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ABSTRACT. Options on agricultural futures are popular financial instruments used for 
agricultural price risk management and to speculate on future price movements. Poor 
performance of Black’s classical option pricing model has stimulated many researchers to 
introduce pricing models that are more consistent with observed option premiums. However, 
most models are motivated solely from the standpoint of the time series properties of futures 
prices and need for improvements in forecasting and hedging performance. In this paper we 
propose a novel arbitrage pricing model motivated from the economic theory of optimal storage, 
and consistent with implications of plant physiology on the importance of weather stress. We 
introduce a pricing model for options on futures based on a Generalized Lambda Distribution 
(GLD) that allows greater flexibility in higher moments of the expected terminal distribution of 
futures price. We use times and sales data for corn futures and options for the period 1995-2009 
to estimate the implied skewness parameter separately for each trading day. An economic 
explanation is then presented for inter-year variations in implied skewness based on the theory of 
storage. After controlling for changes in planned acreage, we find a statistically significant 
negative relationship between ending stocks-to-use and implied skewness, as predicted by the 
theory of storage. Furthermore, intra-year dynamics of implied skewness reflect the fact that 
resolution of uncertainty in corn supply is resolved between late June and middle of October, i.e. 
during corn growth phases that encompass corn silking through grain maturity. Impacts of 
storage and weather on the distribution of terminal futures price jointly explain upward sloping 
implied volatility curves. 
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1. Introduction 

Options written on commodity futures have been investigated from several aspects in the 

commodity economics literature. For example, Lence (1994), Vercammen (1995), Lien and 

Wong (2002), and Adam-Müller and Panaretou (2009) considered the role of options in optimal 

hedging. Use of options in agricultural policy was examined by Gardner (1977), Glauber and 

Miranda (1989), and Buschena (2008). The effects of news on options prices has been 

investigated by Fortenbery and Sumner (1993), Isengildina-Massa, Irwin, Good, and Gomez 

(2008) and Thomsen (2009). The informational content of options prices has been looked into by 

Fackler and King (1990), Sherrick, Garcia and Tirupattur (1996), and Egelkraut, Garcia, and 

Sherrick (2007). Some of the most interesting work done in this area considers modifications to 

the standard Black-Scholes formula that accounts for non-normality (skewness, leptokurtosis) of 

price innovations, heteroskedasticity, and specifics of commodity spot prices (e.g. mean-

reversion). Examples include Kang and Brorsen (1995), and Ji and Brorsen (2009).  

In this article we revisit the well-known fact that the classical Black’s (1976) model is 

inconsistent with observed option premiums. Previous studies like Fackler and King (1990) and 

Sherrick et al. (1996) address this puzzle by identifying properties of futures prices that deviate 

from assumptions of Black’s model, i.e. leptokurtic and skewed distributions of the logarithm of 

terminal futures prices and stochastic volatility. A common feature of past studies is the 

grounding of their arguments in the time-series properties of stochastic processes for futures 

prices and the distributional properties of terminal futures prices. In other words, their arguments 

are primarily statistical. In contrast to previous studies, we offer an economic explanation for the 

observed statistical characteristics. In this paper we analyze in detail options on corn futures. The 

focus is on presenting an alternative pricing model that is not motivated by improving the 
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forecasts of options premiums compared to Black’s or other models, but by linking option 

pricing models with the economics of supply for annually harvested storable agricultural 

commodities. In particular, we demonstrate the effect of storability and crop physiology (i.e. 

susceptibility to weather stress) on higher moments of the futures price distribution. Only by 

understanding these fundamental economic forces can we truly explain why classical option 

pricing models work so poorly for commodity futures. 

The article is organized as follows. In the next section we examine in detail the implications of 

Black’s classical option pricing model on the shape and dynamics of the futures price 

distribution. We follow by presenting the rational expectations competitive equilibrium model 

with storage, and a testable hypothesis on conditional new crop price distributions that follows 

from it. In addition to storage, we present the agronomical research on the impact of weather on 

corn yields. We then develop a novel arbitrage pricing model for options on commodity futures 

based on the Generalized Lambda Distribution (GLD) which we propose to use in calibrating 

skewness of new crop futures price to match observed option premiums. The third section 

describes the econometric model. In the fourth section we summarize the data used in 

econometric analysis. Finally, we describe the estimation procedure and present results of 

statistical inference, followed by a set of conclusions and directions for further research.  

2. Theory 

2.1. Foundations of arbitrage pricing theory for options on futures 

Black (1976) was the first to offer an arbitrage pricing model for options on futures contracts. 

