
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 
 
 
 

A Nonlinear Offset Program to Reduce Nitrous Oxide Emissions 
Induced by Excessive Nitrogen Application 

 
 

Francisco Rosas, Bruce A. Babcock, and Dermot J. Hayes 
 
 

Working Paper 11-WP 521 
April 2011 

 
 
 
 
 
 
 
 
 
 

Center for Agricultural and Rural Development 
Iowa State University 

Ames, Iowa 50011-1070 
www.card.iastate.edu 

 
 
 
 
 
Francisco Rosas is a PhD candidate and research assistant in the Department of Economics and 
Center for Agricultural and Rural Development (CARD) at Iowa State University. Bruce Babcock 
and Dermot Hayes are professors in the Department of Economics and in CARD. 
 
Acknowledgment: The authors thank The David and Lucile Packard Foundation for project 
funding, and Sergio Lence, Alicia Rosburg, Juan Dubra, and Marcelo Caffera for useful 
suggestions. 

This paper is available online on the CARD Web site: www.card.iastate.edu. Permission is 
granted to excerpt or quote this information with appropriate attribution to the authors. 
 
Questions or comments about the contents of this paper should be directed to Dermot Hayes, 
Iowa State University, 568C Heady Hall, Ames, Iowa 50011-1070; Ph: (515) 294-6185; Fax: (515) 
294-6336; E-mail: dhayes@iastate.edu. 
 
Iowa State University does not discriminate on the basis of race, color, age, religion, national origin, sexual orientation, 
gender identity, genetic information, sex, marital status, disability, or status as a U.S. veteran. Inquiries can be directed to 
the Director of Equal Opportunity and Compliance, 3280 Beardshear Hall, (515) 294-7612. 



 
 

 
 
 

Abstract 
 
 
On average, U.S. farmers choose to apply nitrogen fertilizer at a rate that exceeds the ex 

post agronomically optimal rate. The technology underlying the yield response to 

nitrogen rewards producers who over apply in years when rainfall is excessive. The 

overapplication of nutrients has negative environmental consequences because the 

nitrogen that is not taken up by the plant will typically volatilize causing N2O emissions, 

or leach causing water pollution. We present a nonlinear offset program that induces 

farmers to reduce their nitrogen applications to the level that will be consumed by the 

plant in a typical year and, as a result, reduce N2O emissions from agriculture. The offset 

program is nonlinear because of the nonlinear relationship between N2O and nitrogen 

application rates. We assume that the farmer solves an expected utility maximization 

problem, choosing the optimal nitrogen application rate. The key contribution is a set of 

simulations that shows that modest offset payments will induce participation in the 

program and will have a significant impact on both expected and actual N2O emissions 

without having a significant impact on actual or expected yields. We also find that more 

risk-averse farmers will reduce emissions by a greater amount than less risk-averse 

farmers. Finally, we show the distribution of emission reductions induced by this 

nonlinear offset scheme. 

 

Keywords: carbon offsets, nitrogen fertilizer, nitrous oxide, pollution, uncertainty. 
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A Nonlinear Offset Program to Reduce Nitrous Oxide Emissions 
Induced by Excessive Nitrogen Application 

 
The nitrogen (N) fertilizer application decision is made under uncertainty because the N 

available to the crop during the growing season is affected by weather conditions 

(especially rainfall and temperature). Also, there is evidence in the literature that, ex post 

and on average, U.S. farmers apply more N fertilizer than the agronomic optimum. The 

reason behind this behavior is the Leontief-like technology underlying the response of 

yields to both N fertilizer and weather conditions. This technology is such that the 

nutrient provided in the smallest amount becomes the limiting nutrient. This gives 

farmers the incentive to apply more N fertilizer expecting the growing season to be either 

wet or warm. However, evidence in the literature suggests that this overapplication of 

nutrients is ex ante optimal (Babcock 1992; Sheriff 2005). 

 The overapplication of N has environmental effects, such as volatilization of N2O, 

water pollution, and other indirect effects on human health (Townsend et al. 2003; 

Galloway et al. 2008). We focus here on nitrous oxide (N2O), a greenhouse gas (GHG) 

with global warming potential (GWP) 310 times higher than that of carbon dioxide (CO2) 

over a 100-year time period. 

 Several studies using calibrated N2O emissions models (Maggi et al. 2008; Del 

Grosso et al. 2006; Grant et al. 2006; and Li, Narayanan, and Harriss 1996), field 

experiment data (Hoben et al. 2011; Chen, Huang, and Zou 2008; McSwiney and 

Robertson 2005; Chantigny et al. 1998; Izaurralde et al. 2004; and Yamulki et al. 1995), 

thorough literature reviews of peer-reviewed studies (Snyder et al. 2009; and Bouwman, 

Boumans, and Batjes 2002), or conceptual models of N input saturation on ecosystems 

(Townsend et al. 2003) have documented that low N2O emissions occur when N is 
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applied at or below the optimal crop requirement, but that higher emissions are consistent 

with N rates greater than that threshold. This literature suggests that crops compete with 

N2O-producing microbes for the use of N in soil, limiting N2O production until crop N 

uptake has been satisfied. If the crop uses all available N in the soil, N2O emissions will 

be low. Emissions will increase rapidly once the crop’s N demand is satisfied. 

Consequently, a nonlinear relationship between N2O emissions and the N application rate 

is appropriate. For illustration, figure 1 shows the results of a literature review conducted 

by Bouwman, Boumans, and Batjes (2002) of more than 900 measures of N2O emissions 

from peer-reviewed studies for different types and rates of fertilizer, crops, soil 

types/qualities, and lengths of experiments. The literature is not conclusive as to whether 

emissions increase at an increasing or decreasing rate once the crop N requirement has 

been passed. 

 The response of yields to increasing nitrogen application has also been widely 

documented in the literature. Different functional forms have been employed to describe 

this relationship (quadratic, linear response and plateau, quadratic response and plateau, 

and Mitscherlich, among others). Berck and Helfand (1990) and Tembo et al. (2008) 

provide thorough overviews and discussions about the different production functions 

estimated in the literature. Most of these studies have also considered the stochastic 

nature of agricultural production due to uncertain weather, pests, and soil qualities.  

