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Abstract 
 

Non-farm rural enterprises (NFRE) are increasingly studied because of their role in poverty 
reduction. However, existing studies of the effects of infrastructure on NFRE may give incorrect 
inferences because they typically fail to account for spatial effects. Such effects could reflect 
either spatial errors due to excluded local effects or spatial lags due to excluded interactions, 
such as between households switching out of farm work. We use rural investment climate survey 
data from Indonesia that allow distances between each household to be measured so that spatial 
effects can be modeled to assess the bias from ignoring such effects. 
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1. Introduction 

Non-farm rural enterprises (NFRE) are increasingly studied because of their contribution to 

economic growth, employment generation, livelihood diversification and poverty reduction in 

developing countries. The combination of rural non-farm self-employment, off-farm wage work 

and remittances contributes between 30 to 50 percent of rural household income in sub-Saharan 

Africa (Reardon, 1997) and about one-third of income in Asia (Haggblade, Hazell and Reardon, 

2005). This importance is reflected in several recent studies of the determinants of non-farm 

rural employment and income (Lanjouw, 1999; Berdegué, Ramirez, Reardon, and Escobar, 2001; 

Corral and Reardon, 2001; Escobal, 2001; Lanjouw, 2001; and Zhu and Luo, 2006).  

 

These studies often pay considerable attention to location factors. One reason is the key role that 

proximity to urban areas, other major markets, input sources and off-farm labour demand may 

play in promoting non-farm activity. Another is the location-specificity of infrastructure, since 

investments in roads, electricity and telecommunications are often cited as transactions costs-

reducing interventions that can assist the rural non-farm economy (Zhu and Luo, 2006). A third 

reason is that much of the information about the importance of NFRE comes from household 

surveys, whose samples are usually clustered in groups of 10-20 households rather than spread 

randomly across space. Because households in the same cluster should all face the same 

locational factors, this clustered design may allow the effects of neighbourhood variables to be 

measured (Isgut, 2004). 

 

However, the literature has been less careful in reacting to a potential concern about the clustered 

nature of the survey evidence on NFRE, which is the possibility that incorrect inferences are 
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drawn from econometric results. The response of rural households to exogenous factors, and 

especially those that are location-specific like infrastructure, may depend on the response of 

nearby households. This is a form of spatial autocorrelation, which can arise either because 

nearby locations have unobserved factors in common (e.g., access to markets, infrastructure 

quality) or because of interaction between one household and another (e.g. coordination 

problems when deciding to switch from farm to non-farm production). The first model, of 

unobserved common factors, is known as a spatial error model while the second, of unaccounted 

for interactions, is a spatial lag model. Ignoring a spatial error structure can cause inference 

problems while ignoring spatial lags can bias coefficient estimates since the omitted 

autocorrelation in the lag model enters through the systematic part rather than the random part of 

the model (Anselin, 1988). 

 

Thus far, these spatial effects have not been accounted for in the literature on NFRE. Instead, 

some studies base their inferences on standard errors that are robust to survey clustering but there 

is no evidence to show whether this is sufficient precaution. Some clusters cover a large area 

while others are small but cluster correction methods are applied equally since location within a 

cluster is rarely known. Moreover, there is no allowance for spatial correlations between 

households in different clusters. To investigate these issues we use rural investment climate 

survey data from Indonesia that allow distances between each household to be measured. These 

additional distance variables allow spatial effects to be modeled so that any bias and inferential 

errors from ignoring such effects can be assessed. 
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2. The Rural Investment Climate Survey in Indonesia 

The Indonesian Rural Investment Climate Survey (RICS) is an in-depth, quantitative survey of 

2549 formal and informal non-farm enterprises and 2782 households located in 149 communities 

(clusters).1 The survey was conducted in January/February 2006. The sample frame was six 

selected Kabupaten (districts) that are largely rural and that were designed to represent each of 

six broad types of economic geography, ranging from rich agricultural areas to forest margin 

areas.  Figure 1 shows the locations of these six districts.  