Despite numerous extensions and modifications proposed in the literature, and the inability of the 

model to explain observed option premiums, traders still use this model in practice. This is likely 
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due to its simplicity and ability to forecast option premiums after appropriate “tweaks” are put in 

place. Black proposes that futures prices follow a stochastic process as described below:  

 dF Fdz  (1) 

where F stands for futures price,  for volatility, and dz is an increment of Brownian motion. 

The implication is that futures prices are unbiased expectations of terminal futures prices (ideally 

equal to the spot price at expiration), and the stochastic process followed by futures prices is a 

geometric Brownian motion.  

Under this scenario the option premium V is equal to the present value of the expected option 

payoff under a risk-neutral distribution for terminal prices. For example, for a call option with 

strike K , volatility , risk-free interest rate r and time left to maturityT :  

      0 00
, , , , , 0 ; , , ,rT

T T TV K F T r e Max F K f F F r T dF 
   (2) 

Because delta hedging with futures does not require a hedger to pay the full value of the futures 

contract due to margin trading, a risk-neutral terminal distribution for futures prices is equivalent 

to a risk-neutral terminal distribution for a stock that pays a dividend yield equal to the risk-free 

interest rate: 

 2 2
0

1
ln ~ ln ,

2TF N F T   
 

 (3) 

Thus, Black’s model postulates that the distribution of terminal futures prices, conditional on 

information known at time zero, is lognormal with the first four moments fully determined by the 

current futures price and volatility parameter  . In particular, the first four moments of the risk-

neutral terminal distribution are equal to: 
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   2 22 2 2 22
0

4 32
0

2( 2) 31 1 2t t t t t tF F e SKEW KUe e e eRT e                (4) 

For example, if a futures price is $2.50, volatility is 30%, and there are 160 days left to maturity, 

the standard deviation of the terminal distribution would be $0.50, skewness would be 0.60 and 

kurtosis would be 3.64. Therefore, the standard Black’s model implies that the expected 

distribution of terminal prices would be positively skewed, and leptokurtic. When complaints are 

raised that Black’s model imposes normality restrictions, it is the logarithm of the terminal price 

that the critique refers to.  

The standard way to check if Black’s model is an appropriate pricing strategy is to exploit the 

fact that for a given futures price, strike price, risk-free interest rate, and time to maturity, the 

model postulates a one-to-one relationship between the volatility coefficient and the option 

premium. Thus, the pricing function can be inverted to infer the volatility coefficient from an 

observed option premium. Such coefficients are referred to as implied volatility and the principal 

testable implication of Black’s model is that implied volatility does not depend on how deep in-

the-money or out-of-money an option is. If the logarithm of terminal price is not normally 

distributed, then Black’s model is not appropriate, and implied volatility (IV) will vary with 

option moneyness – a flagrant violation of the model’s assumptions. Black’s model gives us a 

pricing formula for European options on futures, i.e. options that can only be exercised at 

contract maturity.  Prices of American options on futures that are assumed to follow the same 

stochastic process as in Black’s model must also account for the possibility of early exercise. For 

that reason, their prices cannot be obtained through a closed-form formula, but must be estimated 

through numerical methods such as the Cox, Ross and Rubinstein (CRR) (1979) binomial trees.  

Implied volatility curves for storable commodity products are almost always upward sloping. As 

an example consider the December 2006 corn contract.  The futures price on June 26, 2006 was 
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$2.49/bu. As seen in Figure 1, the implied volatility curve associated with calculating IV using 

various December option strikes is strongly upward sloping, with the implied volatility 

coefficients for the highest strike options close to 15 percentage points higher than the implied 

volatility for options with lower strikes. 

Geman (2005) calls this phenomenon an “inverse leverage effect,” after the “leverage effect” 

proposed to explain downward sloping implied volatility curves for individual company stocks. 

However, this is a complete misnomer. As Black (1976b) explains, the leverage effect arises 

from the fact that as stock price declines, the ratio of a company’s debt to equity value, its 

leverage, increases. If the volatility of company assets is constant, then as the equity share of 

assets declines, volatility in equity will increase. While the leverage effect has a coherent causal 

model to justify the term, nothing explains “inverse leverage effect.”  