 The nonpoint source (NPS) nature of N2O emissions implies that the most effective 

way to address the environmental consequences is by altering the use of the input that 

ultimately causes the pollution (Hansen 1998; Shortle and Abler 1997; Xepapadeas 1997; 

and Segerson 1988). In this article we present the magnitudes of the economic tradeoffs 
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involved in reducing N2O emissions by cutting N fertilizer applications for different CO2 

prices. The yield and N2O response curves are estimated using field-level data. The 

curves are used to estimate the magnitude of the N2O reductions that are economically 

sensible given the value of N in crop production relative to the value of cutting N to 

control N2O emissions. 

Optimization under an Offset Program  

Suppose there exists a representative farmer who maximizes expected utility of per 

hectare profits by choosing the optimal level of N fertilizer application rate (in kilograms 

per hectare); so the farmer’s problem is 𝑚𝑎𝑥[𝑁] 𝐸𝑈(𝜋�) = 𝑚𝑎𝑥[𝑁] 𝐸𝑈(𝑃�𝑦�(𝑁) − 𝑃𝑁𝑁), 

where 𝑈(. ) is a strictly increasing and concave utility function, 𝑃� is the unknown output 

price at harvest time, 𝑦�(𝑁) is the concave yield response function affected by random 

weather during the growing season, and 𝑃𝑁 is the observed price of the fertilizer input. 

Expectations (𝐸) are taken over the two random variables. Assuming, to facilitate the 

exposition, that 𝑈(. ) is linear (i.e., risk neutrality) and that yield and output prices are 

independent random variables,1 and denoting expected values with a bar, the first-order 

condition (FOC) is 𝑃� 𝜕𝑦�(𝑁)
𝜕𝑁

= 𝑃𝑁 . We denote its optimal solution as 𝑁�. Panel (a) of figure 

2 shows the expected N2O emissions associated with the optimal fertilizer application, 

and panel (b) shows the optimal 𝑁� at the intersection between the decreasing expected 

marginal value product curve and the constant observed marginal cost 𝑃𝑁 (point A).

 Now suppose that society assigns a value to the environmental damage caused by 

farmer’s N2O emissions. The damage value is a function of the N rate and is calculated as 

𝜙(𝑁) = 0.310 𝑃𝑐  𝑒(𝑁), where 𝑒(𝑁) is the quantity of N2O emitted as a function of N, 𝑃𝑐 

is the market price of CO2, and 0.310 is the GWP equivalence between tons of CO2 and 
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kilograms of N2O. More precisely, a regulatory agency sets up an incentive program to 

induce farmers to reduce N fertilizer applications by distributing offsets (credits) for the 

carbon equivalent value of their direct N2O emission reductions. 

 The incentive payment structure will need to account for the increasing and 

nonlinear relationship between N2O emissions and N applications. In panel (a) of figure 

2, the fertilizer rate (in kg N/ha) is plotted against expected emissions (in kg 

N2O/ha/year). Based on this curve, we calculate the curve representing the market value 

of total damage, denoted by 𝜙(𝑁), as explained above2.    

 With an offset program in which farmers are paid by their emissions (or application) 

reductions, the optimization problem becomes 

𝑚𝑎𝑥[𝑁] 𝐸𝑈(𝜋�) = 𝑚𝑎𝑥[𝑁] 𝐸𝑈(𝑃�𝑦�(𝑁) − 𝑃𝑁𝑁+ 𝜙(𝑁�) −𝜙(𝑁))  

where [𝜙(𝑁�) − 𝜙(𝑁)] is the dollar payment received by the farmer for reducing nitrogen 

applications from 𝑁� to 𝑁. Note that reductions are measured relative to 𝑁�, usually called 

the business-as-usual (BAU) or baseline rate, which is what the farmer would have 

applied in the absence of the incentive program. With the mentioned per hectare payoff 

structure, the participating farmer receives a payment equal to zero when application 

equals 𝑁� (because these applications imply zero N2O emission reductions), and the 

payment increases nonlinearly as the farmer reduces the applications. With our 

assumptions of linear utility and uncorrelated yield and output prices, the FOC 

is 𝑃� 𝜕𝑦�(𝑁)
𝜕𝑁

= 𝑃𝑁 + 𝜙′(𝑁). The farmer’s maximization is achieved when expected 

marginal value product equals marginal cost plus the value of emissions from a marginal 

unit of fertilizer applied, 𝜙′(𝑁). The term 𝜙′(𝑁) increases the marginal cost of applying 

nitrogen (i.e., shifts the marginal damage curve up as shown in panel (b) of figure 2) 
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because it represents the marginal dollar amount that the farmer forgoes for each 

kilogram of N that is applied. The solution, denoted as 𝑁∗, is shown as point B, and the 

associated quantity of N2O emissions is shown in panel (a). Therefore, given the 

decreasing marginal value product, the new optimality implies a reduction in N rates and 

N2O emissions.  

 The marginal damage curve 𝜙′(𝑁) faced by a farmer under the program can shift for 

two reasons: (i) a change in the price of carbon, and (ii) a change in the emissions rate 

generated by a given N application. In the first case, a higher price of carbon implies a 

higher opportunity cost of applying fertilizer, because the fertilizer application reductions 

are more valuable, so we should expect greater reductions in fertilizer applications (and 

emissions). In the second case, different farm management practices (tillage; fertilizer 

type, depth, and timing; manure application) induce different emissions for the same 

quantity of N fertilizer applied. So if the farmer changes to a management practice that 

emits more, the value of 𝜙′(𝑁) will be higher, the opportunity cost of fertilizer 

applications will increase, and we should expect the farmer to apply less fertilizer. 

However, in this case, the expected marginal product might also change because the 

production function is affected by the use of a different management practice, and 

therefore we cannot unambiguously say the direction of the fertilizer applications change. 

