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Abstract

Shallow lakes display hysteresis in their response to phosphorous loading. Grad-
ual increases in the nutrient content of the lake can appear to have little effect
on the oligotrophic state of the lake until a point at which the lake suddenly
flips to a eutrophic state. Ecotaxes on phosphorous loading have been suggested
as means to maintain the lake in the socially desirable state - oligotrophic or
not - when society can agree on a common welfare function. In this paper, we
consider the case where society is divided into two interest groups and is thus
unable to agree. In particular, the communities that share the use of the lake
disagree on the relative importance of the shallow lake acting as a waste sink for
phosphorous run-off as opposed to other ecosystem service. A dynamic game in
which communities maximize their use of the lake results in a Nash equilibrium
where the lake is in a eutrophic state when in fact the Pareto-optimum would
be for the lake to be in an oligotrophic state. The tax that would induce, in a
non-cooperative context, all of society’s members to behave in such a way as to
achieve a Pareto-optimal outcome is derived. Further, both types of commu-
nities lobby to have their preferred level of tax applied based on their relative
preferences for a clean lake and phosphorous loading. The effects of the lobby-
ing on the application of the optimal tax are investigated for particular values
of relative preferences and the relative size of each group.



1 Introduction

The artificial enrichment of lakes and rivers with residual nutrients from eco-
nomic activity such as agriculture can lead to the transformation of these habi-
tats from clear waters that provide a high level of ecosystem services into turbid
waters containing an overabundance of aquatic plant life and often leads to the
development of toxic algal blooms.

Certain bodies of water, and in particular shallow lakes, present a hysteresis
in their response to phosphorous loading. That is, a lake will remain in an olig-
otrophic state over long periods of time with gradual increases in phosphorous
loading to a point at which it suddenly flips to an altnernate, eutrophic state.
Once the flip has occurred, the lake then remains eutrophic despite decreases
in phosphorous loading. The threshold point at which the lake changes state is
known as a Skiba point. It denotes the flip point between alternative basins of
attraction and it is unique, as establised by Wagener (2003).

Several authors have integrated the dynamics of the shallow lake into eco-
nomic analysis, in particular, S. R. Carpenter, D. Ludwig, W.A. Brock, W. D.
Dechert, S. I. O’Donnell, L. Grüne, M. Kato, W. Semmler, K.-G. Mäler, A.
Xepapadeas, A. De Zeeuw and F.O.O. Wagener. Carpenter et al. (1999) pose
a lake dynamic equation with respect to phosphorous such that it can be used
for economic analysis. They perform a dynamic stochastic analysis to show
that models random shocks prescribe more conservative levels of phosphorous
loading than deterministic models. Dechert and Brock (2000) first pose the
problem as a dynamic game of communities each maximizing its welfare in its
use of the lake and identify the presence of Skiba points when there are more
than two communities around the lake. Grüne et al. (2005) use dynamic pro-
gramming to solve the problem. O’Donnell and Dechert (2004); Dechert and
O’Donnell (2005) use stochastic programming to derive Nash equilibrium re-
sults when the phosphorous loading into the lake is subject to rainfall as the
random shock. Mäler et al. (2003) propose a tax as the optimal policy to induce
a Pareto-optimal solution to the game.

It is assumed that society as a whole benefits from a body of water acting
as a waste sink for agriculture but also providing a source of clean water for
consumption, other production and recreational activities. Therefore, commu-
nities that share the use of a lake will often have the same relative preference
for the lake as a waste sink to other uses that require a clean lake. In short,
this means that each community around the lake will have the same welfare
function for alternative uses of the lake. As shown by Mäler, Xepapadeas and
De Zeeuw, a tax on phosphorous loading can achieve the Pareto-optimal state
for the lake when the communities each seek to maximize their welfare in a
non-cooperative manner.

When different communities benefit in different proportions from phospho-
rous loading to other benefits provided by the lake, however, it is not possible
to model the welfare of all communities with the same function. In this case,
the Pareto-optimal level of phosphorous loading will be different than when the
welfare function is the same across all communitie. In addition, each community
acting to maximize its welfare will lead to a different Nash equilibrium. This
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requires solving for a new tax to induce the Pareto-optimal level of phosphorous
loading into the lake.

This paper therefore considers the case where society’s preferences for the
state of the lake are characterised by two distinct welfare functions. This can
be thought of as two types of communities that share the use of the lake where
one type of community is predominantly agricultural and benefits more from
higher phosphorous loading, and the other, a green community, has a higher
preference for an oligotrophic lake.

As noted above, the shallow lake presents a hysteresis in its response to
phosphorous loading. Its biological function remains the same as in the case
with a single welfare function. Under the constraint of the lake’s response to
phosphorous, each community will aim to optimize its welfare according to one
of two welfare functions, thus giving rise to a Nash equilibrium different from
the single-welfare function case. The Pareto-optimal amount of phosphorous
loading will also be different in the two-function case, and therefore so will the
tax required to induce each community to behave such a way as to attain a
Pareto outcome. The first part of our analysis finds these results.

In the second part, lobbying by the two types of communities and its impact
on the optimal tax policy is assessed. It is shown that as a result of lobbying,
the optimal tax policy may not be implemented and further, that even when
the tax falls only slightly short of the optimal tax, the hysteretic property of
the lake may lead to its being in a eutrophic state.

Several articles explore the consequences of rent-seeking on environmental
policy (Damania, 1999; Wilson and Damania, 2005) and on the optimal tax rate
in particular (Lee, 1985; Brooks and Heijdra, 1987). However, there are cur-
rently no publications that combine the dynamics of the shallow lake, optimal
taxation and the impact of rent-seeking behaviour on the application of this
policy. The following work provides new results and insights into why socially
optimal tax policy may often not be implemented.

We begin by describing the lake dynamics upon which this analysis is based.

2 Shallow Lake Dynamics

How are shallow lakes different from deep lakes? In summer months, the wa-
ter of deep lakes stratifies into layers of different temperatures. During these
months, nutrients are lost from the warm upper layers (epilimnion) to the colder
deeper layers (hypolimnion), where they sink to the bottom into the sediments
and remain segregated from the epilimnion until winter when the water column
of the entire lake becomes mixed again.