We can gain further insight as to how Black’s model performs if we plot the implied volatility 

curve for a single contract at different time-to-maturity horizons. As an example, consider 

December corn contracts in the years 2004 and 2006. As Figure 2 shows, three distinct patterns 

are noticeable. First, except when options are very near maturity, we always see an upward 

sloping implied volatility curve. Second, implied volatility of at-the-money options, i.e. options 

that have the strike price equal to the current futures price, rises almost linearly until the end of 

June, declines throughout the summer months, and then starts rising again. Finally, near 

maturity, volatility skews give way to symmetric volatility smiles. The implied volatility 

coefficient measures volatility on an annual basis, and the variance of the terminal price, 

conditional on time remaining to maturity, is  2 T t  . So if uncertainty about the terminal 

price is uniformly resolved as time passes, implied volatility will not decrease, but will stay the 

same. Likewise, when the same amount of uncertainty needs to be resolved in a shorter time 
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interval implied volatility will increase. Therefore, linear increases in implied volatility from 

distant horizons up until June is best interpreted not as increases in day to day volatility of 

futures price changes, but a market consensus that the conditional variance of terminal prices is 

not much reduced before June. 

While CRR binomial trees preserve the basic restrictions of Black’s model, i.e. the normality of 

the log-prices terminal distribution, Rubinstein (1994, 1998) shows how that can be relaxed to 

allow for non-normal skewness and kurtosis. To illustrate the effect of skewness and kurtosis on 

Black’s implied volatility we used Edgeworth binomial trees (Rubinstein, 1998).  This allows for 

pricing options that exhibit skewed and leptokurtic distributions of terminal log-prices. As can be 

seen in panel 1 in Figure 3, zero skewness and no excess kurtosis (S=0, K=3) corresponds to a 

flat IV curve, i.e. CRR implied volatility estimated from options premiums is the same no matter 

what strike is used to infer it, just like Black’s model would have it. A leptokurtic distribution 

will cause so called “smiles”, i.e. options with strikes further away from the current futures price 

will produce higher implied volatility coefficients. Positive skewness creates an upward sloping 

curve, and negative skewness a downward sloping IV curve.  

Faced with the inability of Black’s model to explain observed option premiums, researchers and 

traders have pursued three different approaches to address this issue: 

1) Start from the end: relax the assumptions concerning risk-neutral terminal distributions of 

underlying futures prices, i.e. allow for non-lognormal skewness and kurtosis. As long as 

delta hedging is possible at all times (i.e. markets are complete), it is still possible to 

calculate option premiums as the present value of expected option payoffs. Examples of 

this approach include Jarrow and Ruud (1982), Sherrick et al. (1996), and Rubinstein 
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(1998). While the formulas that derive option premiums as discounted expected payoffs 

assume that options are European, one can still price American options using implied 

binomial trees calibrated to the terminal distribution of choice (Rubinstein, 1994).  

2) Start from the beginning: start by asking what kind of stochastic process is consistent 

with a non-normal terminal distribution? By introducing appropriate stochastic volatility 

and/or jumps, one might be able to fit the data just as well as by the approach above. 

Examples of this approach are Kang and Brorsen (1995), Hilliard and Reis (1998) and Ji 

and Brorsen (2009). 

3) “Tweak it so it works good enough” approach: if one is willing to sacrifice mathematical 

elegance, the coherence of the second approach, and insights that might emerge from the 

first approach, and if the only objective is the ability to forecast day-ahead option 

premiums one can simply tweak Black’s model. An example of such an approach would 

be to model the implied volatility coefficient as a quadratic function of the strike. Even 

though it makes no theoretical sense (this is like saying that options with different strikes 

live in different universes), this approach will work good enough for many traders. Just as 

in that famous saying by Yogi Berra (2010): “In theory, there is no difference between 

theory and practice. In practice, there is.” A seminal article that evaluates the hedging 

effectiveness of such an approach is Dumas, Fleming and Whaley (1998). The authors 

find that for hedging purposes such an ad-hoc approach seems to work equally well 

compared to the more sophisticate and theoretically coherent models they evaluate. 

In this article we take the first approach, and modify the Black’s model by modifying the 

terminal distribution of futures price. Instead of a lognormal, we propose a generalized lambda 

distribution (GLD) developed by Ramberg and Schmeiser (1974) and introduced to options 
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pricing by Corrado (2001). An alternative would be to use Edgeworth binomial trees, but 

preliminary analysis showed that such an approach may not be adequate for situations where 

skewness and kurtosis are rather high. In addition, Edgeworth trees work with the skewness of 

terminal log-prices, while we prefer to have implied parameters for the skewness of terminal 

futures prices directly, not their logarithms. In addition, the GLD pricing model allows for a 

higher degree of flexibility in terms of skewness and kurtosis, i.e. its’ parameters are rather easy 

to calibrate from observed options prices and it is straightforward to develop a closed-form 

solution for pricing options. While these are all favorable characteristics, it is in fact the ability to 

gain additional economic insight that truly justifies yet another option pricing model. GLD 

allows us to get an explicit estimate of skewness and kurtosis of the terminal distributions, that 

can used to make a strong connection between the economics of supply for storable agricultural 

commodities and financial models for pricing options on commodity futures.   