 This offset payment program will induce the same N application reductions as a tax 

imposed on the purchases of the N input, provided the following conditions are met. (i) 

The tax structure, which according to panel (a) of figure 2 implies an increasing 

(progressive) tax rate, has a revenue curve (as a function of the N rate) that is equal to the 

total value damage curve 𝜙(𝑁). (ii) The tax rate has to adjust to the annual changes in the 
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market price of carbon. In this case, the farmer’s problem is  𝑚𝑎𝑥[𝑁] 𝐸𝑈(𝜋�) =

𝑚𝑎𝑥[𝑁] 𝐸𝑈(𝑃�𝑦�(𝑁) − 𝑃𝑁𝑁− 𝜙(𝑁)). With the linear utility and uncorrelated yield and 

output prices assumptions, the FOCs are 𝑃� 𝜕𝑦�(𝑁)
𝜕𝑁

= 𝑃𝑁 + 𝜙′(𝑁), which are the same as in 

the offset program. Therefore, the solution (the optimal 𝑁∗) and the nitrogen application 

reduction are the same. Clearly, however, the distributive or welfare effects of each 

policy are different. 

Outline of the Model 

The offset program takes into account two important factors. First, the input decision is 

made under uncertainty coming from both the stochastic production function and output 

prices. Second, the market value of N2O emissions as a function of N fertilizer 

application rates 𝜙(𝑁) and its first derivative 𝜙′(𝑁) are nondecreasing and nonlinear. 

Emission reductions are measured relative to a BAU, which are those emissions 

consistent with the optimal rate (𝑁�) had the farmer not participated in the program. 

 At the beginning of the planting season, the farmer decides whether or not to 

participate in this incentive program. If he does not participate, the fertilizer rate will be 

consistent with a standard maximization problem. But if he chooses to participate, profits 

will be affected by an incentive payoff proportional to the N input reduction.  

 Consider first the case of a nonparticipating farmer who maximizes expected utility 

of per hectare profits3 by choosing the optimal nitrogen application rate, 𝑁∗. He solves 

the following problem: 𝑚𝑎𝑥 𝐸𝑈(𝜋�0) = 𝑚𝑎𝑥[𝑁] ∫ ∫ 𝑈(𝜋�0)ℎ(𝑃)𝑓(𝑦|𝑁)𝑑𝑦𝑑𝑃𝑏
𝑎

∞
0 , where 

𝜋�0 = 𝑃�𝑦� − 𝑃𝑁𝑁 is the farmer’s random profit, randomness coming from uncertain output 

prices 𝑃� and uncertain yields 𝑦�. Yields behave according to a conditional density function 

𝑓(𝑦|𝑁) whose support is the non-negative closed interval [𝑎, 𝑏], 𝑎 and 𝑏 representing the 
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minimum and maximum yield possible, respectively. Output prices are governed by a 

probability density function ℎ(𝑃) where 𝑃𝜖[0,∞]. For ease of exposition, we first 

assume the distributions are independent, but later, in the simulations, we analyze the 

case of correlated yields and prices. Expectations (𝐸) are taken with respect to both 

random variables, and 𝑈(. ) is a concave twice continuously differentiable utility 

function. The FOC are ∫ ∫ �𝑈′(𝜋0)(−𝑃𝑁)ℎ(𝑃)𝑓(𝑦|𝑁) + 𝑈(𝜋0)ℎ(𝑃) 𝜕𝑓(𝑦|𝑁)
𝜕𝑁

� 𝑑𝑦𝑑𝑃 =𝑏
𝑎

∞
0

0. The solution is denoted by 𝑁� (the BAU), and we assume that the second derivative 

evaluated at 𝑁� is negative. 

 The participating farmer also maximizes expected utility of profits. The problem is 

as follows: 𝑚𝑎𝑥 𝐸𝑈(𝜋�) = 𝑚𝑎𝑥[𝑁] ∫ ∫ 𝑈(𝜋�1)ℎ(𝑃)𝑓(𝑦|𝑁)𝑑𝑦𝑑𝑃𝑏
𝑎  ∞

0 where 𝜋�1 = 𝑃�𝑦� −

𝑃𝑁𝑁 + [𝜙(𝑁�) − 𝜙(𝑁)]. Uncertainty comes only from growing conditions and output 

prices that are reflected by the probability density functions 𝑓(𝑦|𝑁) and ℎ(𝑃), 

respectively. Therefore, he maximizes a standard expected utility problem but 

incorporating the mentioned payoff structure. The FOC are ∫ ∫ �𝑈′(𝜋1)(−𝑃𝑁 −
𝑏
𝑎

∞
0

𝜙′(𝑁))ℎ(𝑃)𝑓(𝑦|𝑁) + 𝑈(𝜋1)ℎ(𝑃) 𝜕𝑓(𝑦|𝑁)
𝜕𝑁

� 𝑑𝑦𝑑𝑃 = 0 whose solution is denoted by 

𝑁∗(𝜃), with 𝜃 = {𝑁�,𝑃𝑁 ,𝜃0}, and 𝜃0 is the set of parameters of the function 𝜙(. ) and the 

distributions 𝑓(. ) and ℎ(. ). We assume the second derivative evaluated at 𝑁∗ is negative. 

With 𝑁∗(𝜃), we are able to analyze the consequences of introducing this nonlinear offset 

program on the tradeoff between N rates and yields, and on the farmer’s profitability.  

