

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Input price risk and the adoption of conservation technology

Karina Schoengold¹ and David L. Sunding²

1. Department of Agricultural Economics, School of Natural Resources, University of Nebraska - Lincoln

2. Department of Agricultural and Resource Economics, University of California-Berkeley

Introduction

Technological innovation can lead to the development of new technologies that use natural resources more efficiently. When a new technology is available, consumers need to decide if they will adopt it. One factor that affects this decision is input price risk. With energy, this uncertainty has been exacerbated in recent years by price trends with increasing mean and variance

Figure 1. Mean and Standard Deviation of Monthly Oil Prices (1974-2009) Source: EIA

Key research question. Are producers more likely to adopt conservation when input prices are stochastic?

Economic Model

We consider a profit maximizing producer who has access to two production technologies. The model is based on previous work by Caswell and Zilberman (1986)

	Definition	Parameter
A producer has access to a conservation	Input-use efficiency	α
to a conservation technology (i=1) and a	Input price	w
conventional	Input quantity	x
technology (i=0).	Output quantity	Y
Thus, $\alpha_1 > \alpha_0$.	Production function	h(ax)

Technology Choice

Fixed canital cos

Constant Input Prices:

Max $h_i(\alpha_i x_i^*) - \overline{w} x_i^* - \kappa_i$

Stochastic Input Prices:

Let $\widetilde{w}_i(h_i(.), \alpha_i)$ = break even input price for technology i

Since $\alpha_1 > \alpha_0 \Longrightarrow \widetilde{w}_1 \ge \widetilde{w}_0$ Price distribution : $w \sim f(w) \in [w_L, w_H]$ Mean water price : $E[w] = \overline{w}$ Choosing a technology under stochastic input prices: Max $\left[\left[h(\alpha_i x_i^*(w)) - w x_i^*(w)\right]f(w)dw - \kappa_i\right]$

Economic Model: Key Results:

Proposition 1: All else equal, shutdown rates will be at least as high under stochastic input prices Proposition 2: Under stochastic input prices, shutdown rates are higher under conventional technology than under conservation technology

Data used for analysis: (see Schoengold et al., 2006 for additional information)

·Arvin Edison Water and Soil District (near Bakersfield, California)

•Years: 1997-2002 Field level data: Crop Irrigation technology •Field size 2001 spring crops.shp Elevation None Surface Wate Soil permeability •Frost-free days •Surface/groundwater

Figure 2. Distribution of groundwater and surface

Econometric Model and Results

Kev variables:

water

Surface water or groundwater: ·Each field has a single source of water ·Surface water users pay a fixed fee per acrefoot

·Groundwater cost depends on energy prices Irrigation technology: •Drip or microsprinkler - high water use

efficiency

- Sprinkler medium water use efficiency
- Gravity low water use efficiency
- For estimation purposes:
- •Conventional = Gravity irrigation
- Conservation = Sprinkler, drip, or microsprinkler

Verification of Economic Model

	All Field	ls	Surface W	/ater	Groundw	ater
	Marginal	Std.	Marginal	Std.	Marginal	Std.
Variable	Effect	Error	Effect	Error	Effect	Error
Surface water	-0.0681 ***	0.016	-	-	-	-
Conservation irrigation	-0.13 ***	0.0268	-0.0802 *	0.0433	-0.152 ***	0.034
Spring crop = truck crop	0.108 ***	0.016	0.145 ***	0.0262	0.0858 ***	0.020
No. of Observations	4604		1923		2681	

Table 1: Probit estimation of fall fallowing decisions.

Results	(consistent with predicted responses):
 Produce a field 	ers with fixed input price are less likely to fallow
•For pro	ducers with stochastic input prices, those with
conserv	ation irrigation are less likely to fallow a field

Variable	Coefficient		Std. Error
Surface water	164.5		172
Field size	-8.81		11.2
Spring crop = truck crop	-0.684	***	0.0694
Elevation	4.05	***	0.525
Soil permeability	1.04	***	0.222
Frost-free days	-0.218	*	0.129
WSA x Size of field	17.2		18.8
WSA x Elevation	-0.383		0.655
WSA x Soil permeability	-0.196		0.375
WSAx Frost-free days	-0.597		0.626
Number of Observations	4596		
Depudo D2	0 2327		

Table 2: Probit estimation of the adoption of conservation technology adoption (Fixed effects by year and township included). A joint test of all WSA coefficients shows insignificance.

Problems with Probit: underlying differences in the treated and control groups

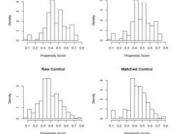


Figure 3. Estimated propensity scores for treated (surface water) and control (groundwater)

Matching results: the average treatment effect (ATE) based on propensity score matching is insignificant

Alternative Estimation:

Pre-processing (Ho et al., 2007): Step 1: Process the data and keep only observations that are matched.

Step 2: Proceed with standard parametric estimation:

/ariable	Total Marginal Effect	Std. Error
Surface water	0.0287 ***	0.00086
ield size	-0.227	1.69
Spring crop = truck crop	-0.785 ***	0.013
Elevation	0.38 ***	0.061
Soil permeability	0.102 ***	0.0332
rost-free days	-0.305	0.290
nteraction terms	Marginal Effect	Std. Error
VSA x Size of field	-2.11	2.37
VSA x Elevation	-0.2812 ***	0.0798
VSA x Soil permeability	-0.728	0.438
VSA x Frost-free days	-0.572	0.579

Table 3: Probit estimation of the adoption of conservation technology adoption (Fixed effects by year and township included)

Results and Implications: ·After correcting for sample differences, producers with a fixed input price are more likely to adopt conservation •Correcting for differences in sample characteristics is important in determining the effect of price risk ·Results could have implications for determining technology choices based on fixed price contracts or by source of input

Literature cited

- Caswell, M. & Zilberman, D. (1986), 'The effect of well depth and land quality on the choice of irrigation technology', American Journal of Agricultural Economics 68(4):798-811.
- Ho, D. E., Imai, K., King, G. & Stuart, E. A. (2007), 'Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference', Political Analysis 15: 199-236.

Schoengold, K., D. L. Sunding, and G. Moreno (2006), "Price elasticity reconsidered: Panel estimation of an agricultural water demand function", Water Resources Research, 42, W09411, doi:10.1029/2005WR004096

Acknowledgments

We thank participants at the Heartland Environmental and Resource Economics Workshop (University of Illinois, 2010) and at the World Congress of Environmental and Resource Economists (Montreal, 2010) for feedback on an earlier version of this research

Poster prepared for presentation at the Agricultural & Applied Economics Association's 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, Pennsylvania, July 24-26, 2011

For further information: Please contact kschoengold2 @unl.edu