2.2. Theory of storage and time-series properties of commodity spot and futures prices 

Deaton and Laroque (1992) used a rational expectations competitive storage model to explain 

nonlinearities in the time series of commodity prices: skewness, rare but dramatic substantial 

increases in prices, and a high degree of autocorrelation in prices from one harvest season to the 

next. The basic conclusion of their work was that the inability to carry negative inventories 

introduces a non-linearity in prices that manifests itself in the above characteristics.  

This is an example of theory being employed in an attempt to replicate patterns of observed price 

data. In a similar fashion, but subtly different, Williams and Wright (1991) postulate that the 

moments of expected price distributions at harvest time vary with the current (pre-harvest) price 

and available carryout stocks, as shown in Figure 4. According to them, when observed at annual 

or quarterly frequency, spot prices exhibit positive autocorrelation that emerges because storage 
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allows unusually high or low excess demand to be spread out over several years. Furthermore, 

the variance of price changes depends on the level of inventory. When stocks are high, and the 

spot price is low, the abundance of stored stocks serves as a buffer to price changes, and variance 

is low. When stocks are low, and thus the spot price is high, stocks are not sufficient to buffer 

price changes. Finally, the third moment of the price change distribution also varies with 

inventories. Since storage can always reduce the downward price pressure of a windfall harvest, 

but cannot do as much for a really bad harvest, large price increases are more common than large 

decreases. The magnitude of this cushioning effect of storage depends on the size of the stocks. 

In conclusion, one should expect commodity prices to be mean-stationary, heteroskedastic and 

with conditional skewness, where both the second and third moments depend on the size of the 

inventories.  

Testing the theory proceeds with this argument: if we can replicate the price pattern using a 

particular set of rationality assumptions, then we cannot refute the claim that markets indeed 

behave as described above. That is the road taken by Deaton and Laroque (1992) and Miranda 

and Rui (1995). However, since in the spot price series we only see the realizations of prices, not 

the conditional expectations of them, we cannot use spot price data to directly test what the 

market expected to happen. As such, predictions from storage theory focused on the scale and 

shape of expected distributions of new harvest spot prices have remained untested. In this paper 

we use options data to infer the conditional expectations of terminal futures prices, and therefore 

test the following prediction of the theory of storage:  

 The lower inventories are, the more positive will be the skewness of the conditional 

harvest futures price distribution 
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This is tested using an options pricing formula based on the generalized lambda distribution to 

calibrate the skewness and kurtosis of expected (conditional) harvest futures price distributions. 

Implied parameters from the model are then used to test the hypotheses above. 

2.3. The role of weather in intra-year resolution of price uncertainty 

As illustrated in section 2.1., a very small share of uncertainty concerning the terminal price of a 

new crop futures contract is resolved before June. A large part of the uncertainty is resolved 

between late June and early October. The reason lies in corn physiology and the way weather 

stress impacts corn throughout the growing season. In the major corn producing areas of the 

U.S., corn is planted starting the last week of April. It takes about 80 days after planting for a 

plant to reach its reproduction stage, also known as corn silking. At this juncture the need for 

nutrients is highest, and moisture stress has a large impact on final yield. Weather continues to 

play an important role through the rest of the growing cycle, as summarized by Figure 5, taken 

from Shaw et al. (1988).  

Beginning in July, the United States Department of Agriculture (USDA) publishes updated 

forecasts of corn yield per acre. At the beginning of the growing season, before corn starts 

silking, production forecasts ae generally based on estimated acres and historical trend yields. As 

can be seen in Figure 6, June forecasts of final yield deviated from the historical trend value 

essentially the same in both what was at the time the record-setting yield year 2004/2005 when 

final yield was 15 bushels above the trend, and the major draught year of 1988/89 when final 

yields were 32 bushels below the trend. However, uncertainty is quickly resolved in July and 

August. As shown in Figure 7, whereas June forecasts deviated from final estimates from the low 

of -11% in 1994/95 to high of 45% in 1988/89, the September estimate deviations ranged only 

from -7% to 12%. Besides weather, more precise methods used by USDA from August onwards 
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estimate final yields also contribute to decrease in uncertainty. Starting in late July, and first 

reported in August edition of the Crop Production report, final yields are estimated not only 

based on statistical models that control for trend and crop condition, but also include information 

obtained through grower-reported yield survey and objective measurement survey.  