Shallow lakes are different from deeper lakes because they tend to be polymic-
tic, i.e. have a mixed water column most of the time. Shallow lakes can have
a small or large surface, and the proportion of their water that is in contact
with sediments makes them function differently from deep lakes. In particular,
the rate of recycling of nutrients from sediments into the water is much higher.
This means that more nutrients are available to consumers, including to micro-
organisms such as algae. As a result, contrary to deep lakes where vegetation
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is sparse and more present around the edges, shallow lakes are often filled with
aquatic plants (Scheffer, 1998).

When the nutrient level of the lake is low, the plants tend to be small and
the water clear. Increases in nutrient loading, however, encourage the devel-
opment of larger plants and of phytoplankton. These plants and the surface
layer of phytoplankton create shade and turbidity, which leads to the collapse
of the vegetation that does not tolerate shade. This further favours the devel-
opment of phytoplankton, and can result in the emergence of toxic algal bloom,
cyanobacteria, which are shade tolerant (Scheffer, 1998).

This section presents the model of a shallow lake presented by Carpenter
et al. (1999), which they claim accurately depicts long-term ecological data
and the results of limnology and eutrophication studies. The lake equation
they propose provides the constraint equation to the economic analysis that
follows. In this model, the limiting factor for eutrophication is phosphorous.
Lake eutrophication dynamics are based on total available phosphorous as the
state variable, and phosphorous input as the control variable.

Although nitrogen is also used to stimulate plant growth, a model based
on phosphorous makes sense because phosphorous is thought to be the limiting
nutrient of plant growth in many cases (Ricklefs, 1979). In addition, cyanobac-
teria have the ability to fix nitrogen from the atmosphere, and therefore their
growth will be limited by the phosphorous available (Alaouze, 1995).

Carpenter et al. (1999) identify three categories of lakes by their response to
phosphorous input and reductions: fully reversible, hysteretic and irreversible.
Our focus is an economic model of which the goal is to address eutrophication
through policy aimed at mitigating phosphorous input alone.

2.1 The General Lake Model

The different functions of the lake with respect to phosphorous are used to build
the lake-phosphorous dynamics equation as follows.

Phosphorous Sinks
Phosphorous is removed from the stock P available to algae via outflow, se-

questration into biomass and sedimentation. Sedimentation is often the largest
factor contributing to phosphorous loss and thus confers the lake its phospho-
rous waste sink function. The removal of phosphorous from the stock at time t
is modelled as a linear function −sP (t) where s is the rate of loss of phoshorous
from the available stock.

Phosphorous Sources
Nutrients are retained by the lake and recycled between the physical envi-

ronment and made available to living organisms such as fish or benthic plants
(Ricklefs, 1979). Therefore external phosphorous loading from the catchment,
such as run-off from agricultural activities or sewage effluents, contribute to
the total stock of phosphorous available to consumers. The external input of
phosphorous at time t is represented by L(t).
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Within the lake, phosphorous is recycled and made available from living or-
ganisms and sediment. Phosphorous release from sediment is a major source of
recycled phosphorous and the cause of the hysteresis phenomenon. Lake stud-
ies have shown that long after external loading of phosphorous has ceased, the
available stock of phosphorous remains high due to the release of phosphorous
from compounds in the sediment. Scheffer (1998) gives an example of a Danish
lake studied over a period of eight years following reduction in external loading.
During this time, phosphorous continued to be released from the sediments. At
the end of the study, it was concluded that the lake could continue to release
phosphorous for another ten years.

The recycling equation is a sigmoid function, that is, it has an inflection
point at which the curve switches from convex to concave. Phosphorous recy-
cling is given by

rP q(t)
mq + P q(t)

where
r is the maximum rate of recycling of P .
m is the value of P at which recycling reaches half the maximum rate r.
q is dimensionless and determines the steepness of the curve at the point

of inflection. q ≥ 2 and the larger q, the steeper the curve.

Adding the sources of phosphorous, i.e. loading and recycling, gives us the
total phosphorous made available for consumption at time t:

L(t) +
rP q(t)

mq + P q(t)

Lake-Phosphorous Dynamics
The change in phosphorous stock in the lake at time t is given by the sum of
the phosphorous sinks and source at time t and the lake-phosphorous dynamics
are therefore modelled as:

dP

dt
= L(t)− sP (t) +

rP q(t)
mq + P q(t)

(1)

The plots of the sinks and sources of phosphorous can be overlayed to show
how controlling phosphorous loading can be used to affect the state of the lake.
Refer to Appendix A for the graph and its analysis.

2.2 The Shallow Lake Model

The focus of this paper is the case where the eutrophic state of the lake is
reversible by reductions of phosphorous alone. This case lends itself to the
application of policy that induces agents to modify the activities that result
in external phosphorous input. Because of the possibility of hysteresis in the
response of the lake to phosphorous loading, however, policy implementations
must allow for reduction in loading not having an immediate effect on restoring
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the lake to an oligotrophic state. Lakes that are deep and cold, or benefit from
rapid flushing or rates of sedimentation or that have been eutrophied for only
a short time will be easier to reverse (Carpenter et al., 1999). Shallow lakes,
however, will tend to be hysteretic due to characteristics such as warmer water
and higher ratio of water in contact with the bottom of the lake that confer
them higher rates of recycling.

The parameter values that characterize shallow lakes are identified as fol-
lows. Consider the following initial value problem given by the differential
equation (1) of section 2.1:

Ṗ (t) = L(t)− sP (t) + r
P 2(t)

P 2(t) + m2
, P (0) = P0, (2)

As in several economic analyses around the shallow lake, q = 2 is chosen as the
parameter for the steepness of the recycling response to the stock of phospho-
rous (Mäler et al., 2003; Grüne et al., 2005; Wagener, 2003).

To make the problem scale invariant, the following substitutions are made1:

P = x/m,

L = ar,

s = br/m

and by changing the time scale to tr/m, one obtains the following equations for
the shallow lake dynamics:

a(t) = ẋ(t) + bx(t)− x2

x2 + 1

This can be interpreted as the external loading of phosphorous as a func-
tion of the stock of phosphorous. It may seem strange from a biological point
of view to present loading as a function of the stock of phosphorous. However,
the objective of policy is to manage phosphorous content in the lake and, as
pointed out by Grüne et al. (2005), “[t]he management can measure the stock
and can control the loading as a function of the stock”.

