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Predicting Potential Invasive Species Distribution: An Application to New Zealand

Mudsnails in the Pacific Northwest

Introduction

Over the past few decades, invasive species (IS) with harmful effects on ecosystems, economy,
and human health have become a major concern for researchers, private industries, and
policymakers. Losses from such bioinvasion include declining productivity of ecosystems,
pecuniary as well as aesthetic, increased production and management costs to businesses, and
monitoring, enforcement and management costs to the public (Perrings et al. 2002). For
example, Sala et al. (2000) predicted that biotic exchange, arising from introduction and
establishment of non-indigenous species, would cause large biodiversity changes within each
biome, while Pimentel et al. (2005) estimated that IS damages and losses add up to $120 billion
per year in the United States. Moreover, Mann et al. (2010) predict that managing zebra and
quagga mussels in the Columbia River Basin, if introduced, would annually cost up to $50
million.

Resource managers and policymakers often consider the task of IS management with
highly limited budgets. Depending on IS risk and current/potential damage, management options
include prevention, early-detection, eradication, containment, and control. However, decision
makers face significant uncertainty in risk assessment and potential damage, which severely
limits their evaluation of alternative management strategies. Furthermore, qualitative
assessments of risk and damage constrain prioritizing IS and identifying optimal response to
bioinvasions. While spatial and mapping techniques have helped provide some quantitative
measures of IS risk, very few studies have proposed or examined quantitative approaches to

evaluating alternative management strategies. The objective of this study is to develop, test and



calibrate a quantitative and predictive approach to IS risk assessment, which would help IS
managers choose cost-efficient strategies.

In the following, we will use the term invasive species to refer an introduced species that
is likely to cause economic, environmental, or human health losses. Introduced species are often
termed as invasive, alien, exotic, foreign, non-native, naturalized, immigrant, and non-
indigenous species (Carlton, 2001). More precisely, Carlton (2001) defined introduced species
as species that have been transported by human activities—intentionally or unintentionally—into
a region in which they did not historically occur and now reproducing in the wild. Executive
Order 13112 (1999) defined invasive species as an alien species whose introduction causes or
would cause economic, environmental, or human health damages.

For geographic prediction of IS dispersal, this study will employ a gravity model and
maximum entropy (Maxent) method to predict potential IS distribution. The gravity model will
represent the anthropogenic introduction of the species from infected to uninfected sites, while
Maxent will characterize environmental suitability of available habitats for the introduced
species. Thus, we can quantify the role of anthropogenic and biological factors in the geographic
prediction of IS dispersal and establishment risk.

Non-indigenous species are generally introduced into a region by three modes: natural
spread and host range extension, accidental introduction, and intentional introduction (Maynard
and Nowell, 2009). Geographical barriers usually limit the scope of natural dispersal, but
human-mediated dispersal, intentional or accidental, can cover any location beyond the bio-
geographical barriers. For instance, if someone wanted to bring a non-indigenous species into a
country, e.g. ornamental plants or profitable aquaculture products, legitimate border processes or

public agencies govern such introductions. Thus, the effect of the intentionally introduced



species would be much easier to predict and estimate than those unintentionally introduced. In
this context, Carlton and Ruiz (2005) suggested that a key IS vector is the unintentional species
transportation by humans.

Whether or not introduced species will survive in a new habitat is the next step in the
analysis of IS risk. Although ecological theories about species distribution, community
structure, and biodiversity can explain and predict species distribution, ecological niche
modeling has dramatically grown recently (e.g. Peterson, Papes, and Eaton, 2007). The niche
concept is based on joint environmental conditions which allow the birth rate of a local
population to be equal to or greater than the death rate, and per capita effects of the species on
these environmental conditions (Chase and Leibold, 2003). Based on the niche concept, species
distribution models consider multiple environmental conditions, e.g. temperature, precipitation,
water quality, topography, which are required for the species occurrence and establishment
(Franklin and Miller, 2009).

The application in this study will focus on the current New Zealand mudsnails (NZMS)
distribution in the Pacific Northwest by integrating two concepts: anthropogenic introduction and
habitat suitability. A gravity model and a species distribution model (maximum entropy) will be
used to characterize recreational boat movement, a key vector of anthropogenic introduction, and
habitat suitability, respectively. The outcomes of these two models will be utilized to predict
potential geographic invasive species (1S) distribution. Thus, the predictions include a
representation of relative risk of IS introduction and its probability to establish successfully in
the introduced regions. For this purpose, we will use the hydrologic unit as the basic spatial unit
because it reflects the geological habitat information better than other segments such as

administrative districts or counties.