Figure 1: Location of the Sampled Kabupaten in the RICS 

 

 

The survey is not designed to be representative of all of Indonesia, which does not matter for the 

purposes of the current paper. Instead, the key feature of the survey for the current study is that 

                                                 
1 Over one-half of the sampled enterprises were located in the sampled households. 
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the locations of each household were recorded using a Global Positioning System (GPS) receiver 

and these coordinates allow the distance of every household to every other household to be 

measured. Moreover, because of the variation in the area of each Kabupaten and the 

approximately equal sample size in each one, there is variation in how far apart the sample 

clusters are, which may help in estimating between cluster spatial autocorrelation. Indeed, there 

are some cases of clusters being sufficiently close together that the distance between households 

in different clusters is smaller than the distance within a cluster (Figure 2). This feature may 

matter since previous studies ignore any spatial autocorrelation that occurs between households 

in separate clusters. 

Figure 2: Example of Intra-cluster Distances Exceeding Inter-cluster Distances 
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To maintain comparability with much of the literature, which uses household surveys rather than 

enterprise surveys to study NFRE, we only use the household sample and restrict attention to the 

households in rural areas of the selected Kabupaten. This gives a sample of 1600 households in 

97 clusters.2 This average of 16 sampled households per cluster is similar to the clustering in 

many other rural household surveys. 

 

The topical coverage of the survey includes household demographic and economic 

characteristics, business experience, business constraints, and community characteristics. There 

is a particular focus on different aspects of the rural investment climate including: infrastructure, 

credit, the diffusion of technical knowledge, marketing and competition, and local governance. A 

variety of household level variables (including those indicating characteristics of the household 

head) and community level variables are included in the regression model reported below. The 

community variables are (by definition) common for households in the same cluster and we are 

interested to see whether this makes them especially susceptible to misspecification from a 

failure to include relevant spatial error or lag terms in the regression model. 

 

Table 1 shows that for the RICS rural households, the share of total household income from 

NFRE is 37 percent.  The means of the household and household head characteristics for the 

overall sample are also presented in Table 4. It is notable that even with the high NFRE income 

share, three-quarters of the households owned land. In addition, Table 4 also shows the 

community characteristics, in the form of access to various forms of infrastructure and the 

                                                 
2 Two clusters were dropped prior to the selection of the final sample because the community center was more than 
20 kilometres from the location of most of the households in each cluster, suggesting a problem in the GPS 
measurements. 
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quality of that infrastructure as well as variables that may reflect the quality of the local business 

environment (such as crime and whether there is a local business association).  

Table 1. Descriptive Characteristics for the Estimation Sample 
 
Variable Mean Std.  Dev 
Dependent variable   
Share of Household income from non-farm enterprises 0.37 0.38 
   
Household Characteristics   
Age of household head 45.68 13.00 
Female household head 0.10 0.30 
Married household  head 0.87 0.34 
Household  head with tertiary education 0.07 0.26 
Muslim household head 0.91 0.29 
Household size 4.36 1.79 
% of household who are adults 17+ 0.68 0.22 
% of household who are children 0 – 10 yrs 0.19 0.19 
Dummy if household owns land 0.75 0.43 
Per capita household income (log)a 7.99 1.08 
   
   
Location and infrastructure characteristics   
Number of households in the village (log) 6.76 0.52 
Local business association (=1,0 otherwise) 0.14 0.35 
Crime/dispute occurred in village last year (=1,0 otherwise) 0.73 0.45 
Co-operative present in village  (=1,0 otherwise) 0.34 0.47 
Distance to co-operativeb 7.45 41.77 
Distance to sub-district headquartersb 9.25 14.45 
Electricity blackout < 30 minutes per day (=1, 0 otherwise) 0.82 0.38 
No landline or cell phone access in village (=1, 0 otherwise) 0.10 0.29 
Roads inside and out of village are unsealed  (=1, 0 otherwise) 0.20 0.40 
Total observation 1,600  

Notes: 
a
 in Rupiah; 

b in kilometer. 

 

 
3. Testing for Spatial Autocorrelation 

3.1 Methods of Detecting Spatial Autocorrelation 

As noted above, the importance of non-farm enterprises as a rural household income source is 

likely to be (positively) spatially autocorrelated. More generally, positive spatial autocorrelation 

occurs when high or low values for a random variable tend to cluster in space. Such a sample 
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contains less information than an uncorrelated one so inference errors may occur if this is not 

accounted for. Moreover, ignoring these spatial interactions may also cause omitted variable bias 

(Anselin and Bera, 1998).  

