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The Impact of Weather Cycles and Crop Yield Autocorrelation on Crop
Insurance Yield Guarantees

The Risk Management Agency (RMA) recently released the new Common Crop Insurance
Policy which is known as COMBO. COMBO offers three insurance plans: Yield Protection
(YP), Revenue Protection (RP), and Revenue Protection with the harvest price exclusion (RP-
HPE). The yield guarantee for YP and RP is determined by a simple average of 4 to 10 years of
the historical yield of the insured unit. When the crop insurance yield guarantee is based on the
historical yield, properties of the sample yield distribution play an important role to determine
crop insurance yield guarantee. Small sample properties (Barnett et al., 2005; Carriquiry,
Babcock, and Hard, 2008; Woodard, 2009) and heteroscedasticity (Harri et al., 2011) have been
shown to adversely affect crop insurance yield guarantees. Similarly, time series properties of the
crop yield distribution (such as positive trend in APH yield) can also lead to under-insurance
(Skees and Reed, 1986; Adhikari, Knight and Belasco, 2011). Serial correlation is another
property of the yield distribution that has the potential to interact in crop insurance yield
guarantee determination. The deterministic response function between weather and yields lead to
the variation in the actual and contracted yield guarantee as a result of weather and, more

specifically, drought cycles.

The presence of serially correlated yields has the potential to bias the variance concerning
yield predictions. For example, positive serial correlation in the yield data increases the
amplitude of swings in APH yields, leading to larger errors in yield guarantees relative to actual

expected yields, and contributes to more serious problems of under- and over-insurance.



However, the presence of negative autocorrelation could actually have the opposite effect of
dampening swings in APH yields and decreasing the magnitude of under or over insurance.
More importantly, yields that do exhibit positive or negative autocorrelation relationships over
time can be more accurately predicted when autocorrelation is accounted for. The existence of
autocorrelation in crop yield series in the US was supported by the early work of Day (1965),
which showed that distributions of corn, cotton and oat yields in Mississippi have significant
autocorrelation across time. Further, Black and Thompson (1978) examined yields of wheat,
corn and soybeans and weather interaction using a long time series of yield data. They reported
that the parameter estimates of the drought cycle model were found significant and Durbin —
Watson statistics were greater than 2 for all three crops, explaining the existence of
autocorrelation in crop yields. Singh and Byerlee (1990) analyzed relative variability in wheat
yields over time. They found that autocorrelation exists even in detrended crop yields. Kaylen
and Koroma (1991) used crop yield data from 1913 to 1988 and concluded that the yield is
highly autocorrelated and suggested to address it sufficiently in order to construct exact yield

distributions.

Given the well-established link between weather and crop yields, persistent systematic
cycles in weather can lead to autocorrelation in crop yield series, which causes yield guarantees
to be significantly different from expected yields. For example, hot and dry weather in the crop
growing season in the US Corn Belt has detrimental effects on corn yields (O’Brien, Hayenga,
and Babcock 1996). Similarly, weather interactions in wheat, corn and soybean yields have also
been reported by Black and Thompson (1978). They also argued that coefficient of variation is a
misleading indicator of the yield risk measurement in the presence of autocorrelation. Lobel,

Cahill and Field (2007) examined the relationships between crop yields and monthly temperature



and precipitation for 12 major Californian crops for the period 1980-2003. Regression models
based on a small number of selected climatic variables were able to explain much of the
observed variability in crop yields. The existence of a weather cycle and association of crop yield

with the weather variables confirmed the existence of serial correlation in the crop yield data.

Autocorrelation in crop yield has the potential to cause crop insurance premium rates to
systematically deviate from the actuarially fair rate. Drought cycles and multi-year droughts
undermine the effectiveness of producers’ insurance coverage when not accounted for and are
associated with low APH yields. In this study, we make an attempt to examine the weather cycle
by constructing a drought index and testing for autocorrelation in drought index and crop yields
in example counties from cotton, wheat, and corn producing states. We separate the impact of
drought and non-stochastic time trend and examine autocorrelation in the residual. Further, our
analysis is extended to assess the impact of yield autocorrelation in crop insurance yield

guarantee.