Conceptual Framework

Spatial Interaction Model: Gravity Model

Previous research has defined spatial interaction as movement or communication between
regions under a decision making process (Haynes and Fortheringham, 1984; Fortheringham and
O’Kelly, 1989). Spatial interaction models are mathematical frameworks to explain and/or
predict the spatial interactions based on attributes of origins and destinations, and spatial
separation variables, e.g. distance. A gravity model for spatial interaction is a relatively simple
framework consisting of the above three components (Fortheringham and O’Kelly, 1989). It is
usually written as:

1) Ty = f(aw; Bwj; 6dy),

where T;; represents a flow between origin i and destination j, w; and w; represent levels of
attractiveness (or repulsiveness) of i and j, and d;; is the distance between i and j. The Greek
alphabets are parameters to be inferred or estimated. Despite its simple structure, the gravity
model is one of the best known models with a high level of goodness-of-fit, i.e. explaining
spatial interaction (Fortheringham and O’Kelly, 1989; Ortuzar and Willumsen, 1992).

Several empirical studies have used the gravity model to predict the distribution of
aquatic invasive species, but most focused on zebra mussels (e.g. Schneider et al. 1998;
Bossenbroek et al. 2001; Leung et al. 2004; Bossenbroek et al. 2007; Leung and Mandrak, 2007).
The type of gravity model depends on the availability of attribute information for the origin and
destination. An unconstrained, a production-constrained, and an attraction-constrained gravity
model can be used when researchers have information on both origin and destination, on
destination characteristics only, and on origin information only, respectively (Fortheringham and

O’Kelly, 1989; Noronha and Goodchild, 1992). In this study, we will employ the unconstrained



gravity model to model recreational boat flows, T;;, by utilizing origin and destination
characteristics and the distance between them. Two common functional forms used for the
gravity model are exponential and power function, and the choice between the two forms relies
on how fast the flow decreases with the distance (Fortheringham and O’Kelly, 1989; Potapov
and Lewis, 2008). We will estimate both functional forms and compare the results to determine
which model better explains observed flow patterns. Hence, the two models to estimate are:

2 T = Wl-“wjﬁexp (—Sdij) and

3) T = Wl-“wj/”dij_s.

The number of boats moving from an infected region i to an uninfected region j can be
interpreted as propagule pressure. That is, propagule pressure is a measure of the number of
non-indigenous species introduced into a region, and such pressure is an important determinant
of successful bioinvasion (Leung et al. 2004; Lockwood et al. 2005; Leung and Mandrak, 2007).
Propagule pressure is measured as the absolute number of organisms involved in one release
event (propagule size) and the number of release events (propagule number). Formally , the

number of recreational boats, T;;

i Is a proxy for propagule pressure in terms of the number of

boats from infected regions (propagule number) and the level of infection of the origin
(propagule size). In other words, the probability of IS introduction is high when more boats

come from an infected region, or a boat comes from a highly infected region.

Species Distribution Models: Maximum Entropy Method

Species distribution models, often referred to as ecological niche models, bioclimatic envelopes,
or habitat suitability models, can estimate habitat suitability for observed species and predict the

probability of species occurrence when environmental information and predictors are available



(Segurado and Aradjo, 2004; Elith and Graham, 2009). If presence and absence data are
available, the outcome of niche models is usually more accurate than that of models based on
presence-only data (Franklin and Miller, 2009). However, absence data is only obtainable under
strict and consistent sampling, requiring caution in interpreting an unobservable occurrence as
species absence or other possibilities. For example, species absence may be due to lack of
survey of specific regions or locations or the previous absence data have not been updated to
check recent infestations. Niche models using presence-only data include: ecological niche
factor analysis, generic algorithms for rule production, and maximum entropy (Franklin and
Miller, 2009). All three are non-parametric methods which identify rules of species distribution
between species occurrence and environmental conditions without a pre-determined statistical
distribution or parameter.

