.19 ) ( 1.76 )
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Figure 1. Plots of weather impacts on corn yield
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Figure 2. Plots of weather impacts on corn yield - continued
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Figure 3. Plots for the one-knot specification
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Endnotes:

1We specify the growing season as from June to August.

2Results are insensitive to the specific values of the prior distribution parameters.

3ι is a column vector of ones. Its dimension is specified by its subscript.

4Less than 10% of the observations have missing values.

5A 0.3 acceptance rate is a common rule of thumb to achieve optimal mixing.

6We also estimated the model with one temperature threshold for these state and obtained similar results.
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