Data and Methods

We study three crops (cotton, corn, and wheat) from three example counties (respectively,
Lubbock county, Texas; Adams county, Illinois; and Dickinson county, Kansas) for the yield
autocorrelation, impact of drought cycle in crop yield and crop yield autocorrelation. We make
use of available yield history from the National Agricultural Statistics Service (NASS) (1972 to
2009 for cotton, 1970 to 2009 for wheat and 1940 to 2009 for corn). For the drought index, we
used cooling degree days (CDD) and total monthly precipitation (TMP). Since the county level
CDD have a short data series available, CDD for the example counties are replaced by the

regional CDD. Weather data are available from the National Oceanic and Atmospheric



Administration (NOAA) and start in 1948. For the regression analysis, we used a similar length

of weather and available crop yield data.

Drought Index

In this study, we define drought as extreme hot and dry condition in the crop growing season.
The monthly weather measures; CDD and TMP are summed over the crop growing period and
used to construct a drought index. The growing period for cotton is May to September, June to
September for corn, and October to May for wheat. The relative heat is represented by the CDD,
which is a deviation of number of degrees of the temperature above the mean. Relative dryness is
represented by the deviation of TMP below the mean. The product of these two measures is the

drought index used by Yu and Babcock (2010). We utilize their formulation as:
DI, = [- max(0, CDDFt*4)| x [min(0, TMPS®")] (1)

where t denotes the year. Both of the weather variables were standardized by subtracting each
observation from the county mean and dividing by the standard deviation. The process scales the
drought index so as to be comparable across time. We evaluate the cyclical movement of the
weather index and test for autocorrelation by using the Durbin-Watson test and Lagrange

Multiplier test developed by Breusch- Godfrey with null hypothesis; H,: no autocorrelation.

Weather and Crop Yield Interaction

The interaction between crop yield and the drought index is an important relationship, especially
if autocorrelation is found in the drought index. We use regression analysis to determine the
relationship. Crop yield series frequently exhibit a time trend as an effect of technological

advancement. Therefore, effects of weather and technological trend in crop yields are captured
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together with the regression equation used by Yu and Babcock (2010). We use their log-linear

model in our analysis.

Ln(Y;) = Bo + B DI + B, DIT; + B3 DISQ + B, DISQT + &; 2)

The subscript t denotes the year, Y denotes county yield, T is the trend variable which takes a
value 1 for the first year. DI is the drought index, DIT is the product of drought index and trend,
DISQ is the squared drought index, and DISQT is the product of the square of the drought index
and trend variable. In this model, we considered a simple linear trend in the crop yield. Drought
driven deviation in county yield depends on the drought index and technological trend depends
on the trend variable. The quadratic terms DISQ and DISQT make the model more flexible for
the marginal effect of drought with different level of severities. The log-linear model
specification provides the percentage change in yield due to per unit changes in explanatory
variables. Equation (2) separates the non-stochastic components such as intercept, technological
effect, and impact of drought and stochastic error term (&;). We test for autocorrelation in the
error term using the Durbin-Watson test and Lagrange Multiplier test. Given our estimates, we

then evaluate the effect of autocorrelation on crop insurance yield guarantees.

Impact on Crop Insurance Yield Guarantee

We compute the expected yield with the assumption of no autocorrelation and with
autocorrelation. We compare the differences in the expected indemnity in order assess the impact
of autocorrelation. Our analysis is divided into two stages; at first we evaluate the impact of
weather cycles and in the second step we assess the impact of autocorrelation after removing the
effect of weather. In any case, our main concern is to evaluate the impact of yield autocorrelation

in crop insurance. The time series yield data is expected to have correlation among the
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observations. The error term (&;) from equation (2) is assumed to be homoscedastic but

correlated across the observations.
E[gel] =0%Q
Var(s,) = o
We assume the p order autocorrelation in the yield time series. In this case,
&= 0161+ 02605+ oo HOpeptve, E[v =0 (3)

With the presence of an autocorrelated error term we cannot recover the yield series by using
equation (2). For simplicity, we assume APH yield series with the first order autocorrelation. The
APH yield series consists of intercept as expected yield and non stochastic component

determined by lag of error term and white noise.