This study will employ maximum entropy (Maxent) method mainly because of presence-
only data availability. Moreover, Maxent provides a probabilistic output, which can be easily
combined with the outcome of the gravity model. Advantages of Maxent are: (1) it requires
presence-only data, (2) it can employ both categorical and continuous data, (3) it converges well
to the optimum (maximum) entropy, (4) the Maxent probability distribution has a mathematical
definition, (5) over-fitting can be prevented, (6) it has potential to handle sampling bias, and (7)
its output is continuous, so fine distinction is possible among different regions. The
disadvantages are that Maxent remains in development and as a result, is sensitive to the number
of regulations that can be placed. Additionally, conventional statistics software cannot estimate
the model. Despite its disadvantages, Maxent appears to have outperformed other presence-only

data methods such as a genetic algorithm for rule production and envelope method (e.g.



BIOCLIM) in several studies (e.g. Elith et al. 2006; Phiilips et al. 2006; Elith and Graham,
2009).

The following describes Maxent species distribution modeling (Phillips et al. 2006). Let
7 be an unknown distribution over a finite set X, which can be considered as grids of ecological
domains. The distribution m assigns a probability (x) to each element of X. Let 77 denote an
approximation of the unknown distribution. The entropy of 7,
(4)  H@) = —Lyex1(x) Inft (x).
Equation (4) is an application of Shannon (1948)’s a measure of entropy representing uncertainty
of a set of events. Based on given incomplete information (here, species observation and
environmental conditions), our aim is to maximize this entropy value to find the unknown
distribution. Assume that f, ..., f,, are known functions of features, e.g. environmental
conditions, on X, and f;(x) is a realized value of the function. Accordingly, the expectation of
features under m is defined as Y.,.cx m(x)fj(x) and denoted by n[fj]. We can approximate this
expectation by using empirical average of features based on independently drawn m samples:
G #lfi] == IR D).
Our objective is to find the probability distribution 77 of maximum entropy subject to ﬁ[f]] =
ﬁ[ fj], which makes the approximate expected features of unknown distribution equal to the
approximate expected features of empirical samples. In fact, the derived means cannot be equal
to the true means, so the constraint will be relaxed as |#[f;] — #[f;]| < B;. As aresult, the raw
output of Maxent is the exponential function that assigns a probability to each site. The results
are not necessarily proportional to probabilities of the species presence since their sum must be

equal to one and we usually handle a limited size of geographic area. That is, the raw result of

Maxent is not an absolute probability of species occurrence, but it represents a ranking of risk



among regions. We will compare relative risk of NZMS across regions using the Maxent
outcome.

A few studies have employed other species distribution modeling to analyze NZMS
distribution, the focus of my application. For example, Vinson et al. (2007) utilized ecological
niche factor analysis to predict NZMS distribution in Idaho, Montana, Utah, and Wyoming,
while Loo et al. (2007) used the generic algorithm for rule production to predict NZMS
distribution in Australia and North America. Simple logistic regression was used by Schreiber et

al. (2003) to study NZMS dispersal in southern Victorian streams, Australia.

Data and Estimation

Gravity Model

The presence data of New Zealand mudsnails (NZMS) in the Pacific Northwest (Idaho, Oregon
and Washington) are obtained from the U.S. Geological Survey’s Nonindigenous Aquatic
Species (USGS NAS) and Montana State University (MSU) databases. Density information is
nearly unavailable in both databases: USGS NAS does not collect or report density data, while
MSU database provide less confidence on the sparsely available density from a few infected
sites.

In terms of recreational boat flow, we project potential boat flows within each state and
across states because there is no direct data about the exact number of boats transporting between
regions. For the projection, we use boat registration data from each state and its respective
survey of boat owners, along with boat inspection data in Idaho and Washington. Boat
registration data will represent the number of boats in origin regions (2009 Idaho, 2010 Oregon,

and 2010 Washington), and survey (2009 Idaho, 2007 Oregon (published in 2008), and 2007-09



Washington) and inspection data (2009 Idaho and 2008-10 Washington) will provide boat
movement/flow information. To be specific, boat registration data describes the total number of
boats registered in each county (Oregon and Washington) and city (Idaho), and boater’s survey
and inspection data includes where the survey participant lived and visited. We will extrapolate
boat movements based on the survey and inspection data to the entire population of boat owners
in each state. Moreover, the observational unit will be adjusted to hydrologic units using
geographic information system (GIS), so | will recalculate the number of boats based on the
relative size and population of a given area. The hydrologic unit reflects information on
drainage, hydrography, and hydrologic boundaries and codes of four hierarchical units (Seaber et
al. 1987). The distance between regions will be calculated based on relevant layers such as
hydrologic units and the administrative boundary of counties, and water bodies. The layers are
to be obtained from the National Atlas of the United States and the U.S. Census Bureau.