 

A key issue in adjusting for this spatial autocorrelation is that some structure has to be imposed 

on the data. While it is hypothetically possible for the decisions of a household regarding non-

farm enterprises to be influenced by the decisions of all other households in the sample, as a 

practical matter many of these bilateral relationships are likely to be zero. Moreover, not all of 

these potential interactions can be estimated. For example, with a cross-sectional sample of size 

N there would be N×N correlations to estimate along with the β and σ2 parameters of a standard 

regression model, which exceeds the number of observations. 

 

A spatial weight matrix is one way of imposing the required structure on the study of spatial 

autocorrelation. This is an N×N positive and symmetric matrix which exogenously determines 

for each observation (row) which locations (columns) belong in its neighbourhood. For non-

neighbours, wij=0, while for neighbours the weights are either wij=1 (binary weights) or a 

function of something else, such as: ijij dw 1=  where dij is the distance between observations i 

and j (inverse distance weights). The diagonal elements of the weights matrix are conventionally 

set to zero, and typically standardised such that the elements of a row sum to one (Anselin and 

Bera, 1998). Hence, the spatial weight matrix allows all of the interactions between observation i 

and each of its neighbours to be parameterized in the form of a weighted average. Specifically, 

for some random variable of interest z, each element of the spatially lagged variable Wz equals 

∑ j jij zw which is a weighted average of the z values in the neighbourhood of point i.   
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The spatial weight matrix is used by both main approaches for incorporating spatial effects into 

regression models: the spatial lag model and the spatial error model. Formally, the spatial lag 

model is defined as: 

εβρ ++= XWYY      (1) 

where Y is an N×1 vector of observations on the dependent variable, WY is the spatially lagged 

dependent variable, X is an N×k matrix of explanatory variables, ε is a vector of errors, β is the 

vector of regression parameters and ρ is the spatial autoregressive parameter. Although equation 

(1) looks like a dynamic model from time-series econometrics, one key difference causes OLS to 

always be an inconsistent estimator of the spatial lag model. In the time-series context, if there is 

no serial correlation in the errors, εt there will be no correlation between yt-1 and εt and OLS will 

be a consistent estimator. In contrast, (WY)i is always correlated with both εi and the error term at 

all other locations. Hence, OLS is not consistent for the spatial lag model and either a maximum 

likelihood or instrumental variables estimator is needed (Anselin, 1988). 

 

In contrast to the spatial lag model, the spatial error model is defined as: 

μελε
εβ
+=
+=

W
XY

      (2) 

where λ is the spatial autoregressive coefficient, μ is a vector of errors that are assumed to be 

independently and identically distributed and the other variables and parameters are as defined in 

equation (1). In this model, the error for one observation depends on a weighted average of the 

errors for neighbouring observations, with λ measuring the strength of this relationship.  
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It is clear that both equations (1) and (2) are restricted versions of a more general spatial 

autoregressive model with autoregressive disturbances: 

uW
XYWY

+=
++=

ελε
εβρ

2

1      (3) 

It may therefore seem preferable to always begin with a model like equation (3) and test in a 

general-to-specific way to see if either equation (2) or equation (1) are data-acceptable. Indeed, 

equation (3) could always be the starting point for cross-sectional regressions because the 

standard OLS regression model: 

εβ += XY       (4) 

is just a special case with ρ=λ=0. However, spatial models are much more computationally 

demanding and for most econometric software there are limits on the sample sizes that they can 

accommodate (due to the need to form a weights matrix of order N×N). Moreover, they have to 

be estimated by methods such as instrumental variables and maximum likelihood that require 

additional assumptions.  

 

It is possible to use Lagrange Multiplier (LM) tests for spatial autocorrelation, which only need 

the restricted model to be estimated. Therefore it is common in the spatial econometrics literature 

to start with an OLS model and use the residuals from that model to test against spatial 

alternatives. In addition to these LM tests, Moran’s I test, which has some parallels with the 

Durbin-Watson statistic, is also widely used (Anselin and Bera, 1998). For a row-standardized 

spatial weight matrix, Moran's I can be expressed as: 

ee
Wee
′
′

=I       (5) 
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where e is a vector of OLS residuals and W is the spatial weight matrix. Moran’s I is 

asymptotically normally distributed with mean )1(1 −− N  and its statistical significance can be 

evaluated from a standardized normal table. A feature of Moran’s I is that the alternative 

hypothesis does not specify the process generating the autocorrelated disturbances. However, 

there is a simple intuition for Moran’s I  because for any variable z in deviation from mean form, 

I is equivalent to the slope coefficient in a linear regression of Wz on z (Anselin, 1995). 