YapH = Hapy t+ P -1 T V¢ 4)

The expected yield is pypy + p E( €—1) which is higher than p,py when there is positive
trend and positive autocorrelation. Further, the variance of expected yield increases. The
implication of this is that the guarantee level under this scenario is much larger than the true

value resulting in under insurance for insurers.

In order to assess the impact of autocorrelation in crop insurance premium, we generate
10,000 random draws of autocorrelated error terms to construct 11 years of yield history by using
the Phoon, Quek, and Huang (PQH) multivariate simulation method (Phoon, Quek, and Huang,
2002; Anderson, Harri, and Coble, 2009). We simulate the actuarially fair premium rate from

the yield series for the example counties. We compare the premium rate under three different



scenarios: (1) with current practices, (2) with correction for weather effects, and (3) with no

autocorrelation.
Result and Discussion

Crop yield modeling is very important to establish the crop insurance yield guarantee. When
yield is autocorrelated the contracted yield guarantee and the effective yield guarantee differ.
This phenomenon leads to a higher indemnity expectation and increased premium rates. In order
to provide a clear picture of existence of autocorrelation in the crop yield, we test the existence
of autocorrelation in all of the major cotton producing counties in Texas, corn producing
counties in Illinois, and wheat producing counties of Kansas. In order to conduct tests for
autocorrelation we run the regression of crop yield with time and test the residuals from the
regression. We use the Generalized Durbin-Watson (DW) test and Breusch- Godfrey’s Lagrange
multiplier (LM) test to test for first to 10™ order autocorrelation. However, the Breusch- Godfrey
test for Texas cotton and Kansas wheat yield was carried out only up to 7" order. Due to smaller
yield series in these states, loss of degree of freedom seriously affects inferences. Tests were
carried out for 102 counties in Texas, 102 counties in Illinois, and 105 counties in Kansas. The
DW test suggests that the cotton yield series in 72 counties in Texas are significantly
autocorrelated of order 1 or more. But the LM test supports only 22 counties with autocorrelated
county yield history. Illinois corn yield series is expected to be highly autocorrelated because the
yields in the corn-belt, especially in Illinois, are highly depend on weather conditions (Yu and
Babcock, 2010). Our test does not strongly support this findings because 49 county yield series
out of 102 counties in Illinois are autocorrelated according to DW test. The LM test further
reduces the number of yield autocorrelated counties to 18. The possible reasons behind this result

are either weather variables not having significant impact on crop yield or that weather is not



cyclic in nature with finite time intervals. There is no severe drought was occurred in the U. S.
corn-belt since 1988. With the county wheat yield series of Kansas, the existence of
autocorrelation was rarely supported by the LM test while the DW test suggest autocorrelation in

58 counties out of 105 wheat growing counties (Table 1).

Table 1. Number of Counties with Autocorrelated County Yield Series in the States

Autocorrelation Texas Cotton Illinois Corn Kansas Wheat
Order DW LM DW LM DW LM
1 18 8 2 2 15 -
2 19 5 15 7 5 -
3 11 - 8 1 5 3
4 2 4 6 1 1 -
5 2 2 6 1 0 1
6 8 1 4 1 6 -
7 3 2 0 1 5 -
8 4 1 0 10 -
9 3 - 7 3 7 -
10 2 - 0 1 4 -
Total 72 22 49 18 58 4
Total Counties 102 102 105