A testable hypothesis that emerges from these stylized facts concerns the fundamental role of 

seasonality in uncertainty resolution, as well as pronounced negative skewness in deviations of 

final yields from trend values. In other words, do seasonal yield deviations contribute to a 

positive skewness of the terminal price distribution and the dynamics of skewness throughout the 

marketing year? In particular, we might expect implied skewness to decrease throughout the 

growing season.  

2.4. Option pricing formula using generalized lambda distribution 

The generalized lambda distribution (GLD) was developed by Ramberg and Schmeiser (1974), 

with Ramberg et al. (1979) further describing its properties. It was introduced to options pricing 

by Corrado (2001) who derived a formula for pricing options on non-dividend paying stocks. 

Here we review the properties of GLD and adopt Corrado’s formula to options on futures. 

GLD is most easily described by a percentile function1 (i.e. inverse cumulative density function): 

     43

1
2

1p p
F p






 
   (5) 

For example, to say that for  0.90, 4.5p F p   means that the market expects with a 90% 

probability that the terminal futures price will be lower than or equal to $4.50/bu.  

                                                 

1 F here stands for futures price, not for cumulative density function. 
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GLD has four parameters: 1 controls location, 2 determines variance, and 3 and 4 jointly 

determine skewness and kurtosis. In particular the mean and variance are calculated as follows: 

  
1 2

2 2 2
2

/

/

A

B A

  

 

 

 
 (6) 

with
3 4

1 1

1 1
A

 
 

 
and  3 4

3 4

1 1
2 1 ,1 2

1 2 1 2
B   

 
    

 
,where  

 
stands for the 

complete beta function. We see that the 3 and 4 parameters influence both location and 

variance, however 1 influences only the first moment, and 2 influences only the first two 

moments. Thus, skewness and kurtosis do not depend on 1 and 2 . 

The skewness and kurtosis formulas are: 

 

3
3

3 3 2 3
2

2 4
4

4 4 4
2

3 2

4 6 3

C AB A

D AC A B A


  


 

 
 

  
 

 (7) 

where expressions for C and D are: 

   3 4 3 4
3 3

1 1
3 1 2 ,1 3 1 ,1 2

1 3 1 3
C      

 
       

 
 

     3 4 3 4 3 4
3 3

1 1
4 1 3 ,1 4 1 ,1 3 6 1 2 ,1 2

1 4 1 4
D         

 
          

   

A standardized GLD has a zero mean and unit variance, and has a percentile function of the 

form: 

       43

2 3 4 4 3

1 1 1
1

, 1 1
F p p p



    
 

       
 (8) 
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with     2
2 3 4 3, sign B A       

From here, we can move more easily to an options pricing environment. We wish to make GLD 

an approximate generalization of the log-normal distribution so we keep the mean and the 

variance the same as in (4), while allowing skewness and kurtosis to be separately determined by 

the 3 and 4 parameters. Therefore, the percentile function relevant for option pricing will be  

      
2

43
0

2 3 4 4 3

1 1 1
1 1

, 1 1

te
F p F p p




    

             
 (9) 

Note that this is equivalent to (5) with 
 

2

1 0
2 3 4 4 3

1 1 1

, 1 1

te
F




    

 
     

 

and 
 

2

2 3 4
2

,

1te

  
 


. This will guarantee that the first two moments of the terminal distribution 

will be  22 2
0 0 1tF F e     , just as in Black’s model. 

The pricing formula for European calls is 

      0 3 4 0
, , , , , , , 0rT

TV K F T r e Max F K dp F  
   (10) 

As shown by Corrado (2001), we can simplify this through a change-of-variable approach where

  TF p F : 

           
 

1

0
,0T TK p K

Max F K dp F F K dp F F p K dp
 

        (11) 

Here  p K stands for the cumulative density function, evaluated at K. While there is no closed 

form formula for the function, values can be easily found with numerical approaches by using 

the percentile function.  
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Integrating  F p
we get  
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with the final European call pricing formula being:  

  0 3 4 0 1 2, , , , , , rt rtV K F T r F e G e KG       (12) 

where 1G is defined above and  2 1G p K   

In a similar way it can be shown that the price for a put is  

      0 3 4 2 0 1, , , , , , 1 1rt rt
PV K F T r e K G F e G         (13) 