 

The LM tests are based on explicitly specified alternative hypotheses. For testing OLS against 

the spatial error model (λ=0) the test statistic is: 

[ ] TLM 22σ̂λ Wee′=      (6) 

where WWWtrT )( +′= and LMλ is distributed as χ2 with 1 degree of freedom. For testing OLS 

against the spatial lag model (ρ=0) the test statistic is: 

[ ] 1
22ˆ TLM σρ WYe′=      (7) 

where .andˆ)ˆ()ˆ( 2
1 XX)XX(IMWXMWX 1 ′′−=+′= −TT σββ  One difficulty with both LMλ 

and LMρ is that they each have power against the other alternative. In other words, when testing 

λ=0, LMλ responds to nonzero ρ and when testing ρ=0, LMρ responds to nonzero λ. To test in the 

possible presence of both spatial error and spatial lags, Anselin et al. (1996) develop 

specification tests for spatial lags that are robust to ignored spatial errors and tests for spatial 

errors that are robust to ignored spatial lags. These tests denoted *
λLM  and *

ρLM  should be used 

when both LMλ and LMρ are statistically significant.  
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All five of the spatial autocorrelation tests described here are used in the current study. 

Depending on the outcome of the specification tests, the regression model for the household 

income shares from rural non-farm enterprises will be re-estimated in either the spatial lag or 

spatial error framework. 

 

3.2 Results of Testing for Spatial Autocorrelation Effects 

Results are presented initially for tests of spatial autocorrelation in the household income shares 

coming from rural non-farm enterprises. This spatial autocorrelation in a dependent variable 

need not cause any concern if it is removed by the covariates in the regression model. Therefore, 

the results of testing the residuals of an OLS income share equation are also reported. 

  

A spatial weights matrix is needed to test for spatial autocorrelation and in turn this requires a 

measure of distance between households. Latitude and longitude coordinates for each household 

were used to calculate this and then Moran’s Index for income shares from non-farm rural 

enterprises was calculated for varying neighbourhood sizes of 1-25 km. Note that the average 

distance within clusters from each household to the village centre is only 0.8 km and the largest 

distance between any two households in a given cluster averages 1.9 km. Hence this range 

allows for spatial autocorrelation that extends far beyond the boundary used in previous studies 

that can account only for correlations within clusters. 

 

When households within a one kilometre radius of location i are considered as the 

neighbourhood, Moran’s I=0.15 and it is statistically significant (p<0.01).  In other words, a 

regression of the spatially weighted average share of non-farm enterprise income in household 
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total income within this neighbourhood, Ws on the income share of each household, s, would 

have a statistically significant coefficient of 0.15. The strength of the spatial autocorrelation 

declines only slightly as the neighbourhood is defined to include a larger area, equalling 0.11 at a 

ten kilometre radius and 0.08 at 25 km. For all neighbourhood sizes considered Moran’s I is still 

statistically significant.  

Figure 3: Spatial Correlation in Rural Household Income Shares from Non-Farm Enterprises 
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Source: Author’s calculation using Moran’s I statistic described in the text. Broken lines are +/- 2 std errors. 
 

To see whether this spatial autocorrelation is also transmitted to the residuals of an OLS 

regression, an income share model was estimated using variables typically found in NFRE 

studies in the literature. These variables included characteristics of the household head (age, 

gender, religion, marital status and education), characteristics of the household (size, 

composition, land ownership and income), and community characteristics. 
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Table 2: OLS, Spatial Error and Spatial Lag Estimates of the Equation for  
Non-Farm Enterprise Income Shares for Rural Households 