As spatial attributes of origins and destinations, we consider water body size, water
quality, and accessibility of water bodies. That is, people prefer larger water bodies, higher
quality of water bodies, and more conveniently accessible areas. We calculate the size of water
bodies directly from GIS, and the accessibility can be expressed by the density of major roads in
each region, or distance between specific water bodies and major roads. The water quality will
be characterized by the level of chemicals or turbidity in water. These data will be obtained from
the U.S. Environmental Protection Agency (USEPA) Storage and Retrieval (STORET) database.

In the gravity model, the proposed dependent variable will be continuous: ZZé—Tz
izjlij

However, the dependent variable can be censored at zero for some hydrological units. In order

to reflect this data structure, we estimate a tobit (a censored regression) model by utilizing the

maximum likelihood estimation method. The likelihood function of the tobit is known to
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achieve the global maximum regardless of its initial estimator or hypothesized values (Maddala,

1983).

Maximum Entropy Method

The Maxent analysis uses presence-only data of NZMS due to data availability and the lack of
consistent sampling. In the USGS NAS and MSU databases, the occurrence data have been
reported by different researchers at different time, so the sampling methods are likely not
consistent across observations. Maximum entropy (Maxent) method will also employ possible
environmental factors that would affect establishment of NZMS. Following the NZMS habitat
characterization from the University of California, Santa Barbara, Riparian Invasion Research
Laboratory (UCSB RIVRLab), we can consider the following environmental variables affecting
NZMS establishment: seasonality, substrate, light, water temperature, velocity, salinity,
conductivity, and locations near cities. In addition to these variables, stream order, pH of water,
precipitation, and elevation can be additional environmental factors. Among these factors,
velocity, elevation, and stream order are expected to represent natural dispersal of NZMS. Data
on environmental characteristics and elevation data are taken from USEPA’s STORET database
and the PRISM Climate Group, and city information is downloaded from the U.S. Census
Bureau.

As noted earlier, standard statistical software cannot be used for Maxent analysis. Thus,
we use the Maxent program developed by Steven Phillips (available at Schapire’s webpage, see
reference). The above program utilizes raster geographic information systems (GIS) data and
provides users a predicted map, simple statistic value, and response curves to each environmental

factor. The GIS data involve two spatial features: vector and raster data. The vector data
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involves points, lines, and polygons, while the raster data is composed of grids and each grid has
a corresponding value for a location. Therefore, the raster data is known to be more useful to
model continuous spatial variation such as precipitation, elevation, and soil erosion (Chang,
2010). The default output of Maxent is n the logistic form, which ranges between 0 and 1 and

can be interpreted as the probability of species presence (Phillips and Dudik, 2008).

Preliminary Results for Oregon

Gravity Model Data and Results

For the Oregon gravity model, boat flows from hydrologic unit i to j are estimated as a function
of the distance between regions and relative attractiveness of each area. In the following, we
provide the basics in the construction of relevant variables and then, provide preliminary

estimation results for Oregon." Boat flows, T;;,

are derived from 2010 Oregon boat registration
data (county level) and 2008 Oregon triennial boat survey data. Using the survey, observed boat
flows from one hydrologic unit to another are derived. Then, with the assumption that the survey
results apply to the entire population of Oregon boat owners, we project potential boat flows
between hydrological units i and j. For the projection, we use water body size, hydrologic unit
size, 2009 population of cities, and 2010 population estimate of each county as weights. The
distance between hydrologic units d;; is measured in miles by the distance between centroids of
hydrologic units.

To represent relative attractiveness w; and w;, i.e. geographic attributes of each area—the

size of each hydrologic unit, water body dispersion inside the hydrologic unit, and adjacency to

the Pacific Ocean, accessibility (road density), and water quality are considered. Water body

! We anticipate completing the Idaho and Washington models and risk assessment for the entire Pacific Northwest
before presentation of the study at the 2011 AAEA Meeting in Pittsburgh.
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dispersion is measured by the Herfindahl index which is commonly used to measure market
concentration (Cabral, 2000). That is, the water body dispersion is derived as the sum of the
squares of water body size proportions (shares) of the relevant hydrologic unit. Adjacency to the
Pacific Ocean is included as a dummy variable depending on whether or not the destination
hydrologic unit is adjacent to the Pacific Ocean. The road density is calculated by the total
length of road (meters) divided by the hydrologic unit size (squared kilometers).