3. Econometric Model 

3.1. Estimating implied skewness 

Implied skewness is used as a dependent variable in subsequent econometric models, thus the 

first task at hand is to estimate implied higher moments of the terminal futures price distribution 

for a particular underlying futures contract. The GLD option pricing model can be used to price 

only European options, that is, options that can only be exercised at contract maturity. As 

mentioned before, options on corn futures are American options, i.e. they can be also exercised 

at any time before contract maturity. Therefore, for each option trade we use in fitting implied 

GLD higher moments, we first need to calculate the price at which such an option would trade if 

it indeed were of the European type. To do this, for each data point, we separately estimate 
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implied volatility using CRR binomial trees with 500 steps. Then, for each observation 

separately, we use Black’s model to calculate the price of a European option with same futures 

price, strike, interest rate and time to maturity as that record for actually traded American option.  

Using calibrated premiums for European options on corn futures, we then fit the following 

option pricing model to options of a particular contract month: 

  0 3 4, , , , , ,E
i i i iO V K F r        (14) 

where function used is as in (12) for calls or (13) for puts, E
iO would be the previously calibrated 

option premium for trade i for an option with strike iK  and with 0iF being the last observed 

traded futures price prior to this trade. Observed parameters common to all options of the same 

contract month traded on the same day include the interest rate r  and the time to maturity 

measured in calendar days, denoted as .  

The unobserved generalized lambda distribution parameters 3 4, ,    jointly determine variance, 

skewness and kurtosis of the implied terminal distribution of futures prices, and are assumed to 

be the same for all trades occurring on a single trading day. Implied parameters are fitted by a 

nonlinear least squares model, minimizing squared differences between calibrated option 

premiums for European options, and option premiums that arise from the GLD option pricing 

model. Models are estimated separately for each trading day and each contract month traded at 

that day.  

3.2. Modeling intra-year dynamics of implied skewness 

As we postulated in section 2.3., corn physiology in conjunction with weather patterns should 

play a major role in governing the intra-year dynamics of implied skewness. The panels in Figure 
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8 present scatter diagrams of estimated implied skewness over the life of particular contract 

months. Each dot represents the estimated implied skewness on a particular trading day, with 

bolded diamonds being averages for a particular time-to-maturity horizon over the 15 marketing 

years used in estimation (1995-2009). Visual inspection does not contradict patterns we expected 

to see. In particular, new-crop contracts (September and December), exhibit near flat average 

implied skewness until late June, followed by a concave decrease for the September contract, and 

linear downward trend for December. Patterns for carry contracts (March, May and July) share 

strong and concave decreases in implied skewness over the last four months of contract life, with 

the effects on implied skewness during corn growth period not as distinct as for new-crop 

contracts. All five patterns stand in stark contrast to Black’s model where variance of the 

terminal futures price distribution is assumed to be decreasing linearly in time. Given that 

Black’s model stipulates the terminal distribution to be lognormal, a linear decrease in variance 

would correspond to a slightly convex and smooth decline in implied skewness.  

If skewness in options on corn futures arises due to asymmetry in the ability of old-crop stocks to 

mitigate price effects of unexpected weather events during the growing season then skewness 

should exhibit different dynamics before corn silking, during the growing season, and post-

harvest. To test this hypothesis, we fit implied skewness as a function of time using several 

models. Let implied skewness be denoted with tIS . If options expire at time T , then the 

remaining time to maturity T t  is denoted as  . The models we test can then be written as 

Linear model: 

 1t tIS        (15) 

Quadratic model: 
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 2
1 2t tIS           (16) 

Linear model with one change in regime (timing is estimated endogenously): 

 
     1 1 1 2 2 1

1 1 1 2 2 1. .  
t tIS

s t

          
     
      

  

 
 

 (17) 

Quadratic model with one change in regime (timing is estimated endogenously): 

 
   2 2

1 1 1 1 2 2 2 1

2 2
1 1 1 1 1 2 2 1 1. .  

t tIS

s t

              

        

              
    

 

   
 (18) 

Quadratic model with two changes in regime (timing is estimated endogenously): 

 

     2 2 2
1 1 1 1 2 2 2 2 1 3 3 3 2

2 2
1 1 1 1 1 2 2 1 2 1

2 2
2 2 2 2 2 3 3 2 3 2

. .  