Assuming steady-state conditions where the stock of phosphorous is con-
stant, i.e. ẋ(t) = 0, we have:

a(t) = bx− x2

x2 + 1

Furthermore, if the phosphorous loading is constant, i.e. da/dt = 0, we have:

ȧ(t) = b− 2x

(x2 + 1)2
(3)

1Refer to Murray (1989) pp. 5 and 652 for a more detailed description of this technique.
Carpenter et al. (1999) also make use of it in Appendix A of their article, as do Mäler et al.
(2003)
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Similarly to Mäler et al. (2003), by analysing this equation, we find that
for q = 2 and 1

2 ≤ b ≤ 3
8

√
3, the lake displays a reversible hysteresis in its

response to phosphorous loading 2. These are the parameters that will be used
to model the shallow lake that can be reversed from a eutrophic back to an
oligotrophic state. Note that in this case, eutrophication is reversible by simple
control of external phosphorous input. In this case, we can assume that all that
is needed to keep the lake in an oligotrophic state is to manage levels of external
phosphorous loading without any requirement for policy that alters the rates
of phosphorous sedimentation or recycling.

3 Optimal Tax with Two Types of Communities

In their article, Mäler et al. (2003) consider the case where all communities
are able to agree on a common welfare function. They note, however, that it
is possible that different interest groups may in fact not be able to agree on
a common welfare function. In the following, the case where the communities
that share the lake are divided into two interest groups with different welfare
function is considered.

The results from this section will be used in the subsequent section to ex-
tend the dynamic shallow lake-communities’ model and consider the impact of
lobbying by the interest groups on the optimal tax, that is, on the tax that
would induce a Pareto-optimal state of the lake.

Consider that society is made up of two groups with conflicting interests:
agricultural communitites and green communities. The agricultural communi-
ties are predominantly made up of farmers who privately benefit from applying
fertilizer and, by proxy, from phosphorous loading into the lake. The green
communities are predominantly made up of people who, although they benefit
from the application of fertilizer to crops because they consume agricultural
products, have a high preference for an oligotrophic lake.

We adopt the welfare function used by Mäler et al. (2003) and modify it
to create two welfare functions that each represents the preferences of the two
groups. In this scenario, the farmers attach very low importance c1 to the
ecosystem services provided by the lake, and the green communities attach
a relatively high importance c2 to ecosystem services and so c1 < c2. The
total n communities previously considered can be divided into n1 agricultural
communities and n2 green communities.
Each agricultural community i’s welfare function is thus given by

Wi = ln ai − c1x
2, i = 1, . . . , n1

while each green community j’s welfare function is given by

Wj = ln aj − c2x
2 j = 1, . . . , n2

where
c1 < c2 i.e., the agricultural communities have a lower relative preference
2Refer to Appendix B for the derivation os these parameters.
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for an oligotrophic lake than do the green communities
n1 is the number of communities with a majority in favour of a low tax rate
n2 is the number of communities with a majority in favour of a high tax rate
n1 + n2 = n is the total number of communities that share the use of the lake

3.1 Pareto-optimal Phosphorous Loading

A benevolent politcian wishing to act on behalf of citizens will want to imple-
ment a tax that optimizes social welfare. To achieve a Pareto-optimal solution,
he needs to first find the total amount of phosphorous loading a that will maxi-
mize social welfare subject to the lake remaining in steady state. He may choose
to do this by maximizing the sum of the communities’ welfares, i.e. by solving:

max
a

 n1∑
i=1

Wi +
n2∑

j=1

Wj

 =
n1∑
i=1

∫ ∞
0

e−ρt
[
ln ai(t)− c1x

2(t)
]
dt

+
n2∑

j=1

∫ ∞
0

e−ρt
[
ln aj(t)− c2x

2(t)
]
dt,

=
∫ ∞
0

e−ρt

 n1∑
i=1

ln ai(t)−n1c1x
2(t) +

n2∑
j=1

ln aj(t)− n2c2x
2(t)

 dt, (4)

(5)
i = 1, . . . , n1, j = 1, . . . , n2

s.t. ẋ(t) = a(t)− bx(t) +
x2(t)

x2(t) + 1
= 0,

a(t) =
n1∑
i=1

ai(t) +
n2∑

j=2

aj(t), i = 1, . . . , n1, j = 1, . . . , n2

The current value Hamiltonian for this equation is:

Hc =
n1∑
i=1

lnai(t)−c1n1x
2(t)+

n2∑
j=1

lnaj(t)−c2n2x
2(t)+λ(t)

[
a(t)− bx(t) +

x2(t)
x2(t) + 1

]
,

λ = eρtµ,

a(t) =
n1∑
i=1

ai(t) +
n2∑

j=2

aj(t),

i = 1, . . . , n1, j = 1, . . . , n2

The first order conditions are:

dHc

dai(t)
=

1
ai(t)

+ λ(t) = 0, i = 1, . . . , n1 (6)
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dHc

daj(t)
=

1
aj(t)

+ λ(t) = 0, j = 1, . . . , n2 (7)

dλ

dt
− ρλ = −dHc

dx
= 2n1c1x(t) + 2n2c2x(t) + λ(t)

[
b− 2x(t)

(x2(t) + 1)2

]
(8)

dHc

dλ(t)
= a(t)− bx(t) +

x2(t)
(x2(t) + 1)2

(9)

From (6) and (7),

λ(t) = − 1
ai(t)

= − 1
aj(t)

i = 1, . . . , n1, j = 1, . . . , n2, (10)

which implies
ai(t) = aj(t) ∀i = 1, . . . , n1, j = 1, . . . , n2 (11)

Moreover:

λ(t) = − 1
ai(t)

i = 1, . . . , n1 implies n1ai(t) = − n1

λ(t)

and therefore
n1∑
i=1

= n1ai(t), and by similar argument
n2∑

j=1

= n2aj(t),

which means that

a(t) =
n1∑
i=1

ai(t) +
n2∑

j=2

aj(t) i = 1, . . . , n1, j = 1, . . . , n2 (12)

and
a(t) = n1ai(t) + n2aj(t) i = 1, . . . , n1, j = 1, . . . , n2 (13)

Note that λ can be expressed as a function of a via the following reasoning:

λ(t) = − 1
ai(t)

i = 1, . . . , n1 and λ(t) = − 1
aj(t)

j = 1, . . . , n2

⇒ ai(t)λ(t) = −1 i = 1, . . . , n1 and aj(t)λ(t) = −1 j = 1, . . . , n2

⇒ λ(t)
n1∑
i=1

ai(t) = −n1 and λ(t)
n2∑

j=1

aj(t) = −n2

Adding the two together:

λ(t)
n1∑
i=1

ai(t) + λ(t)
n2∑

j=1

aj(t) = −(n1 + n2)
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⇒ λ(t)a(t) = −(n1 + n2)

and therefore
⇒ λ(t) = −(n1 + n2)

a(t)
(14)

From (8)

λ̇(t) = 2x(t)(n1c1 + n2c2) + λ(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
(15)

From (10):

λ̇(t) =
ȧi(t)
ai

2
(16)

Combined with (15) gives:

ȧi(t)
ai

2
= 2x(t)(n1c1 + n2c2)−

1
ai(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
(17)

and because ai(t) = aj(t), from equation (11),

ȧi(t)
ai(t)aj(t)

= 2x(t)(n1c1 + n2c2)−
1

ai(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
(18)

Multiplying by (n1 + n2)ai(t)aj(t), one obtains:

(n1ai(t) + n2aj(t)) = 2ai(t)(ai(t)n1 + aj(t)n2)(n1c1 + n2c2)x(t)

− (ai(t)n1 + ai(t)n2)

[
b + ρ +

2x(t)
(x2(t) + 1)2

]

Using results (11) and (13), the above is equivalent to:

ȧ(t) = 2a(t)ai(t)(n1c1 + n2c2)x(t)− a(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]

And noting that ai(t) = a(t)
n1+n2

from equations (14) and (10) gives:

ȧ(t) = 2a2(t)x(t)
(c1n1 + c2n2)

n1 + n2
− a(t)

[
bρ− 2x(t)

(x2(t) + 1)2

]

With constant loading da/dt = 0, and so:

ȧ(t) =
2a∗2 (c1n1 + c2n2)

n1 + n2
x(t)− a∗

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
= 0
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which means a∗ = 0 or:

ȧ(t) =
2a∗

n1 + n2
x(t) (c1n1 + c2n2)−

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
= 0

And so the steady-state Pareto-optimal solution is:

a∗ =
(n1 + n2)

[
b + ρ− 2x(t)

(x2(t)+1)2

]
2x(t) (c1n1 + n2c2)

(19)

3.2 Graph and Analysis of the Steady-state Dynamic Pareto-
optimal Solution

This solution can be plotted in the (x,a)-plane together with the phase plot for
the steady-states of the lake when dx/dt = 0, given by equation (3). The inter-
section of the two curves gives society’s optimal phosphorous loading solution.
Using the hysteretic lake value b = 0.6, ρ = 0.03, n1 = 2, n2 = 2, c1 = 0.2 and
c2 = 2, the graphs intersect at (x∗, a∗) = (0.3472, 0.1007), as shown in Figure 1
below, thus giving us the Pareto-optimal steady-state equilibrium. Note that
this result is below the point at which the lake flips from an oligotrophic to a
eutrophic state, i.e. for the selected constants, society prefers an oligotrophic
lake.

Figure 1: Pareto-optimal Loading with Two Welfare Functions
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3.3 Non-cooperative Equilibria

In the absence of management, however, each community maximizes its own
utility according to its welfare function, and therefore the agricultural commu-
nities each

max
a

∫ ∞
0

e−ρt
[
ln ai(t)− c1x

2(t)
]
dt, i = 1, . . . , n1

s.t. ẋ(t) = a(t)− bx(t) +
x2(t)

x2(t) + 1
= 0,

a(t) =
n1∑
i=1

ai(t) +
n2∑

j=1

aj(t)

and the green communities each

max
a

∫ ∞
0

e−ρt
[
ln aj(t)− c2x

2(t)
]
dt, j = 1, . . . , n2

s.t. ẋ(t) = a(t)− bx(t) +
x2(t)

x2(t) + 1
= 0,

a(t) =
n1∑
i=1

ai(t) +
n2∑

j=1

aj(t)

Setting up a current value Hamiltonian and solving first order conditions for
these two problems yields:

ȧi(t) = 2ai(t)
2n1c1x(t)− n1ai(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
and

ȧj(t) = 2aj(t)
2n2c2x(t)− n2aj(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]

Solving for constant phosphorous loading, that is, dai/dt = 0 and daj/dt = 0,
one obtains the steady-state open-loop Nash equilibrium for total loading a:

a =

[
b + ρ− 2x(t)

(x2(t)+1)2

]
2x(t)

[
n1

c1
+

n2

c2

]

3.4 Graph and Analysis of the Nash Equilibrium Solution

Again, this solution is plotted in the (x,a)-plane together with the phase plot for
the steady-states of the lake when dx/dt = 0, given by equation (3). The inter-
section of the two curves gives the Nash equilibrium phosphorous loading solu-
tions for the state of the lake. Using the hysteretic lake value b = 0.6, ρ = 0.03
and n1 = 2, n2 = 2, c1 = 0.2 and c2 = 2, the curves intersect at (0.4485, 0.1016),
(0.7402, 0.0902) and (3.1832, 0.9976), as show in Figure 2. Point (0.7402, 0.0902)
is an unstable skiba point, i.e., a small variation in loading will cause the equi-
librium to shift to either the lower equilibrium at (0.4485, 0.1016) or the higher
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equilibrium at (0.7402, 0.0902). Note that both of these points are above the
point at which the lake flips to a eutrophic state. This means that when the
green communities and agricultural communities do not cooperate, the lake will
be in a eutrophic state.

Figure 2: Nash Equilibrium Loading with Two Welfare Functions

3.5 Optimal Taxation with Two Interest Groups

Our benevolent politician therefore wants to find the tax rate that will achieve
the optimal social welfare outcome derived in section 3.1 without the need for
management. The effect of the tax will be to modify each community’s welfare
function and induce each one to modify its phosphorous loading accordingly.
With the tax, the agricultural and green communities will each

max
ai

∫ ∞
0

e−ρt
[
ln ai(t)− τ(t)ai(t)− c1x

2(t)
]
dt, i = 1, . . . , n1

s.t. ẋ(t) = a(t)− bx(t) +
x2(t)

x2(t) + 1
= 0,

a(t) =
n1∑
i=1

ai(t) +
n2∑

j=1

aj(t)

and
max

aj

∫ ∞
0

e−ρt
[
ln aj(t)− τ(t)aj(t)− c2x

2(t)
]
dt, j = 1, . . . , n2

s.t. ẋ(t) = a(t)− bx(t) +
x2(t)

x2(t) + 1
= 0,

a(t) =
n1∑
i=1

ai(t) +
n2∑

j=1

aj(t)
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Setting up a current value Hamiltonian and solving first order conditions for
each of these two problems yields:

τ(t) =
1

ai(t)
+ λi(t), i = 1, . . . , n1 (20)

and
τ(t) =

1
aj(t)

+ λj(t), j = 1, . . . , n2 (21)

From these two results, the following holds:

n1τ(t) =
n1∑
i=1

1
ai(t)

+
n1∑
i=1

λi(t)

and

n2τ(t) =
n2∑

j=1

1
aj(t)

+
n2∑

j=1

λj(t)

which added together gives

(n1 + n2)τ(t) =
n1∑
i=1

1
ai(t)

+
n2∑

j=1

1
aj(t)

+
n1∑
i=1

λi(t) +
n2∑

j=1

λj(t)

Recognizing the first two terms on the right hand side as −(n1 + n2)λ(t) from
Section 3.1 results in

(n1 + n2)τ(t) = −(n1 + n2)λ(t) +
n1∑
i=1

λi(t) +
n2∑

j=1

λj(t)

⇒ τ(t) = −λ(t) +
1

(n1 + n2)

n1∑
i=1

λi(t) +
1

(n1 + n2)

n2∑
j=1

λj(t) (22)

Note that in parallel with Mäler et al.’s result in the single welfare function case,
the optimal tax bridges the gap between society’s shadow cost of phosphorous
loading and each community’s private cost.

3.6 Optimal Constant Tax Rate

As noted by Mäler et al., it is not practical to implement a time-variable tax
and a constant tax is preferable, i.e., a tax such that dτ/dt = 0. Using this
condition and combining with equation (22), one can solve for constant λ∗ as
follows to then derive the constant tax rate.

dτ

dt
= −dλ(t)

dt
+

d

dt

(
1

(n1 + n2)

n1∑
i=1

λi(t)

)
+

d

dt

 1
(n1 + n2)

n2∑
j=1

λj(t)

 = 0

⇒ dλ(t)
dt

=
1

(n1 + n2)

n1∑
i=1

(
dλi(t)

dt

)
+

1
(n1 + n2)

n2∑
j=1

(
dλj(t)

dt

)
(23)
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From the Hamiltonian first order conditions for this problem,

λ̇i(t) = 2c1x(t) + λi(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
(24)

and

λ̇j(t) = 2c2x(t) + λj(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
(25)

The optimal steady-state tax rate is found by setting each of λ̇(t), λ̇i(t) and
λ̇j(t) equal to zero and solving to find λ∗, λ∗i and λ∗j . From optimal management
equation (14):

λ(t) = −(n1 + n2)
a(t)

This holds for all t, therefore this is also true for steady-state λ∗ and a∗, i.e.

λ∗ = −(n1 + n2)
a∗

To find λ∗i , one solves

λ̇i(t) = 2c1x(t) + λi(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
= 0

⇒ λ∗i =
−2c1x(t)[

b + ρ− 2x(t)

(x2(t)+1)2

]
Similarly, one finds that

λ∗j =
−2c2x(t)[

b + ρ− 2x(t)

(x2(t)+1)2

] (26)

Substituting back into (22), gives the optimal constant tax:

τ∗ =
(n1 + n2)

a∗
+

n1

(n1 + n2)

 −2c1x(t)[
b + ρ− 2x(t)

(x2(t)+1)2

]
+

n2

(n1 + n2)

 −2c2x(t)[
b + ρ− 2x(t)

(x2(t)+1)2

]


⇒ τ∗ =
(n1 + n2)

a∗
− 1

(n1 + n2)

 2x(t)(n1c1 + n2c2)[
b + ρ− 2x(t)

(x2(t)+1)2

]


⇒ τ∗ =
(n1 + n2)

a∗
− 1

a∗
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Therefore:
⇒ τ∗ =

(n1 + n2 − 1)
a∗

(27)

is the constant tax that will achieve the Pareto-optimal amount of phosphorous
loading when each community acts to maximize its welfare in a non-cooperative
way.

3.7 Private Equilibrium with Tax

To determine the impact of the tax on the non-cooperative phosphorous loading
in steady state and on the state of the lake, λ̇(t), λ̇i(t) and λ̇j(t) is substituted
into the steady-state tax equation. Therefore substituting (14), (24) and (25)
back into (23) one obtains:

−(n1 + n2)ȧ(t)
a2(t)

=
1

(n1 + n2)

[
n1∑
i=1

(
2c1x(t) + λi(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

])

+
n2∑

j=1

(
2c2x(t) + λj(t)

[
b + ρ− 2x(t)

(x2(t) + 1)2

])

⇒ ȧ(t) = −2x(t)a2(t)
(n1c1 + n2c2)
(n1 + n2)2

− a2(t)
(n1 + n2)2

[
b + ρ− 2x(t)

(x2(t) + 1)2

] n1∑
i=1

λi(t) +
n2∑

j=1

λj(t)

 (28)

From (20)

λi(t) = τ − 1
ai(t)

and λj(t) = τ − 1
aj(t)t

(29)

By substituting into (28) one obtains:

ȧ(t) = −2x(t)a2(t)
(n1c1 + n2c2)
(n1 + n2)2

− a2(t)
(n1 + n2)2

[
b + ρ− 2x(t)

(x2(t) + 1)2

] n1∑
i=1

(
τ − 1

ai(t)

)
+

n2∑
j=1

(
τ − 1

aj(t)

)
⇒ ȧ(t) = −2x(t)a2(t)

(n1c1 + n2c2)
(n1 + n2)2

− a2(t)
(n1 + n2)2

[
b + ρ− 2x(t)

(x2(t) + 1)2

](n1 + n2)τ −

 n1∑
i=1

1
ai(t)

+
n2∑

j=1

1
aj(t)t


Recognizing the last two terms as −λ(n1+n2) and substituting −(n1+n2)/a(t)
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for λ yields

ȧ(t) = −2x(t)a2(t)
(n1c1 + n2c2)
(n1 + n2)2

− a2(t)
(n1 + n2)2

[
b + ρ− 2x(t)

(x2(t) + 1)2

] [
(n1 + n2)τ −

(n1 + n2)2

a(t)

]

⇒ ȧ(t) = −2x(t)a2(t)
(n1c1 + n2c2)
(n1 + n2)2

− a2(t)
(n1 + n2)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
[a(t)τ − (n1 + n2)]