 From an implementation perspective, the regulatory agency has to know certain field 

characteristics (such as soil texture and slope) and management practices (crop rotation, 

tillage, quantity and type of fertilizer) to determine the payment function, baseline, and 
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optimal N application rates. Some can be observed by visual inspection but others, such 

as type and quantity of fertilizer applied, cannot. Moreover, farmers may have the 

incentive to misreport these values in order to claim more offsets than those consistent 

with the true N reductions. This poses an implementation problem that is not new to NPS 

pollution studies in agriculture. For example, the literature on water quality as affected by 

nitrogen, phosphorous, and pesticide pollution has acknowledged the issue of finding a 

cost-effective mechanism to monitor, verify, and enforce programs aimed to reduce on-

farm nutrient use (Metcalfe et al. 2007; Huang et al. 2001; Chowdhury and Lacewell 

1996; Huang and LeBlanc 1994; Thomas and Boisvert 1994; and Huang and Lantin 

1993). Some recent initiatives (Millar et al. 2010; MSU-EPRI 2010; Government of 

Alberta 2010; DEFRA 2008) have proposed verification of N application rates using a 

combination of (preseason and late season) soil nitrate tests, late-season stalk nitrate tests, 

chlorophyll meter readings, remote sensing of soil and crop canopy properties, soil 

electrical conductivity maps, and on-site crop test strips with different fertilizer rates. A 

complement to these are the so-called Best Management Practices (BMP) in the use of 

fertilizers, such as the “Right Source-Rate-Time-Place (4R) Nutrient Stewardship” 

proposed by the International Plant Nutrition Institute (IPNI 2011) and the Nutrient BMP 

Endorsement for Crop Revenue Coverage Insurance (USDA-RMA 2003), which would 

reduce uncertainty about on-farm practices. For example, a program has been introduced 

in Alberta, Canada, to reduce N2O emissions from the application of N fertilizer and uses, 

depending on the target reductions, ammonium-based fertilizers, slow/controlled release 

fertilizers, or inhibitors (right source); injected or band applications (right place); split 

applications in spring, and fall applications only if slow/controlled released fertilizers or 
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inhibitors are used (right time); and applications based on field variability requirements 

and nitrogen balance (right rate) quantified by digitalized soil maps, landscape position, 

grid soil sampling, satellite imagery, in-season stalk nitrate tests, and overviewed by a 

program accredited professional advisor (Government of Alberta 2010). 

The Simulation Exercise 

We assume that a representative farmer owns one hectare of land, chooses to plant on a 

continuous corn rotation, and decides to participate in the offset program to reduce N2O 

emissions. The farmer solves the expected utility model described above. There exists an 

environmental regulatory agency that oversees the offset program and distributes carbon 

credits for N2O emission reductions, reductions measured relative to the farm-specific 

BAU nitrogen rate, 𝑁�.  

N2O Emissions and the N Application Rate  

Measures of N2O emissions as a function of N application rates were collected from corn 

field experiments conducted in the northern U.S. and Canada. They consist of more than 

20 studies summarized by Rochette et al. (2008); Grant et al. (2006); Li, Narayanan, and 

Harriss (1996); Bouwman (1996); and Thornton and Valente (1996). A list is available 

from the authors upon request. We fit the following emissions curve to the data:  

𝑒(𝑁) = �
∑ 𝑎𝑖(𝑁𝑚)𝑖𝑖=3
𝑖=0 𝑁 ≤ 𝑁𝑚

∑ 𝑎𝑖𝑁𝑖        𝑖=3
𝑖=0 𝑁 > 𝑁𝑚

�  

where 𝑎𝑖 are parameter estimates (shown in table 1) from a regression model applied to 

the mentioned data, and 𝑁𝑚 is the nitrogen rate at which the estimated curve has slope 

equal to zero.4 This is consistent with the nonlinear relationship between emissions and 

the N rate shown in figure 1.  
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 Assuming there exists a market price for CO2 (𝑃𝑐), that is, GHG emissions are 

negatively valued by society, this emissions curve is used by the regulatory agency to 

construct the offset payment structure that rewards N reductions by the market value of 

their environmental damage. This value is  𝜙(𝑁) = 0.310 𝑃𝑐  𝑒(𝑁), expressed in dollars 

per hectare. Therefore, the payment structure as a function of the optimal N (shown in 

figure 3), which pays reductions relative to the BAU rate, is [𝜙(𝑁�) − 𝜙(𝑁𝑚)] for 

𝑁 ≤ 𝑁𝑚 and [𝜙(𝑁�) − 𝜙(𝑁)] for 𝑁 > 𝑁𝑚. It implies that given 𝑁�, per hectare payments 

increase from zero up to their maximum [𝜙(𝑁�) − 𝜙(𝑁𝑚)], as the farmer reduces the 

optimal N rate.5 This nonlinear payment structure should give more efficient results 

because if the objective is to reward emissions reductions, a “flat” payoff to all 

application rates as suggested by IPCC-Tier 16 or a per unit nitrogen tax will not capture 

the implicit emissions behavior and thus will not provide correct signals to farmers. 

Table 1. Estimation Results of Emissions Curve: 𝑒(𝑁) 
 𝛼0 𝛼1 𝛼2 𝛼3 

Coefficient 1.09801 0.03640 -3.9874E-04 1.2758E-06 
Standard error  0.33864 0.01713 1.8446E-04 5.1955E-07 
t-stat 3.24243 2.12474 -2.16164 2.45554 
 
 It has to be noted that for a given N rate, different weather conditions will generate 

different levels of emissions. However, when determining the marginal payment 

structure, the regulator uses emissions at average weather conditions allowing the farmer 

to optimize under a known payment rate.7 This assumption is relaxed in the last section.  

Estimation of a Conditional Yield Distribution  

The yield response to nitrogen was estimated using 1987 to 1991 data from field-plot 

experiments on continuous corn conducted on four different farms spread throughout 
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Iowa. Yields were updated to 2010 levels using a proportional yield adjustment based on 

Iowa corn yield growth. 

 One of the objectives of the experiments was to isolate the effect on yields of 

increasing nitrogen application rates, leaving everything else constant. This dataset was 

also used in past studies by Babcock and Hennessy (1996) and Roosen and Hennessy 

(2003). The experiment consisted of 10 nitrogen application rates (0, 25.06, 56.10, 84.14, 

112.18, 140.23, 168.28, 224.37, 280.46, 336.55 kg N/ha)8 
with three replications on each 

of the four farms (sites) and in each of the five years. So there are 600 observations or 60 

observations for each N application rate. Table 2 shows mean and standard deviation of 

corn yields by site and by year.  

 Following Babcock and Hennessy (1996), we assume that, conditional on a given N 

application rate, yields behave according to a beta distribution with shape parameters 𝑝 

and 𝑞. We further assume that yield randomness comes from the interaction of factors 

that are unobserved by the researchers (such as weather, pests, and management 

practices). The beta distribution is usually specified because it describes the 

nonsymmetric historical behavior of yields with respect to these unobservables.  