       

t tIS

s t

                      

         

         

                       
    

    

   

   
   

(19) 

Simple linear (15) and quadratic models (16) are used as benchmarks. In particular, it is 

interesting to compare the performance of model (16) to more complicated models as model (16) 

together with a restriction that 2 be positive (i.e. IS exhibiting a convex pattern over time) 

follows as an implication of Black’s option pricing model. Different skewness dynamics through 

a marketing year would be captured either by estimating higher polynomial or multiple-regime 

models. In the multiple-regime models fit here, the restrictions listed above result in continuity of 

predicted implied skewness at points of regime change, but smoothness at those points is not 

imposed.  

The points at which regimes changes, i.e. 1 in models (17) and (18) and 1 2,    in model (19) are 

also treated as parameters that need to be estimated, rather than being pre-determined. 

Conditional on a particular choice of these parameters, the rest of the model can be estimated 

using restricted least squares. For one-switch models, similar to Hansen (1999), denote the sum 
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of square errors for restricted least squares estimates conditional on a particular value of 1 as 

 1SSE  . The optimal point for the regime switching time is found as the minimizer of the 

conditional restricted sum of square errors:  

  1 arg min SSE


 


  (20) 

For models with two switches, we can find the optimal switching points through a three-step 

minimization. First, conditional on particular values of 1 2,  we can find the optimal slope 

coefficients by restricted least squares estimation. Then, like above 

 
 

 

 
2 1

1 1

2 1 1 2

1 1 2 1

| arg min ,

arg min , |

SSE

SSE

 



   

   










 
 (21) 

where  1 1 1: 20 50MAX      
and    2 1 2 1 2: 30 20       

. 

To implement this when estimating optimal points for regime switching, conditional on 

stipulating the number of regime switch points, simple grid search is used, and then the sum of 

squared errors (SSE) from the estimated restricted least squares are ranked. We stipulate that 

regime switching cannot be less than 20 days to expiry or closer than 20 days to the maximum 

time to maturity. For models with two switch dates, we also stipulate that the two switch dates 

cannot be less than 30 days apart. The model with the lowest SSE is chosen as best in its class.  

Models are estimated separately for each contract month (March, May, July, September and 

December), using daily values of implied skewness for the period 1995-2009. To repeat, implied 

skewness is itself estimated using high-frequency data as described in the previous section. As 

such, implied skewness estimates become very unstable on a day-to-day basis for very high time 

to maturity horizons. One reason could be a lack of liquidity in options markets for options far 
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from expiry, and another the low number of years for which options with such long horizons 

have even been traded. To eliminate the effect of noise in the estimation of implied skewness for 

long time to maturity horizons, we truncate the maximum allowable time to maturity for each 

contract separately at the point where simple visual inspection indicates noise starts to dominate.  

In selecting the optimal model specification among the five models listed, we have used the 

theory developed by Hansen (1996, 1999, 2000) and used in Cox, Hansen and Jimenez (2004). 

As Hansen (1996) explains, the problems of inference in the presence of nuisance parameters 

(i.e. regime switching times) is that they are not identified under the null hypothesis of no-regime 

change. If we fixed the regime switching-time to a particular value, we could perform a standard 

Wald test to see if parameters for intercept and slopes are equal for observations occurring before 

and after  days to maturity. However, since we cannot restrict the possible threshold time a 

priori, as Hansen (1996) explains, the asymptotic distribution of standard tests are nonstandard 

and nonsimilar, which means that tabulation of critical values is impossible. The finite sample 

distribution of the Wald statistic under the null hypothesis is calculated by simulation and the 

null hypothesis is rejected if the test statistic is higher than the desired percentile of the simulated 

Wald statistic distribution under the null. Details of the bootstrapping method used in testing for 

the optimal model class are presented in section 5.  

3.3. Inter-year variation of implied skewness 

Finally, we turn to explaining the inter-year variations in implied skewness. As argued in the 

previous section, skewness will likely be impacted by weather once corn silking starts. 

Therefore, if we are to infer an impact of storage on skewness across many years, each with its 

own weather peculiarities, we should choose the time before the reproductive growth phase 

starts, i.e. no later than third week of June. If we were to choose skewness observed much earlier 
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than that, we would risk falling in the endogeneity trap. Before a marketing year is close to the 

end, consumption can react to changes in futures price, possibly even to changes in options 

premiums, thus increasing or decreasing carryout stocks. It would make little sense then to use 

expected ending stocks-to-use as a predetermined explanatory variable and implied skewness as 

a dependent variable. To avoid this problem, the expected ending stocks-to-use ratio of the 

previous marketing year, as reported in June edition of World Agricultural Supply and Demand 

Estimates (WASDE) report2 is employed for explanatory variable for storage adequacy. 