Assuming steady-state loading, i.e. ȧ(t) = 0:

a∗
[
−2a∗x(t)

(n1c1 + n2c2)
(n1 + n2)2

− 1
(n1 + n2)

[
b + ρ− 2x(t)

(x2(t) + 1)2

]
[a∗τ − (n1 + n2)]

]
= 0

which implies a∗ = 0 or

2a∗x(t)
(n1c1 + n2c2)
(n1 + n2)2

+

[
b + ρ− 2x(t)

(x2(t) + 1)2

] [
a∗τ

(n1 + n2)
− 1

]
= 0

Solving for a∗ gives:

a∗ =

[
b + ρ− 2x(t)

(x2(t)+1)2

]
2x(t) (c1n1+c2n2)

(n1+n2)2
+ τ∗

(n1+n2)

[
b + ρ− 2x(t)

(x2(t)+1)2

] (30)

which is the Nash equilibrium phosphorous loading when the tax is applied.

3.8 Graph and Analysis of the New Nash Equilibrium Solution

The plot of the solution is overlayed onto the Pareto-optimal steady-state load-
ing curve from section 3.1 and shown in Figure 3. Note that when the optimal
tax is applied, the Nash equilibrium loading intersects the lake dynamics in
exactly the same point (x∗, a∗) = (0.3472, 0.1007) as the Pareto-optimal load-
ing. Moreover, there is now only one Nash equilibrium, and it is oligotrophic
in accordance with society’s preferences. This is not surprising given that the
objective of the tax is to bring phosphorous loading to the same level as that
which would be achieved under optimal management.
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Figure 3: Nash Equilibrium Loading with Two Welfare Functions and Tax

4 Lobbying, Political Ambition and their Impact on
the Optimal Tax

Consider the case where the lake is in a eutrophic state in spite of a current
tax on phosphorous loading. The green communities have a preference for an
oligotrophic lake and consider that the current tax rate is too low. The n com-
munities face an election to elect a single politician. The politician favoured by
the green communities promises to implement a higher tax on phosphorous that
will bring phosphorous loading down so as to reverse the lake to an oligotrophic
state. The farming communities favour a politician who promises to maintain
the tax at its current low level.

Figure 4 shows the Nash equilibrium loading with a low tax, τ = 1, together
with the curve of the Nash equilibrium loading with the optimal tax τ∗ = 29.78,
as given by equation (27). Note that in the context of a low tax, the high eu-
trophic Nash equilibrium could prevail, whereas in the case of the optimal tax,
only one Nash equilibrium is possible.

4.1 Lobbying to Influence Policy Outcomes

Each group applies lobbying effort to influence the policy outcome. The green
communities lobby in favour of a high tax and the farmers lobby for a low tax
on phosphorous loading. The lobbying effort of each agricultural community i
is denoted by li and the lobbying effort of each green community j is denoted
by mj .

We apply the Tullock model of rent-seeking (Tullock, 1980) to obtain the
probability of each groups’ lobbying efforts being successful at having their de-
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Figure 4: Nash Equilibrium Loading Low Tax and Optimal Tax

sired policy applied. The simplest, linear, form of the model is applied where
the expected payoff of each player is defined as the ratio of his investment di-
vided by the sum of the investments of all the players, multiplied by the reward
if he wins. Here, the investments are the lobbying efforts and the rewards are
the communities’ net benefit of having their desired policy applied, that is, their
welfare function with their preferred tax rate. Note that the probability of hav-
ing their preferred policy implemented is synonymous with the probability of
having their preferred politician elected.

The probability of the agricultural communities having their preferred policy
applied is:

Pf =
∑n1

i=1 li∑n1
i=1 li +

∑n2
i=j mj

(31)

The probability of the green communities having their preferred policy applied
is:

Pg =
∑n2

j=1 mj∑n1
i=1 li +

∑n2
i=j mj

(32)

The expected payoff of each community is the probability of having its
preferred policy applied, minus the probability of it not being applied, minus its
own initial lobbying investment. The problem thus becomes for each community
to maximize its expected return by applying the correct amount of lobbying
effort, i.e.

max
l

E {ΠF } =
∑n1

i=1 li∑n1
i=1 li +

∑n2
i=j mj

(
ln aL τ − c1x

2
L τ

)

+

(
1−

∑n1
i=1 li∑n1

i=1 li +
∑n2

j=1 mj

)(
ln aH τ − c1x

2
H τ

)
− li (33)
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and

max
m

E {ΠG} =
∑n2

j=1 mj∑n1
i=1 li +

∑n2
i=j mj

(
ln aH τ − c2x

2
H τ

)
(34)

+

(
1−

∑n2
j=1 mj∑n1

i=1 li +
∑n2

j=1 mj

)(
ln aL τ − c2x

2
L τ

)
−mj

where
τ The tax rate applied to phosphorous loading.
L τ denotes the low tax rate and H τ denotes the high tax rate.
l The lobbying effort of farmers in favour of a low tax rate.
m The lobbying effort of greens in favour of a high tax rate.

To find the optimum lobbying efforts l∗i and m∗
j , one finds the values of li

and mj for which the first derivative is equal to zero, i.e. dE {ΠF } /dli = 0 and
dE {ΠG} /dmj = 0. (These values will maximize the expected pay-offs provided
the profit functions are concave, i.e. if their second derivatives are negative.)
Therefore we begin by solving:

dE {ΠF }
dli

=
d

dli

[ ∑n1
i=1 li∑n1

i=1 li +
∑n2

j=1 mj

(
ln aL τ − c1x

2
L τ

)

+

(
1−

∑n1
i=1 li∑n1

i=1 li +
∑n2

j=1 mj

)(
ln aH τ − c1x

2
H τ

)
− li

]
= 0

⇔ dE {ΠF }
dli

=
d

dli

 ∑n1
i=1 li(∑n1

i=1 li +
∑n2

j=1 mj

) (ln aL τ − c1x
2
L τ

)
(35)

+
∑n2

j=1 mj(∑n1
i=1 li +

∑n2
j=1 mj

) (ln aH τ − c1xH τ
2
)
− li

 = 0

For simplicity, we assume that all the communities are approximately the
same size, that is, they contribute an equal amount of lobbying effort, so that∑n1

i=1 li = n1l and
∑n2

j=1 mj = n2m. Equation (35) then becomes

dE {ΠF }
dli

=
d

dl

[
n1l

(n1l + n2m)