Table 2. Yields (tons per hectare) from Continuous Corn Field Experiments in Iowa  
 Yields by site  Yields by year 
 1 2 3 4  1987 1988 1989 1990 1991 

Mean 11.57 
(3.28) 

11.71 
(4.21) 

12.46 
(4.28) 

11.11 
(3.12) 

 13.28 
(3.00) 

7.41 
(2.60) 

12.69 
(3.66) 

12.89 
(3.31) 

12.30 
(2.84)   

Note: Standard deviation in parentheses. 
 
 The moments of the yield distribution depend on the N application rate, and given 

that moments of the beta distribution are completely defined by the shape parameters, we 

specify them as a function of N rate, that is, 𝑝(𝑁) and 𝑞(𝑁). Then the conditional beta 

distribution can be written as  
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𝑓(𝑦|𝑁) =
Γ[𝑝(𝑁) + 𝑞(𝑁)]
Γ[𝑝(𝑁)]Γ[𝑞(𝑁)]

(𝑦 − 𝑦𝑚𝑖𝑛)𝑝(𝑁)−1(𝑦𝑚𝑎𝑥 − 𝑦)𝑞(𝑁)−1

(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)𝑝(𝑁)+𝑞(𝑁)−1                          (1) 

where Γ is the Gamma function, 𝑝(𝑁) = 𝑝0 + 𝑝1𝑁0.5 + 𝑝2𝑁 and 𝑞(𝑁) = 𝑞0 + 𝑞1𝑁0.5 +

𝑞2𝑁. Parameters 𝑝0,𝑝1,𝑝2,𝑞0, 𝑞1, 𝑞2 are estimated by maximum likelihood (shown in 

table 3). By feeding (1) with one value of N rate, we obtain the distribution of yields 

conditional on that N.  

Table 3. Maximum Likelihood Estimation of Beta Parameters 

Functional forms: 𝑝(𝑁) = 𝑝0 + 𝑝1𝑁0.5 + 𝑝2𝑁; 𝑞(𝑁) = 𝑞0 + 𝑞1𝑁0.5 + 𝑞2𝑁 
�̂�0 �̂�1 �̂�2 𝑞�0 𝑞�1 𝑞�2 

4.160 -0.114 0.005 12.832 -1.377 0.043 
(0.515) (0.094) (0.005) (1.416) (0.205) (0.008) 

 

 In figure 4 we see how the first two moments of the estimated yield density change 

with the N rate. From equation (1) we draw beta deviates for any given nitrogen 

application rate using the inversion method.  

Simulation of Correlated Yields and Price Draws  

The optimization problem is to maximize expected utility of profits, where uncertainty 

comes from both random yields and random output prices. Random corn prices were 

generated assuming a lognormal distribution. This is a standard assumption given that the 

percentage change of commodity prices can be approximated by a normal distribution 

with certain mean and variance, and therefore the variable in levels (the commodity 

price) is lognormally distributed (Hull 2009, p. 271). So the price vector 𝑃 ∼ logN(𝜇,𝜎2) 

is generated from the equation 𝑃𝑟 = 𝑒𝜇+√𝜎2𝑍1𝑟, where 𝜇 = log�𝐸(𝑃)� − 𝜎2

2
, and 𝜎2 =

log(𝑣𝑜𝑙𝑎𝑡2 + 1).9 𝑃𝑟 is the rth commodity price deviate generated; 𝑍1𝑟 indicates the rth 

deviate from the random variables 𝑍1 distributed standard normal; 𝐸(𝑃) is the mean of 
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corn prices; and 𝑣𝑜𝑙𝑎𝑡 = �𝑉(𝑃)
𝐸(𝑃)  is the volatility of corn prices interpreted as the 

percentage change of prices with respect to their mean. The mean of corn prices 𝐸(𝑃) 

was set equal to $151.69 per ton, which is the average of the Chicago Mercantile 

Exchange (CME) quotation on April 1
 
and April 15

 
of the December futures price for 

2010. Price volatility was calibrated at 0.29 and calculated using the implied volatility 

from Blacks with an “at the money” call option on corn futures on the same days.  

 We remove the independence assumption between corn prices and yields of the 

previous section by following Johnson and Tenenbein (1981) to generate correlated 

draws from these two distributions. Given a target level of correlation 𝜌, the method 

consists of generating draws from two standard normal random variables 𝑍2 and 𝑍3 and 

creating another random variable 𝑍1 as a linear combination of the previous two. The 

linear combination is what creates correlation between 𝑍1 and the other variables. The 

linear combination weight is optimally selected so that the target correlation is achieved. 

By plugging 𝑍1 into the random price generator formula and by substituting 𝑍2 by a 

vector of randomly generated corn yields, we obtain correlated corn and yield draws.10  

Maximization of Expected Utility of Profits  

First, we solve the problem of a non-participating farmer (and denote the solution as 𝑁�). 

To this end, we generate R=1000 random draws of correlated yields and corn prices and 

use a line-search algorithm to find a value of N that maximizes the expression 𝐸𝑈(𝜋�) =

1
𝑅
∑ 𝑈(𝑃𝑟𝑦𝑟 − 𝑃𝑁𝑁)𝑅
𝑟=1 , where 𝑦𝑟 and 𝑃𝑟 are the rth draw of yield and corn prices, 

respectively; 𝑃𝑁 is a known price of nitrogen; and 𝑈(. ) is assumed to be a constant 

absolute risk aversion (CARA) utility function of the form 𝑈(𝜋�) = −𝑒−𝑟𝑎𝜋� , where 
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𝑟𝑎 = −𝑈′′

𝑈′
 is the coefficient of absolute risk aversion. The risk aversion coefficient was 

set as a value consistent with a risk premium equal to 0%, 25%, and 50% of the standard 

deviation of profits.11 
 Other studies (Babcock, Choi, and Feinerman 1993; Babcock and 

Hennessy 1996; Hennessy, Babcock, and Hayes 1997) have set the risk aversion 

coefficient such that the risk premium is equal to a certain percentage of revenue. As this 

percentage increases, the individual is willing to pay more money to avoid the risk, 

implying a more risk-averse agent.  