The annual drought index is constructed as a weather indicator for the cropping season
for the example crops and counties. The drought index reflects relative hot and dry periods
during the crop growing season. Lower crop yields are expected to be positively associated with
the drought index for the respective counties. The drought index is also expected to have a
cyclical nature of occurrence. We tested the drought index series of all three example counties
for autocorrelation. The results presented in the Table 2 reveal that the drought indexes are

autocorrelated. However, Breusch-Godfrey LM tests do not support the autocorrelation in the



series. In Lubbock County, the autocorrelation is of order 3 and order 6 while in Adams county
autocorrelation of order 8 was suggested by DW test. Similarly, drought index for Dickinson
County, Kansas is autocorrelated with order of 4 and 6. The smaller order of autocorrelation in
Lubbock and Dickinson County suggests that drought cycle of smaller intervals (i.e. 3 years in
Lubbock and 4 years in Dickinson County) while higher order autocorrelation in Adams County

suggest drought cycles of larger interval.

Table 2. Result of the Tests of Autocorrelation in Drought Index of Example Counties

Autocorrelation | Lubbock County Adams County Dickinson County

Order DW LM DW LM DW LM
1] 211 0.13 1.82 0.51 2.22 0.51
20 218 0.56 2.23 1.58 1.97 0.52
3] 1.21* 5.79 1.97 1.60 1.72 1.08
41 195 5.85 1.81 1.70 2.34% 2.18
5] 2.09 5.86 1.73 2.06 1.96 2.29
6| 2.27* 9.83 1.80 2.35 2.39% 4.96
71 2.07 10.46 1.80 2.60 2.04 6.05
8| 2.09 - 1.27* 4.61 1.48 -
9| 1.6l - 1.47 4.62 1.71 -

10| 1.62 - 1.68 4.62 1.68 -

*Significant at 5% level of significance.

Results in Table 1 establish that yield histories in a significant number of counties are
autocorrelated in Texas cotton, Illinois corn, and Kansas wheat. The serial correlation in the
yield history and serial correlation in the drought index (Table 2) provides sufficient grounds to
support the existence of association of crop yield with the drought index. Therefore, equation (2)

becomes relevant to estimate in order to assess this association. This equation is estimated for



three different crops separately and ordinary least square estimates are presented in the Table 3.
Parameter estimates for the drought index and trend variable are not significant for Lubbock
County cotton. Quadratic terms such as DISQ and DISQT are also not significant. Similar results
are obtained for Dickinson County wheat yield. In both of the crops the linear trend is not
significant and so as the interaction term of trend with drought index. In conclusion, drought and
technological advances do not significantly impact the county yield series for cotton and wheat.
However, the result is different in case of corn in Adams County, Illinois. All the parameter
estimates are significant. Variable DI and DISQ provide the impact of the drought index in the
county yield. Significant and negative parameter estimates for DI and DISQ implies that drought
significantly reduces the corn yield and the impact is at a maximum when drought the index is
2.58. The interaction of drought index and trend variables is significant suggests that
technological trend is not affected by drought over the time. The insignificantly negative
estimate for DISQT suggests that crop yield loss is reduced by drought over the time but the
marginal effect (loss) is smaller by the severe drought than less severe drought. Corn yield in

particular is found highly associated with the drought index and technological advances.

Table 3. Parameter Estimates of the Log-Linear Model of the Example Counties

Variable Lubbock County Cotton | Adams County Corn | Dickinson County Wheat
Intercept 5.8197* 4.6150* 3.5287*
DI -0.8119 -0.6870* -1.3044
DIT 0.0072 0.0219* 0.0723
DISQ 0.0900 0.1330 0.8108
DISQT 0.0018 -0.0055%* -0.0453

*Significant at 5% level of significance.

Regression analysis of weather effects and trend effects in the county crop yield separates

the non-stochastic technological and weather effect and stochastic error term. The error term of
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the equation (2) is assumed normally distributed with mean zero and variance Var(s,) = o2.
Instead, if the mean of the error term is not zero and the observations are related with one
another, then the autocorrelation is not caused by the cyclic nature of weather. We performed
DW and LM tests for the error term. The test result for up to 10™ order autocorrelation is
presented in the Table 4. The DW test result supports the existence of autocorrelation of 6™ order
in cotton and wheat yields. The LM test does not support autocorrelation in both of the crop yield
series. Surprisingly, both DW and LM tests support autocorrelation in error term in Adams
County corn yield series. The reason behind the correlation between each of the observations
might be because of the other factors such as differences in soil condition, crop rotation, farming

practices, and other weather related variables that are not included in the drought index.