In order to measure water quality, we employ the National Sanitation Foundation’s water
quality index (Oram 2010) by utilizing data from the U.S. Environmental Protection Agency
(USEPA) Storage and Retrieval (STORET) database and Oregon Department of Environmental
Quality (DEQ) Laboratory Analytical Storage and Retrieval (LASAR). Because of data
limitations, water quality index is calculated from five water characteristics: pH, turbidity,
biochemical oxygen demand (BOD), nitrates, and total suspended solids (TSS), although
calculating the original index requires additional characteristics. We derived monthly water
characteristics in each water body by utilizing monitoring sites' geographic coordinates and
transformed the values into hydrologic unit water characteristics by averaging them with size of
water body as the weight. Then, an average of monthly water characteristics for each quality
over the calendar year is obtained. Finally, an annual water quality index was calculated as a
weighted sum of year-based individual water characteristics, following the approach of National
Sanitation Foundation. A lower value for the above index implies a higher water quality in the
given hydrologic unit. Summary statistics on the variables used in the gravity model estimation

are presented in Table 1.



Table 1. Summary Statistics of Oregon Data

13

Variable Observation Mean Star_lda_lrd Minimum  Maximum
Deviation
Number of boats 6084 34.55 200.61 0.00 4893.08
Hydm"’g('%%rea Size 79 3064.59 1822.71 33827  10727.08
Herfindahl!? 79 12.63 63.21 6.25E-08 518.46
Dummy (Ocean) 79 0.18 0.38 0.00 1.00
Road Density (%) 79 14.93 13.82 0.74 75.51
Distance (m) 3081° 291271.90 140343.10 26468.27 674259.60
Water Quality Index 79 2.68 3.06 3.35E-05 10.64

2 Herfindahl = 10,000 x sum of (water body/hydrologic unit size)?.
® (the number of hydrologic units? — the number of hydrologic units) / 2 = (79> — 79) / 2 = 3081.
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The empirical estimation of the gravity model employs a linear-log model, where the dependent
variable is in linear form and the independent variables are in log form. The coefficient in the
linear-log specification is interpreted as the absolute change of the dependent variable with
respect to a relative change in the independent variable. The exponential and power functional
form of gravity models in equations (2) and (3) are estimated using the linear-log specification.
Result from the exponential form are quantitatively and qualitatively similar to those of the
power function. We discuss results of the exponential form in the following since its log
likelihood value is slightly higher than that of the power function in our estimation. The
estimated equation is given by:

(6) Tij = ao+ a;In(HUC size); + ayIn(Herfinhahl); + asIn(Road density);
+p1In(HUC siz); + B;In(Herfindahl) ; + fsIn(Road density);
+y1Dummy(Ocean); + +y,Water Quality; + y;Water Quality;

—8d;; + ;.

The results of estimating equation (6) are presented in Table 2 in five alternative specifications

of the exponential form of the gravity model. A censored normal regression (Tobit) model is

estimated for each specification because 3589 of 6084 observations in the empirical data are
censored at zero. The ordinary least square estimation is known to yield biased estimates when

analyzing incompletely observed data (Maddala 1983; Cameron and Trivedi 2005).

The simplest version of our model only considers destination's characteristics with and
without water quality indices (Table 1, Specification 1 and 3). Specification 2 includes origin's
and destination’s characteristics except water qualities, while Specification 4 includes both

regions' attributes with water qualities. Note that the log-likelihood value of specifications with
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origin's characteristics is relatively lower than that with destination characteristics only. Based
on specification tests, we choose Specification 5 for the discussion of results in the following.

The signs of coefficient estimates are robust across the 5 specifications. They can be
interpreted as follows: a hydrologic unit attracts more boaters when (1) the boater lives in a
smaller hydrologic unit, (2) the size of the destination unit is bigger, (3) the water bodies in
living area (origin) are more scattered, (4) the water bodies in the destination are less dispersed,
(5) the origin and the destination are accessible (high road-density), (6) the destination is closer
from the origin, (7) the destination unit is adjacent to the Pacific Ocean, (8) the water quality of
origin is low, and (9) the water quality of destination is high.