 We then solve the problem of a participating farmer who takes as given the values of 

𝑁�, 𝑃𝑁, and the payoff structure 𝜙(. ), and maximizes the expected utility of profits 

conditional on R correlated draws of yields and corn prices. Then, the expression to be 

maximized by the farmer is  

𝐸𝑈(𝜋�) = �
1
𝑅
∑ 𝑈[𝑃𝑟𝑦𝑟 − 𝑃𝑁𝑁 + 𝜙(𝑁�) − 𝜙(𝑁𝑚)]𝑅
𝑟=1 𝑖𝑓 𝑁 ≤ 𝑁𝑚

1
𝑅
∑ 𝑈[𝑃𝑟𝑦𝑟 − 𝑃𝑁𝑁 + 𝜙(𝑁�) − 𝜙(𝑁)]   𝑅
𝑟=1 𝑖𝑓 𝑁 > 𝑁𝑚

�  

We again use a line-search algorithm to find the maximum, and denote the solution as 

𝑁∗. With 𝑁� and 𝑁∗, we can find the nitrogen application reduction, and also the payment 

the farmer receives from the program.  

Simulation Results for Nitrogen Application Rate 

We present in table 4 results of the expected utility optimal application rate induced by 

participating in the offset program (𝑁∗), the BAU nitrogen application rate (𝑁�), the 

reduction of N applied, the yield loss for applying less N, the incentive payment received 

by the farmer, and the change in the farmer’s profits due to participation. We use carbon 

prices of $15, $30, and $45 per ton, and various risk-aversion coefficients and price-yield 

correlations.12  
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Table 4. Results of the N2O Emissions Reductions Incentive Program (per hectare) 
Carbon Price, 𝑷𝒄 = $15/ton CO2 

RP (%) 𝑵∗ (kg) 𝑵�(kg) N reduct. Yield loss (%)  $ payoff  𝝅 increase  
~0 229 237 8.67 0.35 2.36 1.27 
25 226 236 9.20 0.40 2.41 1.31 
50 223 233 9.80 0.46 2.45 1.34 

Carbon Price, 𝑷𝒄 = $30/ton CO2 
RP (%) 𝑵∗ (kg) 𝑵�  (kg) N reduct. Yield loss (%) $ payoff 𝝅 increase 

~0 222 237 15.19 0.69 7.83 4.46 
25 220 236 16.00 0.77 7.91 4.54 
50 216 233 16.89 0.88 7.95 4.60 

Carbon Price, 𝑷𝒄 = $45/ton CO2 
RP (%) 𝑵∗ (kg) 𝑵�  (kg) N reduct. Yield loss (%) $ payoff 𝝅 increase  

~0 217 237 20.40 1.00 15.08 8.95 
25 214 236 21.37 1.11 15.12 9.07 
50 211 233 22.42 1.25 15.05 9.13 

Notes: Risk premium (RP) is the % of the standard deviation of profits. The corn price is $151.70/ton, and the 
N price is $726.87/ton. Yield and corn price correlation 𝜌 = -0.30. 
 
 With a carbon price of $30/ton, a participating farmer whose absolute risk-aversion 

coefficient is consistent with a risk premium equal to 25% of the standard deviation of 

profits optimally reduces his nitrogen applications by 16.00 kg/ha for participating in the 

program and obtains an incentive payment of $7.91 per hectare. The increase in profits is 

$4.54 per hectare because lower variable costs are offset by a yield penalty.13 So the 

offset program induces N rate reductions of 7% but a yield penalty of less than 1%. 

 Results are driven by the estimated parameters of the emissions curve 𝑒(𝑁). A 90% 

confidence interval for this curve illustrates how results would change. With 𝑃𝑐 at $30 

and the risk premium at 25%, the lower extreme of the interval indicates that farmers 

reduce optimal N applications by 11 kg/ha and receive a payment of $3.75, while at the 

upper extreme, N reductions are 19 kg/ha and offset payments are $12.18.  

 In comparative statics results that, for reasons of space are not presented here, we 

show that, first, the more risk-averse farmer optimally applies a lower nitrogen rate than 
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the less risk-averse farmer. It can be shown that, at this level, N is a risk-increasing input. 

Second, the more risk-averse farmer optimally makes a higher reduction in applications 

when participating in the offset program. This comes from the fact that, abstracting from 

the incentive payment, profits of the more risk-averse farmer are lower because of the 

yield penalty; therefore, when faced with a certain offset payment, he will reduce the N 

applications by a greater amount because this certain payment represents a higher 

proportion of the uncertain profits.14  

Estimation of a Distribution of Emission Reductions 

We need to know, before the planting season starts, the distribution of emission 

reductions that will be induced by the program. Actual end-of-season N2O emission 

reductions depend on random weather (rainfall and temperature in our particular case). 

To this end, we simulate the weather effects on the N2O emissions induced by the optimal 

N application reduction (𝑁� − 𝑁∗) of the participant farmer.15  

Distribution of Rainfall and Temperature  

To simulate random weather, we fit nonparametric density functions to Iowa rainfall and 

temperature time series (1895-2008) from the National Climate Center at the National 

Oceanic and Atmospheric Administration using an Epanechnicov kernel (DiNardo and 

Tobias 2001).16 Rainfall is the total annual precipitation for the state and is measured in 

centimeters per year (cm/yr).17 Temperature is the annual average temperature for the 

state measured in degrees Celsius. Rainfall density was bell-shaped with an average of 89 

cm/yr (range 56 to 122), and temperature density averaged 8.8 degrees (7 to 11). Random 

draws were generated from both densities. Because the correlation between the two series 

is virtually zero, we draw independently from both distributions. 
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Weather Effects on N2O Emissions  

Based on our data collection on applications of N fertilizer and N2O emissions, we 

estimate a response curve using the following regression model: 𝜖(𝑁) =  ∑ 𝑎𝑖𝑁𝑖𝑖=3
𝑖=0 .18 