Table 4. Results of the Tests of Autocorrelation in Model Residual of Example Counties

Lubbock County , Adams County, Corn | Dickinson County,
Autocorrelation | Cotton Wheat
Order DW LM DW LM DW LM
1 2.03 0.02 1.34* 8.05* 1.92 0.01
2 2.03 0.07 1.98 9.03* 1.68 0.29
3 1.49 0.57 1.57 11.56* 1.90 0.39
4 1.76 0.78 1.20* 15.16* 1.79 0.38
5 1.70 1.01 1.36* 15.80* 1.73 0.42
6 1.20%* 1.76 1.34* 18.30* 1.25% 3.25
7 1.91 6.77 1.30* 18.57* 1.38 3.63
8 1.66 - 1.03* 21.36* 2.02 -
9 1.28 - 1.16* 21.66%* 1.93 -
10 1.39 - 1.26* 21.82% 2.00 -

*Significant at 5% level of significance.
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Effects on Crop Insurance Premium Rates

Due to autocorrelation in the APH yield series, the variability of the yield guarantees are
estimated in a biased fashion and can have larger or smaller than actual variability depending on
positive or the negative autocorrelation. This difference in variability impacts crop insurance
premium rates. At first, we simulated the crop insurance premium rate with the existing APH
practices used by the Risk Management Agency (RMA). We then remove the effect of weather
and simulate the premium rate and finally we assume no autocorrelation in error term and
simulate the rate. Table 5 provides the premium rate under each scenario with 50, 65, 75, and 85
percent coverage levels. Our simulated results suggest that there are very subtle differences in
the premium rate with and without autocorrelation in the APH yield. Autocorrelation is not very
strong in these example counties and crops and premium rates are not substantially different. In
case of cotton, the premium rate for the 50% coverage level is 14.07% under the simple average
APH and is reduced to 13.37% if there is no autocorrelation. When we do not remove the
autocorrelation but correct for the weather effect, the premium rate is 13.87%. Effects of
weather and autocorrelation remain fairly similar across coverage levels. In the case of corn, the
crop insurance rate is very small and the effect of weather and autocorrelation in the premium
rate are also very small. For the 50% coverage level, there is virtually no effect of weather and
autocorrelation. But with 65% and larger coverage levels, there are effects of weather and
autocorrelation in crop insurance premium rates. For the 85% coverage level, the premium rate is
4.98% under simple average APH. However, it decreases when we correct for the weather effect
and further decreases to 4.91% when there is no weather effect and autocorrelation (Table 5).

The effects in the premium rate in corn is not very discernible.
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Table 5. Autocorrelation Effect on Premium Rates in Example County Cotton and Corn

Crop Coverage Simple Average [ Removing Correcting auto
level APH weather effect | correlation
Cotton 50 14.07% 13.83% 13.37%
65 20.37% 20.23% 19.80%
75 24.37% 24.27% 23.84%
85 28.15% 28.10% 27.65%
Corn 50 0.06% 0.06% 0.06%
65 0.78% 0.76% 0.75%
75 2.28% 2.24% 2.23%
85 4.98% 4.92% 4.91%
Conclusion