In order to compare the relative impact of independent variables on boat flows, we
employ standardized coefficients (Table 1, Specification 5, bStdX). The coefficient bStdX
measures the change in boat flows (dependent variable) when an independent variable is
increased by one standard deviation, holding all else constant. Results show that water body
dispersion and the road density of a destination increase boat flows more than that of the other
variables on the right hand side of equation (6). That is, the presence of a large water body in a
hydrological unit makes it very attractive to boaters, which increases the likelihood of
unintended invasions. If such large water bodies coexist with high accessibility in the form
roads, the attraction is larger further increasing the risk of IS introductions. Water quality does
not appear to be a strong pulling force for boaters, but may be more important in habitat
suitability analysis that follows. Interestingly, the sign of the water quality coefficient in the
origin is the opposite of that of the destination area. Based on the estimates of Specification 5,

we compute predicted boat flows for each hydrological unit j, i.e. ); TU, for use in relative risk

of invasions.



Table 2. Gravity Model Results — Oregon (dependent variable: boat flows, Tj;)

ITSEZE?:SM Specification 1 Specification 2 Specification 3 Specification 4 Specification 5
Coefficient bStd X
Constant -131253 7 -1367.64 -1355.69 -1382.23 7 -1489.93
(92.39) (126.27) (93.17) (127.40) (94.92)
_ -16.42 -1841
In (HUC size); (9.37) (953)
In (HUC size), 129.61 129.48 130.63 131.17 131.94 8461
(10.30) (10.23) (10,33) (10.29) (10.33)
_ -10.11 7 -1055 7
In (Herfindahl); (1.34) (28.88)
In (Herfindahl), 30.07 30.09 28.88 28.88 23.93 193.64
(1.64) (1.63) (1.68) (1.67) (1.68)
_ 66.17 68.41 5291 7
In (Road Density); (6.87) (7.15) (6.06) 48.41
In (Road Density) 110.14 110.55 117.69 119.00 118.77 108.00
(7.16) (7.13) (7.62) (7.59) (7.61)
, -352E-04 -3.47E-04 7 -3.50E-04 -3.48E-04 -3.27E-04
Distance;; -45.77
(3.80E-05) (3.84E-05) (3.80E-05) (3.84E-05) (3.80E-05)
Dummy (Ocean), 112.95 112.36 115.36 115.24 114.23 43.62
(13.36) (13.24) (13.38) (13.29) (13.34)
Water Qualit 795 1.29 522 2077
ater Quallty; .
yi (1.50) (1.61) (1.53)
Water Quality; 612 658 6.76 -22.20
(1.97) (1.96) (1.97)
Log likelihood -19384.68 -19311.01 -19370.54 -19304.96 -19331.52

*** **and * indicate 1%, 5% and 10% level of significance, respectively.
bStdX represents the change in the dependent variable resulting from one standard deviation increase of the independent variable.
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Maxent Results

In characterizing NZMS habitat suitability, we considered the following environmental
characteristics: elevation, 2010 monthly precipitation, 2010 monthly maximum temperature,
2010 monthly minimum temperature, 2010 county population density, and closeness to primary
and secondary roads. All data are transformed to raster data with the same spatial reference
(WGS72) and cell sizes. As noted earlier, the NZMS occurrence data come from the U.S.
Geological Survey Nonindigenous Aquatic Species database and Montana State University

NZMS website. In the following, we report Maxent results based on 25% test samples.

Sensitivity vs. 1 - Specificity for NZMS

Training data (ALIC = 0.985) =
Testdata (ALC=04978) =
Random Prediction (ALC=048) ®
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Figure 1. The Receiver-Operating Characteristic (ROC) Curve
Figure 1 presents the receiver-operation characteristic (ROC) and area under the curve
(AUC) thereof. The x-axis of the figure is the false-positive rate which measures the prediction

of species presence when absence is observed, while the y-axis is the true positive rate which

17
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identifies prediction of presence when presence is observed. The higher the AUC (area under the
ROC ranging between 0.5 and 1.0), the better is the predictive performance of the Maxent model
(Franklin and Miller, 2009). Based on AUC, our application of the Maxent model has predicted
NZMS occurrence with high accuracy.

To identify the relative importance of various environmental characteristics for NZMS
habitat suitability, we employ two outcomes of the Maxent model: percent contribution and
permutation importance of each characteristic. In each algorithmic step, the program
heuristically calculates a model gain (maximum entrophy), which becomes the basis for
computing a characteristic’s percent contribution. However, the percent contribution heavily
relies on the chosen algorithm, and does not reflect correlation among characteristics. Hence,
permutation importance appears to be a better measure of a characteristic's explanatory power
since it is path (algorithm) independent (Phillips, 2011).