Given that data from these studies covered different years, we assume that the fitted 

curve represents the behavior of emissions for average weather conditions. From this 

curve we calculate the levels of emissions at 𝑁∗ and 𝑁�. The effects of precipitation and 

temperature on N2O emissions are obtained by running the Denitrification-

Decomposition (DNDC) model calibrated for a continuous corn rotation in Iowa (Li, 

Narayanan, and Harriss 1996) with different N application rates. Table 5 and the upper 

panels of figure 6 (blue circles) show the response of N2O emissions to changes in 

precipitation (temperature), holding temperature (precipitation) fixed at its average, 𝑁∗= 

220 kg N/ha, and holding all other variables at baseline levels.19 

Table 5. Sensitivity of N2O Emissions to Changes in Precipitation and Temperature 
Annual Precipitation  Annual Average Temperature 

Precipitation 
cm/year 

N2O-N 
kg/ha/yr 

 Temperature 
oC/year 

N2O-N 
kg/ha/yr 

56.0 7.62  - - 
68.7 6.73  7.0 2.81 
78.7 5.61  7.8 2.93 
86.0 3.98  8.7 3.38 
98.7 4.38  9.8 3.33 

108.7 3.93  10.8 3.94 
118.7 3.48  11.8 3.99 

 
 The levels of emissions for each draw of the weather variables are obtained by a 

cubic spline interpolation20 of the results of the DNDC runs. The continuous lines in the 

upper panels of figure 6 show both interpolated curves at 𝑁∗and 𝑁�. With these functions 

we obtain the level of emission reduction induced by the optimal N application reduction 

(𝑁� − 𝑁∗) for each draw of the weather variables.  
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Simulation Results for the Expected Reduction in Emissions 

The results are presented as histograms in figure 7, for both precipitation and rainfall, in 

kilograms of carbon dioxide equivalent (kg CO2e). Panel (a) shows the distribution of the 

per hectare emission reductions for random precipitation holding temperature at the 

average. Average emission reductions are 323 kg of CO2e, ranging between 227 and 490. 

The particular shape of this distribution is associated with the behavior of emissions as 

precipitation changes, as is shown in the upper panel of figure 6. The dollar value of the 

average emission reduction is $9.70 per hectare, which is comparable to the $7.91 

received by the farmer. This suggests that the nonlinear offset program provides the 

correct price signals to farmers.21 

 The distribution of N2O emission reductions as affected by random temperature 

shown in panel (b) of figure 7 also has a shape determined by how emissions are affected 

by temperature. It has an average value of 257 kg of CO2e per hectare per year, ranging 

between 232 and 322. Its dollar value is $7.70. 

 These high levels of N2O emission reductions are driven by the nonlinear payoff 

scheme. If we were to consider a linear payoff structure such as that proposed by the 

IPCC Tier-1 (where the N2O response to N is approximated by a linear curve with a slope 

of 0.0125), a participating farmer would reduce N applications by 5 kg N/ha (from 236 to 

231), receiving a payment of less than $1. Or in order to make a comparable emission 

reduction of 323 kg of CO2e (that in the nonlinear scheme is achieved by an N 

application reduction of 16 kg/ha, and a yield penalty of 0.77%), under this linear 

scheme, farmers would have to inadvertently reduce applications by 84 kg/ha, inducing a 

yield penalty of 888 kg/ha (or 7%).  
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 To show how much these emission reductions represent, consider first that an 

approximation of the continuous corn area in Iowa in 2010 was about 1.6 million 

hectares. Then, using the range obtained for random rainfall and assuming that all Iowa 

continuous corn farmers participate in the offset program, we get a reduction between 

349 and 754 thousand tons of CO2e, with an average of 497. The EPA Inventory of GHG 

for 2009 (U.S. EPA 2011) calculates N2O emissions from the application of synthetic 

fertilizers on U.S. cropland and grassland at 40.8 million tons of CO2e. Therefore, Iowa 

reductions based only on 2010 continuous corn would have been 1.2% of the total 

emissions from the application of synthetic fertilizer on U.S. cropland and grassland. 

Conclusions 

The overapplication of nitrogen by corn growers, while optimal from an ex ante 

perspective, has negative environmental consequences. In this article, we present a 

nonlinear offset program designed to induce farmers to reduce their nitrogen applications 

and, as a result, reduce N2O emissions from agriculture. The offset program targets the 

nitrogen applications because of the NPS nature of the emissions. A representative farmer 

maximizes expected utility of per hectare profits by choosing the optimal nitrogen 

application rate. Reductions are measured relative to the BAU nitrogen rate. The 

nonlinearity of the payoff structure is consistent with the nonlinear relationship between 

N2O emissions and nitrogen application rates. This instrument is far more efficient than 

traditional linear schemes because it transmits price signals that are aligned with the true 

N2O behavior and the ultimate objective of the program. 

 The key insight in the article is driven by the simulation results. These show that 

with a very modest carbon price of $30, a farmer with a low risk aversion level reduces 
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his nitrogen applications by about 7% as a result of an offset payment of $7.91 per 

hectare. A more risk-averse farmer applies less nitrogen because, for these particular 

application rates, nitrogen fertilizer is a risk-increasing input. We also found that the 

more risk-averse farmer makes a higher application reduction, of about 7.3%, and 

receives an offset payment of $7.98 per hectare. In both cases the expected yield 

reduction is minimal (about 1%) because the program targets nitrogen applications that in 

most years are surplus relative to crop needs.  