 Robust 
std errors 

Clustered 
std errors 

Spatial error 
model 

Spatial lag 
model 

Age of household head -0.002 -0.002 -0.001 -0.002 
 (2.26)* (1.75)+ (1.85)+ (2.08)* 
Married household head 0.090 0.090 0.109 0.096 
 (2.31)* (2.24)* (2.90)** (2.56)* 
Female household head 0.125 0.125 0.130 0.125 
 (2.82)** (3.03)** (3.04)** (2.90)** 
Tertiary educated household head -0.102 -0.102 -0.104 -0.103 
 (2.82)** (3.27)** (2.95)** (2.93)** 
Household head is Muslim -0.089 -0.089 -0.085 -0.082 
 (1.60) (1.65) (1.49) (1.48) 
Household size 0.023 0.023 0.023 0.022 
 (3.71)** (3.29)** (3.85)** (3.75)** 
% of household who are adults 17+ -0.063 -0.063 -0.054 -0.060 
 (0.96) (0.91) (0.86) (0.94) 
% of household children 0-10 years -0.018 -0.018 -0.000 -0.009 
 (0.27) (0.27) (0.00) (0.13) 
Household owns land (=1, else 0) -0.044 -0.044 -0.040 -0.040 
 (1.97)* (1.42) (1.71)+ (1.86)+ 
log (per capita household income) 0.112 0.112 0.119 0.111 
 (11.65)** (8.60)** (12.15)** (11.86)** 
log (# of households in village) 0.102 0.102 0.097 0.073 
 (4.41)** (2.31)* (3.24)** (3.18)** 
Village has business association 0.103 0.103 0.117 0.083 
 (3.44)** (1.62) (2.99)** (2.94)** 
Village had crime/dispute last year -0.080 -0.080 -0.078 -0.061 
 (3.57)** (2.55)* (2.61)** (2.71)** 
Village has a cooperative 0.040 0.040 0.039 0.031 
 (1.63) (1.07) (1.19) (1.31) 
Distance to cooperative (km) -0.490 -0.490 -0.451 -0.377 
 (2.74)** (2.09)* (1.83)+ (2.08)* 
Distance to sub-district (km) -1.284 -1.284 -1.314 -1.045 
 (1.92)+ (1.32) (1.45) (1.59) 
Low blackouts (< 30 minutes/day) -0.051 -0.051 -0.054 -0.040 
 (1.81)+ (1.06) (1.45) (1.48) 
Village has no telephones 0.057 0.057 0.056 0.044 
 (1.41) (0.90) (1.03) (1.12) 
Roads in and out of village unsealed 0.041 0.041 0.044 0.034 
 (1.40) (0.92) (1.14) (1.18) 
Constant -0.939 -0.939 -1.011 -0.889 
 (4.53)** (2.44)* (4.21)** (4.47)** 
Lambda (spatial error model)   0.285  
   (7.01)**  
Rho (spatial lag model    0.247 
    (6.13)** 
R-squared 0.16 0.16   
Log-likelihood function -566.32 -566.32 -541.68 -546.77 
Note: Spatial models use inverse distance weights for a 10 kilometre neighbourhood. **=sig at 1% level, * = 5%, +=10%. 
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When OLS is used as the estimator for the regression and robust (but not clustered) standard 

errors are calculated, it appears that the non-farm enterprises make up a larger share of rural 

household income for households with younger heads who are either married or female and lack 

tertiary education, and for larger and richer households who do not own land (Table 2, 

column 1). In terms of community characteristics, households in larger villages with a village 

business association appear to have higher NFRE income shares, while those further from both 

cooperatives and the sub-district headquarters and with an experience of crime or some other 

dispute have lower NFRE income shares. One community variable has an unexpected (and 

weakly significant) sign; the NFRE income share is lower for households living in villages where 

electricity blackouts are not very long-lasting (< 30 minutes/day) compared with similar 

households in villages with longer lasting blackouts. 

 

The inferences change somewhat when the standard errors are re-calculated to take account of 

the sample clustering. In general, the clustered standard errors are larger and four variables that 

appeared statistically significant with the robust standard errors become insignificant; land 

ownership, whether the village has a local business association, the distance to the sub-district 

office and the prevalence of blackouts. It is notable that the correction for clustering has most 

effect on the locational variables, since these are inherently clustered by construction. This 

suggests that inferences about the effect of infrastructure and other location-specific attributes on 

NFRE may be sensitive to the treatment of clustering and more general spatial effects. 

 

How reliable are the inferences coming from the OLS results in the first two columns of Table 2 

in terms of ignored spatial autocorrelation? Tests using the methods described in Section 3.1 
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were used, with two different types of weights – binary and inverse distance – for 

neighbourhoods varying from 10 to 40 kilometres. According to these tests there is substantial 

evidence of misspecification in the OLS results (Table 3).  