(
ln aL τ − c1x

2
L τ

)
+

n2m

(n1l + n2m)

(
ln aH τ − c1x

2
H τ

)
− l

]
= 0

⇔ n1n2m
(
ln aL τ − c1x

2
L τ − ln aH τ + c1x

2
H τ

)
= (n1l + n2m)2 (36)

which expanded is

(n1l)2 + 2n2mn1l + (n2m)2 − n1n2m
(
ln aL τ − c1x

2
L τ − ln aH τ + c1x

2
H τ

)
= 0
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We recognise this as a second-order polynomial of the form dX2 + eX + f = 0,
where

X = n1l
d = 1,
e = 2n2m and
f = (n2m)2 − n1n2m

(
lnaL τ − c1x

2
L τ − ln aH τ + c1x

2
H τ

)
,

which has two roots X of the form

X =
−e+

−
√

e2 − 4df

2d

Substituting for d, e and f , and keeping only the positive root of the polynomial,
we obtain the farmers’ optimal lobbying effort:

l =
−n2m

n1
+

1
n1

√
n1n2m

(
ln aL τ − c1x2

L τ − ln aH τ + c1x2
H τ

)
(37)

Similarly, from equation (34) we obtain:

n2n1l
(
ln aH τ − c2x

2
H τ − ln aL τ + x2

L τ

)
= (n1l + n2m)2 , (38)

of which the positive real root gives us:

m =
−n1l

n2
+

1
n2

√
n2n1l

(
ln aH τ − c2x2

H τ − ln aL τ + c2x2
L τ

)
(39)

We note that l and m are dependent on each other. By noticing, from equations
(36) and (38), that

l
(
ln aH τ − c2x

2
H τ − ln aL τ + c2x

2
L τ

)
=m

(
ln al τ − c1x

2
L τ − ln aH τ + c1x

2
H τ

)
and by substituting back into equations (37) and (39), we can express the
respective optmimal lobbying effort of farmers and ‘greens’, l∗ and m∗ as

l∗ =
n1n2

(
ln aL τ − c1x

2
L τ − ln aH τ + c1x

2
H τ

)2 (ln ah τ − c2x
2
H τ − ln aL τ + c2x

2
L τ

)[
n1
(
ln aL τ − c1x2

L τ − ln aH τ + c1x2
H τ

)
+ n2

(
ln aH τ − c2x2

H τ − ln aL τ + c2x2
L τ

)]2
(40)

and

m∗ =
n1n2

(
ln aL τ − c1x

2
L τ − ln aH τ + c1x

2
H τ

) (
ln aH τ − c2x

2
H τ − ln aL τ + c2x

2
L τ

)2[
n1
(
ln aL τ − c1x2

L τ − ln aH τ + c1x2
H τ

)
+ n2

(
ln ah τ − c2x2

H τ − ln aL τ + c2x2
L τ

)]2
(41)

In the following section, we use these results to study the impact of the
lobbying efforts on the optimal tax policy derived in section 3.6 and depicted
in section 3.8.
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4.2 Probability of the Optimal Tax Being Implemented:
A Numerical Analysis

Recall that in our scenario, the lake is in a eutrophic state in spite of an existing
tax on phosphorous loading. Either the current state of the lake reflects the
preferences of all of the communities around the lake or the tax is too low to
keep it in an oligotrophic state. Knowing that the Pareto-optimal state of the
lake is as shown in Section 3.1, the benevolent politician promises if he is elected
to implement the optimal tax rate.

What is the likelihood of the tax policy being implemented, that is, of this
politician being elected, given the relative preferences of the green communities
and farming communities and their resulting lobbying efforts?

The following constant values are used in the Nash equilibrium with tax
equation (30) and evaluated for values of x between 0 and 3.5.

b = 0.6 - recall from Section 2.2 that this is the phosphorous recycling value
that gave rise to a hysteresis in the lake dynamics.

c1 = 0.2 - thus denoting the farming communities’ low relative preference for
lake ecosystem services.

c2 = 2 - thus denoting the green communities’ high relative preference for
a clean lake.

L τ = 1 - is selected as the current taxation that results in high phosphorous
loading and thus a eutrophic state of the lake.

The dynamic socially optimal equilibrium level of phosphorous loading is
given by the intersection of the optimal a∗ equation (19) and the lake dynamics
equation (3), as depicted in Figure 1. The optimal tax is such that the dynamic
non-cooperative equilibrium intersects the lake dynamics equation for the same
optimal (x∗, a∗) coordinates, as shown in Figure 3.

Varying values of n1 and n2 results in different (x∗, a∗) coordinates and
affects the amount of lobbying applied by the different communities to obtain
their desired outcome with respect to the proposed tax increase versus keeping
the current low tax. This in turn affects the probability of the benevolent
politician being elected and thus of the optimal tax policy being implemented.
Substituting these values back into the equations derived earlier in the chapter,
namely, equations (40), (41), (31) and (32) gives us the lobbying efforts of the
green and agricultural communities as well as the probabilities of the optimal
tax policy being implemented.

The results are summarized in Table 1 below.

Table 1: Summary of Results.
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We interpret these results as follows. For the selected preference rations,
even with as little as 1 in 6 communities with a high preference for a clean lake,
the Pareto-optimal outcome is for a level of phosphorous loading that results
in an oligotrophic lake. And yet, for these same prefences, when the ratio of n2

to n1 is less than or equal to one to five, the probability of the green politician
being elected is 0.

On the other hand, when n2 to n1 is one to four or greater, the probability
of the politician being elected increases to very high levels, i.e. relatively close
to 1. This means that a relatively small proportion of the population can gain
enough power to influence policy when their preferences are strong enough. This
result can be attributed to the amount of lobbying effort that is expended when
communities attach a relatively high value to ecosystem services. Moreover, as
the proportion of green communities increases, the tax rate required to bring
the lake back to oligotrophic levels is lower, which also explains a lower lobbying
effort against a higher tax by farming communities.