 We also present the distribution of emission reductions induced by the presence of 

the offset program that takes into account a priori unknown weather variables. We find 

that, for random rainfall and fixed temperature, the distribution of emission reductions 

averages 323 kg CO2e per hectare, with a shape depending on how emissions respond to 

rainfall. For random temperature and fixed rainfall, the average reduction is 257 kg CO2e 

per hectare. These emission reductions are achieved with a yield penalty of less than 1%, 

whereas a linear scheme with the same target of emission reductions will result in a yield 

penalty of 7%.  
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Figures 
 
 

 

 

Figure 1. Average N2O emissions as a function of N rates  

Source: Based on table 5, Bouwman, Boumans, and Batjes (2002) 
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Figure 2. Panel (a) N2O emissions as a nonlinear function of nitrogen rates, and N2O 

emission reductions from the incentive program  

Panel (b) Optimal nitrogen application rate of a nonparticipating farmer (point A) 

and a participating farmer (point B) and optimal nitrogen application reductions 

  



29 
 

 

Figure 3. Offset payment structure as a function of the optimal nitrogen application 

rate 𝑵∗ 

 
 
  



30 
 

 
 
 
 

 

 

Figure 4. Parametric estimation of a conditional beta probability density function of 

Iowa corn yields for different N rates 
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Figure 5. Expected marginal value product (EMVP) curve, and marginal cost 

curves when carbon price 𝑷𝒄 is zero, $30, and $45 

Note: The intersections show the optimal solution of the linear utility maximization 

problem for the different 𝑃𝑐 scenarios: A = (237, 0.727), B = (222, 1.051) and B’= (217, 

1.159). 
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Figure 6. Random weather and response of N2O emissions 

Note: Upper panels show the variation of emissions as a function of average precipitation 

and average temperature at 𝑁∗ = 220 kg N/ha (blue) and 𝑁� = 236 kg N/ha (red). Circles 

show available data and the blue line the interpolated values. Lower panels represent 

nonparametric probability density function of precipitation and temperature using an 

Epanechnicov kernel.  
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Figure 7. Histograms of N2O emission reductions (kg of carbon equivalent per 

hectare) for random precipitation (panel a) and random temperature (panel b), 

induced by an optimal N application reduction of (𝑵∗ − 𝑵�) = 16.00 kg N/ha, when 

𝑷𝒄 = $30/ton CO2 
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Endnotes 
                                                           
1 In the next section we remove the linearity and independence assumptions and solve the 

expected utility problem under risk aversion and correlated random deviates of yield and 

prices.  

2 Alternatively, a risk-averse social planner, which values (positively) farmers’ utility and 

(negatively) the uncertain emissions curve, maximizes its utility by choosing the socially 

optimal parameters of the payoff structure. Then this optimal structure is faced by 

farmers in their expected utility maximization problem. 

3 In the previous section, for exposition, we assumed a farmer who maximizes under a 

linear utility. In what follows, we assume a utility that can accommodate different 

degrees risk aversion. We compare results using different risk aversion levels and 

conclude that the results are very similar. 

4 For the estimated curve 𝑁𝑚 equals 141 kg/ha. 

5 Payment no longer increases for reductions beyond 𝑁𝑚 because the incentive program 

has a superior objective of not harming crop yields excessively. If carbon prices turn high 

enough, it could be optimal for the farmer to apply an extremely low N fertilizer rate 

(high N reduction), affecting crop yields and possibly food and feed supply. 

6 The Intergovernmental Panel on Climate Change (IPCC) assumes that N2O emissions 

are a constant proportion of 1.25 +/- 1% of N applications (Bouwman 1996). 

7 The rationale of this assumption is that if we average a farmer’s emission reductions 

over several years, they will be consistent with the incentive payment received in each 

year.  

8 These are, respectively, 0, 25, 50, 75, 100, 125, 150, 200, 250, and 300 pounds per acre.  
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9 Proof is available from the authors upon request. 

10 We selected two levels of correlation, one negative and one positive. Negative 

correlation would exist because when corn prices increase, farmers have the incentive to 

plant more corn, substituting land away from other uses. If that new corn land is of lower 

productivity, we can expect a yield decrease. Positive correlation might occur if higher 

prices induce changes in management practices with the objective of obtaining higher 

yields (using high-yielding seeds or different types of fertilizers or herbicides). 

11 The risk premium (RP) is the dollar amount an individual is willing to pay to avoid a 

risky bet and receive a certain profit. For our utility function, the risk premium is found to 

be 𝑅𝑃 = 𝐸(𝜋�) + 1
𝑟𝑎

log [𝐸(𝑒−𝑟𝑎𝜋�)]. 

12 Throughout the estimation we assumed a nitrogen price of $726/ton, equivalent to 

$0.33/lb suggested by Iowa State University Extension for continuous corn (Duffy 2009). 

13 We also solved the model with linear utility which is equivalent to a risk premium 

equal to zero. Results, shown in table 4, are very similar: for carbon prices of $30, 

optimal N application reductions are 15.19 kg N/ha (237-222) with a payment of $7.83, 

so the degree of risk aversion does not affect the main conclusions. Figure 5 shows the 

estimation of what is discussed in figure 2: N application reductions of 15.19 kg N/ha 

(237-222) at carbon prices of $30, and of 20.4 kg N/ha (237-217) at $45. 

14 We solved the model with a positive correlation (ρ=30), and results were very similar. 

15 For this simulation we select the scenario of 𝑃𝑐 = 30, RP = 0.25 and 𝜌 = -0.30. 
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16 Bandwidth = ℎ = 0.9 �min �𝜎�, 𝐼𝑄𝑅

1.34
�� 𝑛

�−15
�
 ; 𝜎� is the sample standard deviation; IQR is 

the interquartile range (difference between the 75th 
 
and 25th 

 
percentile), and n is the 

number of observations. 

17 One inch of rain equals 2.5 cm. 

18 Not restricting the response curve for values of N less than 𝑁𝑚 does not affect the 

results because the portion of interest of the curve is to the right of 𝑁𝑚. 

19 Baseline scenario values are N concentration in rainfall, 1.6 mg N/liter; soil texture 

loam, clay 19%; pH, 6.0; bulk density, 1.4 g/c.c.; soil organic carbon, 0.025 kg C/kg; 

fertilizers, 37.5 kg nitrate-N, 37.5 kg ammonium-N, 75.0 kg anhydrous ammonia-N/ha 

applied on April 25 at surface; soil tilled with disks on April 15 and with moldboard on 

October 15; neither manure nor irrigation applied. 

20 This method fits a piecewise cubic function between each of the given points (knots). 

21 The difference arises because, at the optimum, the slope of the emissions curve used by 

the regulatory agency, 0.046, is slightly lower than that obtained with the interpolation, 

0.065. 
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