Based on permutation importance, Table 3 shows that elevation ranked first among
environmental characteristics suitable to NZMS establishment. Maximum temperature in March,
county population density, and precipitation in December are also important factors determining
NZMS habitat suitability. Among the characteristics considered, relative importance of county

population density and closeness to major roads appears similar to that in the Tobit model

(Table 2).
Table 3. Permutation Importance of Environmental Characteristics
Max County Max
Precipitation Precipitation Precipitation Precipitation Closeness
Variable Elevation Temp Pop Temp
December November May July to Road
March Density October
Permutation
71.8 6.3 4.6 45 35 17 14 14 1.2
Importance

18
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Figure 2 shows the permutation importance of each monthly variable: precipitation, and
maximum and minimum temperatures. The maximum temperature in March appears more
important than other variables because temperature at the start of spring season is likely to
critically determine initial NZMS population (Allee effect) and its ability to naturally reproduce.
The higher importance of the precipitation in November and December shows NZMS habitat
suitability’s reliance on freshwater. In general, minimum temperatures do not play a critical role

in determining NZMS habitat suitability.
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Figure 2. Permutation Importance of Monthly Precipitation and Temperature

Relative Risk Assessment

In this section, we combine the results of the Tobit model and Maxent method for relative risk
assessment. First, from the Tobit model we predict boat flows from i to j, i.e. unconditional

expected value of the dependent variable (y):

(7  E@IX) =Py >0X)-E(y|IX,y>0)= @(%)[Xﬁ + ol (%)]
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where X is the set of independent variables in equation (6), ®(-) is the standard normal
cumulative density function, ¢ is a standard deviation of the normal distribution, and A(*) is the

inverse Mills ratio (Wooldridge, 2002). Denoting the expected value as T;;, we compute total

j
boat flows in each hydrologic unit j as };; Tij. Since the relative risk of NZMS introduction is
proportional to total boat inflow, we normalize it as follows: 7; = ¥; T;; / ¥; X T;;. In Figure 3,
MAP 1 shows t; values across hydrologic units in Oregon.

MAP 2 of Figure 3 charts the relative probability of NZMS establishment from the
Maxent estimation, while MAP 3 scales up the values of MAP 2 by those from MAP 1, i.e.
integrated relative risk. All three panels paint a similar picture. The maximum relative risk of
introduction through boat flows is 0.0342, while that of establishment is 0.9631. Each point in
MAP 3 of Figure 3 is the product of relative risk of introduction and establishment probability.

The relative risk assessment in Figure 3 shows, not surprisingly, that areas already
infected face the largest threat. However, two hydrologic units (near Portland and Salem),
although not infected, face serious threat of NZMS introduction and establishment. The
introduction risk comes from higher boat flows to these units, which also appear ecologically

suitable for NZMS establishment.
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Normalized Boat Flows, Habitat Suitability and Integrated Risk

21



22

Summary and Conclusions

When dealing with invasive species threats, the first step is to assess risk of introduction and
establishment. Since anthropogenic and biological factors determine successful bioinvasion, it is
important to identify pathways and their relative importance for introduction along with
environmental suitability for survival and establishment. In this study, we have proposed a
quantitative approach to IS risk assessment by employing a gravity model for species
introduction and an ecological niche model for establishment. Our application focuses on New

Zealand mudsnails in the Pacific Northwest.

The gravity model relates recreational boat movements, i.e. key pathway of unintentional
IS introduction, to distance between water bodies (hydrological units) and the attractiveness of
an origin relative to a destination. Results for Oregon suggest that the destination would be more
attractive to boaters if it is larger; the boater lives in a smaller area; the water bodies in origin are
scattered, but less so in destination; distance between origin and destination; accessibility of
destination; the destination is adjacent to the ocean, and the water quality of destination is better
than the origin. Results from the Maxent method show that NZMS can establish more
successfully in regions with high elevation or high population and closer to major roadways.
Also, the maximum temperature of spring and precipitation during winter are important

characteristics of an environment suitable for NZMS establishment.

Finally, spatial relative risk of NZMS is derived as the product of outcomes from the
gravity and ecological niche models. We have uncovered non-infested areas of Oregon facing
high risk of NZMS introduction and current infested areas facing serious establishment. These
quantitative risk measures help resource mangers prioritize management and can be replicated

for other invasive species posing a threat to the Pacific Northwest.
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