In addition, the following can be derived with regard to the probability of the
optimal policy being applied. An ambitious politician will want to implement
the policy that will ensure that he is elected. To do this he will propose a tax
so as to maximize the probability of being elected, that is he will:

max Pg =
∑n2

j=1 mj∑n1
i=1 li +

∑n2
i=j mj

(42)

by changing τ .
We find that for n1 = 2 and n2 = 2, to maximize his probability of being

elected, the benevolent politician would have to set the tax rate at τ = 11.40.
This tax increases the probability of election to one, that is, by proposing this
tax he is certain of being elected. Unfortunately, this tax will result in an in-
sufficient reduction in phosphorous loading levels and the lake will remain in its
eutrophic state. Recall that the skiba point is at (xF1, aF1) = (0.4084, 0.1021),
c.f. Section 2.2. For n1 = 2 and n2 = 2, the optimal levels of phosphorous
are (x∗, a∗) = (0.3472, 0.1007), which denotes an oligotrophic state of the lake.
To achieve the optimal level of phosphorous loading, the required tax rate is
τ∗ = 29.78. Therefore a proposed tax policy of τ = 11.40 would be far in-
ferior to that required to achieve the socially desirable level of phosphorous
loading. This may be an example that illustrates the observation by Lee (1985)
that “political objectives can be realized by establishing “acceptable” pollution
standards and many of them have little to do with protecting the environment.”

5 Conclusion

In summary, we have found that lobbying and the composition of the electorate
have an effect on the implementation of the socially optimal tax policy. When
a portion of the communities have a strong preference for a clean lake, as little
as one fifth, the probability of the politician being elected increases to very
high levels, i.e. relatively close to 1. This is an interesting result because it
implies that the number of green communities need not be very high, only
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sufficiently high, for the environmental policy to have a very high chance of
being implemented.

A perhaps more interesting result is that by proposing a tax level below the
one required to bring the lake back to a socially optimal oligotrophic state, a
politician can ensure that he is elected. This shows that political ambition can
indeed prevent socially desirable policy from being implemented.

Appendices

A Phosphorous Sources and Sinks

With the stock of phosphorous held constant, the phosphorous sink and source
equations can each be plotted as in Figure 5 and by Carpenter et al. (1999)
to show the rates of flux of phosphorous against the quantity of available P .
Superimposing the phosphorous sinks’ straight line and the phosphorous recy-
cling’s sigmoid shows the domains of attraction of oligotrophic and eutrophic
states. The upper point of instersection between the two curves is an attrac-
tor toward oligotrophy, whereas the lower intersection is an attractor toward
eutrophy. The intersection point in the middle is an unstable repeller and rep-
resents a Skiba point. This means that at this level of phosphorous stock, a
small change in the stock could precipitate the lake into either an oligotrophic
or eutrophic state. This illustrates the possible existence of a hysteresis in the
lake’s response to phosphorous input.
The graph illustrates that a eutrophied lake can be restored in several ways:

Figure 5: Phosphorous Sources and Sinks

• By increasing the sinks, i.e., by affecting s and thus altering the slope
of the ‘sinks’ line thereby changing the points of intersection with the
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‘sources’ curve;

• By decreasing recycling r to push the sigmoid down such that the only
point of intersection with the ‘sinks’ curve lies in the oligotrophic basin
of attraction;

• By lowering external phosphorous input L; or

• via a combination of the above.

Increasing the sinks and decreasing recycling requires measures that are
independent of phosphorous input. These measures include sediment treatment,
such as the addition of aluminum sulfate to precipitate the sediments, injections
of oxygen into the hypolimnion, and biomanipulation, such as the introduction
of consumers of phosphorous, e.g. fish, or large aquatic plants. These methods
tend to be costly and therefore reductions in phosphorous input will tend to be
preferable as a measure to restore lakes to an oligotrophic state.

Lowering external loading to an effective level may not always be possible
however, because the minimum phosphorous input may not be controllable by
human intervention when it is due to factors such as soil chemistry and airborne
phosphorous deposition. This is likely to be the case for lakes in phosphorous-
rich regions, for lakes that have been subject to a high level of external loading
for extended periods of time, and for shallow lakes (Carpenter et al., 1999).

B Parameters that Determine the Type of Lake

As done by Mäler et al. (2003), analysis of equation (3) give rises to the following
results.

- For high values of a, the equation has one stable equilibrium.

- For low values of a, that is a < 0.3, three situations occur depending on
the value of b.

By solving the equation for values of x between 0 and 2, the curve for
equation (3) can be used to plot a(t) against x(t) and to recreate the graphs
provided in Mäler et al. for different values of b. The value of b is what affects
the lake’s reversibility from a state of eutrophication.

• b ≥ 3
8

√
3 ≡ b ≈ 0.6495

For these values of b, all values of a lead to one stable equilibrium. This
implies that the sedimentation and recycling rates are such that the lake
can continue to be used as a waste-sink without regard to the amount
of phosphorous loading a. This further implies that the lake requires no
management as far as controlling phosphorous loading is concerned. (See
Figure 6.)

• b ≤ 1
2

For b ≤ 1
2 , values of a below the local maximum (where da/dx = 0) yield
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Figure 6: Lake Dynamics for b=0.7

two equilibria. The third root, i.e. the highest value of x where the curve
intersects the x-axis, gives the basins of attraction: above this point, the
high equilibrium will result and below this point the low equilibrium. This
means that if the lake flips to the eutrophic state and reaches that level
of phosphorous stock, reducing levels of phosphorous loading will not be
sufficient to bring the lake back to an oligotrophic state. In that case, only
a change in the parameter b can restore the lake because the hysteresis
is irreversible. Altering b means resorting to such costly measures as
biomanipulation and oxygenation as discussed earlier in the chapter. (See
Figure 7)
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Figure 7: Lake Dynamics for b=0.48

Figure 8: Lake Dynamics for b=0.6

• 1
2 ≤ b ≤ 3

8

√
3

For values of b in this range, a has three equilibria. (See Figure 8)
This is the hysteresis effect: the lake remains in an oligotrophic state
up to a certain point at which it flips to a eutrophic state. The point at
which the lake flips from oligotrophic to eutrophic is where da/dx = 0 at
(xF1, aF1) = (0.4084, 0.1021) and is an unstable steady-state. The point
(x, a) = (0.7876, 0.0897) is a stable eutrophic state. This hysteresis allows
eutrophication to be reversible, however, as lowering external loading be-
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low this second point will restore the lake to an oligotrophic state.

One sees that for q = 2 and 1
2 ≤ b ≤ 3

8

√
3, the lake displays a reversible

hysteresis in its response to phosphorous loading. In this case, eutrophication
is reversible by the control of external phosphorous input alone.
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