We examined the autocorrelation in county crop yield series for cotton, corn, and wheat in
Texas, Illinois, and Kansas counties, respectively. Our results support the existence of
autocorrelation in the large number of county yield series in Texas and Illinois. We speculate that
the autocorrelation in county yield series is attributed to the cyclical nature of the weather.
Therefore, we removed the weather effect by regressing yields on a drought index and temporal
trend. After assessing the association with the weather, we analyzed error terms for existence of
autocorrelation and simulated the crop insurance premium rates. Our results support the
conclusion that there is variation in crop insurance rates when there is autocorrelation and
weather association in the crop yield. The current premium rate is not the actuarially fair rate
under the existence of autocorrelation. In our example counties, the autocorrelation in county
crop yield are not strong which resulted in small effects on premium rates. But a potential for

larger effects exists if there are crops and regions where autocorrelation is stronger. The primary
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implication of this research is that it could be useful for the RMA to examine whether there are
crops and counties were APH yields are strongly autocorrelated and offer premium rates
adjustment based on the magnitude and direction of the autocorrelation. Future research should
also be directed to explore the potential sources of yield autocorrelation and possible solutions to

either correcting it or making adjustments in the crop insurance premiums.

References

Adhikari, S., T.O. Knight, and E.J. Belasco, 2011. Evaluation of Crop Insurance Yield Guarantee
and Producer Welfare with Trending APH Yield. A Selected Paper Presented in the
Southern Agricultural Economics Association Annual Meeting, Feb 5-8, 2011, Corpus
Christi, TX.

Anderson, J. D., A. Harri, and K. H. Coble, 2009. Techniques for Multivariate Simulation from
Mixed Marginal Distributions with Application to Whole Farm Revenue Simulation.
Journal of Agri.l and Res. Econ. 34:53-67.

Barnett, B. J., J. R. Black, Y. Hu, and J. R. Skees. 2005. “Is Area Yield Insurance Competitive
with Farm Yield Insurance?”” Journal of Agricultural and Resource Economics 30(2): 285-
301.

Black J. R. and Stanley R. Thompson. 1978. “Some Evidence on Weather-Crop-Yield
Interaction” American Journal of Agricultural Economics 60 (3): 540-543.

Carriquiry, M. A., B. A. Babcock and C. E. Hart, 2008. Using a Farmer’s Beta for Improved
Estimation of Expected Yields. Journal of Agri. and Res. Econ. 33(1): 52-63.

Day, R.H. 1965. “Probability Distributions of Field Crop Yields.” Journal of Farm Economics

47:713-41.

14



Harri, A., K.H. Coble, A.P. Ker, and B. J. Goodwin. 2011. “Relaxing Heteroscedasticity
Assumption in Area-Yield Crop Insurance Rating”. American Journal of Agricultural
Economics. Forthcoming. Online Accessed on March 2011.

Kaylen, M. S. and S. S. Koroma. 1991. “Trend, Weather Variables and the Distribution of U.S.
Corn Yields”. Review of Agricultural Economics 13(2): 249-258.

Lobel, D. B., K. N. Cahill and C. B. Field. 2007. “Historical Effects of Temperature and
Precipitation on California Crop Yields. Climatic Change 81:187-203.

O’Brien, D., M. Hayenga, and B. Babcock. 1996. “Driving Forecast probability
Distributions of Harvest Time Corn Futures Prices.” Review of Agricultural Economics 18: 167-
180.

Phoon, K., S. T. Quek, and H. Huang, 2004. Simulation of Non-Gaussian Processes Using
Fractile Correlation. Probabilistic Engineering Mechanics. 19: 287-292.

Singh, A.J. and D. Byerlee. 1990. “Relative Variability in Wheat Yields across Countries and
over time.” Journal of Agricultural Economics 1:21-32.

Skees, J.R. and M.R. Reed. 1986. “Rate Making for Farm Level Crop Insurance: Implications for
Adverse Selection”. American Journal of Agricultural Economics 68: 653-659.

Woodard J. D. 2009. Three Essays on Systemic Risk and Rating in Crop Insurance Market. A
Ph. D. Dissertation Submitted to the University of Illinois Urbana Champaign. pp:105-142.

Yu, T. and B. A. Babcock. 2010. “Are U.S. Corn and Soybeans becoming More Drought

Tolerant?” American Journal of Agricultural Economics 92(5): 1310-1323.

15



