

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Comparison of Alternative Sources of Farmland Values

Christopher Zakrzewicz, B. Wade Brorsen, and Brian C. Briggeman*

Poster prepared for presentation at the Agricultural & Applied Economics Association's 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, Pennsylvania, July 24-26, 2011

Copyright 2011 by Christopher Zakrzewicz, B. Wade Brorsen, and Brian C. Briggeman. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

*Christopher Zakrewicz is a MS graduate of Oklahoma State University and is currently assistant operations manager at Stampede I Redwolf Farms in Oklahoma City, OK, B. Wade Brorsen is regents professor and Jean & Patsy Neustadt Chair in the Department of Agricultural Economics at Oklahoma State University, and Brain C. Briggeman is an economist with the Omaha Branch of the Federal Reserve Bank of Kansas City. Partial funding from the Oklahoma Agricultural Experiment Station is gratefully acknowledged. The views expressed are those of the authors and do not necessarily reflect the positions of Federal Reserve Bank of Kansas City or the Federal Reserve System.

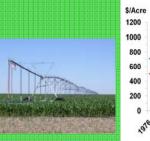
Contact Author: B. Wade Brorsen (Email: wade.brorsen@okstate.edu)

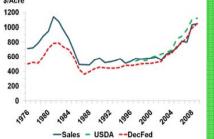
Comparison of Alternative Sources of Farmland Values

Christopher Zakrzewicz, B. Wade Brorsen, and Brian C. Briggeman

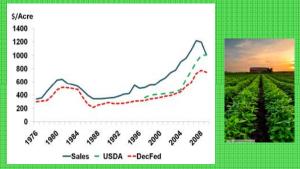
Stampede Farms, Oklahoma State University, and Federal Reserve Bank of Kansas City

Objective: Determine the Strengths and Weaknesses of Three Alternative Sources of Agricultural Land Values

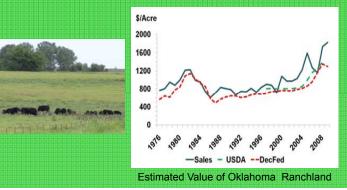

- USDA Annual Land Values
- Federal Reserve Quarterly Survey
- Oklahoma Transaction Prices


Land Type	Statistic	Trans-Fed	Trans-USDA	USDA-Fed
Non-irrigated	Correlation	0.935	0.962	0.993
	Mean Difference	14.929	-45.967	60.896
	SD	65.521	70.602	24.257
Irrigated	Correlation	0.826	0.784	0.984
	Mean Difference	137.474	89.301	48.446
	SD	166.088	181.078	38.207
Ranchland	Correlation	0.918	0.920	0.993
	Mean-Difference	429.700	344.856	84.844
	SD	118.620	121.127	81.403

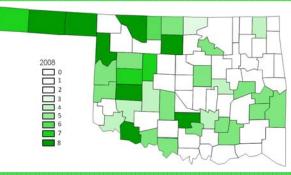
Correlation and Differences Among Data Sources


	Land Type				
Independent Variable	Non-irrigated	Irrigated	Pasture		
Intercept	-0.232	9.997	5.552		
$\Delta Q2_t$	0.821***	0.543***	0.544***		
$\Delta Q1_t$	0.779***	0.865***	1.138***		
$\Delta Q4_{t-1}$	0.677***	0.463***	0.600***		
$\Delta Q3_{t-1}$	0.283	-0.017	0.016		
$\Delta Q2_{t-1}$	0.477**	0.121	0.400		
$\Delta Q1_{t-1}$	0.587***	0.139	0.404**		
$\Delta Q4_{t-2}$	0.172	0.467***	0.241		
$\Delta Q3_{t-2}$	-0.352	-0.038	0.119		
R ²	0.682	0.782	0.716		
F-stat: Annual Average	10.20***	9.58***	9.34***		
F-stat: Jan 1 st	9.91***	20.54***	10.48***		
Note: Asterisk (*), double asterisk (**), and triple asterisk (***) denote coefficients significant at 10%, 5%, and 1% respectively.					

USDA Annual Land Value Changes as a Function of Past Quarterly Federal Reserve Land Value



Estimated Oklahoma Irrigated Cropland Value



Estimated Oklahoma Non-irrigated Cropland Value

Procedures

- Correlations
- Regression of USDA values on lagged Federal Reserve values
- Granger Causality

Distribution of Federal Reserve Oklahoma Survey Respondents

Conclusions

- Federal Reserve survey is a leading indicator
- USDA values are closer to June values than January values
- Transaction prices are higher than survey values