Table 3: Specification Tests for Spatial Autocorrelation in the OLS Residuals of the 
NFRE Income Share Regression  

Type of weighting matrix Moran’s I LMλ 
*
λLM  LMρ 

*
ρLM  

Inverse distance weights      
10 kilometre neighbourhood 8.64*** 59.09*** 17.26*** 45.84*** 4.00** 
20 kilometre neighbourhood 8.60*** 58.24*** 16.68*** 45.36*** 3.80* 
30 kilometre neighbourhood 8.54*** 57.27*** 16.86*** 44.36*** 3.95** 
40 kilometre neighbourhood 8.47*** 56.18*** 16.85*** 43.36*** 4.02** 
Binary weights      
10 kilometre neighbourhood 11.01*** 71.70*** 7.94*** 64.84*** 1.08 
20 kilometre neighbourhood 14.17*** 92.83*** 17.66*** 75.96*** 0.79 
30 kilometre neighbourhood 14.05*** 67.68*** 5.42*** 67.12*** 4.86** 
40 kilometre neighbourhood 12.12*** 32.02*** 0.76 35.97*** 3.73* 
Note: ***=p<0.01, **=p<0.05, *=p<0.10. 
 

Both the LMλ and the LMρ tests are statistically significant, so it is necessary to use the 

specification tests for spatial lags that are robust to unaccounted for spatial errors, and the tests 

for spatial errors that are robust to ignored spatial lags. According to these robust tests there is 

less evidence in favour of the spatial lag model (i.e., the values of *
λLM  are almost always above 

the threshold for statistical significance while those for *
ρLM  are sometimes below the 

threshold). In other words, inferences from the OLS estimates of the income share model in 

Table 2 are likely to be incorrect because of the unmodeled spatial autocorrelation in the 

residuals.  

 

4. Spatial Regression Results 

In light of the above results about the misspecification when OLS is used, a variety of spatial lag 

and spatial error models were estimated. Seven neighbourhood sizes were chosen, ranging from 
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the minimum feasible (to prevent “islands” with no neighbours) of 10 kilometres to a maximum 

of 40 kilometres. Both binary and inverse distance weights were considered. 

 

A comparison of the maximised log likelihoods of the resulting models indicated that there was 

better performance for the spatial error model than the spatial lag model (Figure 4). This is 

consistent with the results of the specification testing in Table 3. The log-likelihood was also 

higher when the spatial weight matrix was based on inverse distance rather than a simple 0/1 set 

of weights. When distance weights were used the model fit declined as the neighbourhood size 

increased and this was also clear for the binary weights for neighbourhoods greater than 20 

kilometres. 

Figure 4: Log-Likelihood Values for Spatial Regression Models with Binary and Inverse 
Distance Spatial Weight Matrices and Neighbourhoods of Different Sizes 
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Source: Author’s calculation using spatial regression methods described in the text. 
 

 



 

 18

The last two columns of Table 2 contain results of the spatial error and spatial lag models (based 

on inverse distance weights and a neighbourhood size of ten kilometres). According to the 

maximum likelihood estimates, in the preferred spatial error specification λ=0.29, with a 

standard error of 0.04.3 In other words, the spatially weighted residual NFRE share within a ten 

kilometre radius is significantly associated with the residual income share for a particular 

household even after controlling for household characteristics and limited set of location 

attributes (infrastructure access and quality and the local business environment). 

 

When the spatial error model is used, standard errors are generally smaller than for the clustered 

standard errors. In other words, the formula for clustered standard errors which is based on 

heteroscedasticity and autocorrelation within clusters of an unknown form appears to be too 

conservative. These differences could matter since two variables once again become statistically 

significant once inferences are based on the spatial error model; whether the household owns 

land and whether the village has a business association. Although the spatial lag model is not 

favoured over the spatial error model, it would also give similar inferences but with different 

coefficient values (since the spatial autocorrelation enters through the systematic part of the 

model). 

 

5. Conclusions 

Inferences about the household and locational factors that affect the importance of non-farm 

enterprises to rural households in developing countries may be sensitive to spatial effects. In the 

current example, use of clustered standard errors appears to lead to inferences that are too 

conservative. Further work is needed to see if this pattern holds elsewhere. 
                                                 
3 In the spatial lag model λ=0.25, with a standard error of 0.04. 
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