If the price elasticity of supply for corn is not zero, we would expect producers to react to tighter 

expected stocks and higher new crop prices with an increase in planted acreage, so acreage 

response is the second variable we need to include in the model. Specifically, we use the measure 

of change between intended plantings for a given year as reported in the USDA Prospective 

Plantings3 report published at the end of March, and the actual acreage planted in the previous 

marketing year. 

In addition to supply side covariates, we need to address possible asymmetries in uncertainty of 

demand. Domestically, corn is used as a livestock feed, an industrial sweetener and as an input in 

ethanol production. All three of these derived demand categories are likely impacted by 

macroeconomic shocks. Therefore, as a measure of demand uncertainty we use the June-to-June 

change in the national unemployment rate as published by the Bureau of Labor Statistics. 

The final econometric model has the following form: 
                                                 

2 WASDE is produced by World Agricultural Outlook Board, inter-agency body at United States Department of 
Agriculture. Historical WASDE reports can be accessed at  
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1194 
3 Prospective Plantings is a government report produced annually by the National Agricultural Statistics Service, an 
agency of the United States Department of Agriculture. Historical Prospective Plantings reports can be accessed at 
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1136 
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  1 2 3/t t T t T t tIS E A E S D U          (22) 

Where tIS stands for implied skewness for a December contract of year t estimated as the 

average of implied skewness for the 10 trading days following the June WASDE report. The 

change in acreage planted is TA . Since in June we only observe intended plantings, this is 

written as the expected change in acreage. Expected ending stocks-to-use is  /t T tE S D and tU

is the June-to-June change in the U.S. unemployment rate. Theory predicts that all coefficients 

except the constant should be negative. A stronger acreage response and higher carryout stocks 

relative to demand imply more ability to buffer adverse weather shocks, and will thus reduce 

skewness. Likewise, a more unstable macroeconomic environment will decrease demand for fuel 

and possibly even for meat, thus reducing upward pressure on corn prices.  

4. Data 

Commodity futures for corn as well as options on futures are traded on the Chicago Mercantile 

Exchange (formerly the Chicago Board of Trade). A dataset comprising all recorded 

transactions, i.e. times and sales data (also known as “tick data”) for both futures and options on 

futures, for the period 1995 through 2009, was obtained. It includes data for both the regular and 

electronic trading sessions. The total number of transactions exceeds 30 million, including 22 

million observations on futures contract trades, and about 10 million trades in options contracts. 

Options data were matched with the last preceding futures transaction. LIBOR interest rates were 

obtained from British Bankers’ Association, and represent the risk-free rate of return. Overnight, 

1 and 2 weeks, and 1 through 12 months of maturity LIBOR rates for period the 1995 through 

2009 were used to obtain the arbitrage-free option pricing formulas. In particular, each options 

transaction was assigned the weighted average of interest rates with maturities closest to the 
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contract traded. To avoid serial correlation in residuals from estimating implied coefficients, the 

data frequency was reduced to not less than 15 minutes between transactions for the same 

options contract. This resulted in data sets of between 200 to 800 recorded transactions for a 

particular trading day for a total of around 1.1 million observations used in estimation. For each 

data point we separately estimate implied volatility using CRR binomial trees with 500 steps. 

Then, for each data point, the price of a European option using Black’s formula is calculated 

using the same parameters (futures price, interest rate, time to maturity) as that recorded for the 

American option. In addition, volatility is set equal to the one implied for American options. 

These ‘artificial’ European options are then used in fitting parameters of GLD option pricing 

model for each trading day separately.   

As stated in the previous section, the implied skewness used in the econometric analysis is 

calculated as a simple average over 10 business days following the June WASDE report. Due to 

the high incidence of limit-move days and days with high intraday price changes the year 2008 is 

excluded from the sample. Including 2008 would render the calculation of higher moments 

unreliable. Descriptive statistics of the variables used in econometric analysis are given in Table 

1, and corn supply/demand balance sheets are in Table 2. 

Figure 9 presents a scatter diagram of expected ending stocks-to-use vs. implied skewness. Note 

the inverse relationship between these variables and the beneficial impact of the acreage 

response. For example, in the summer of 1996, carryout stocks-to-use were only 4.03%, two 

standard deviations below the average for 1995-2009. However, skewness was below the mean, 

due to a 12.2% increase in expected acreage, which is 2.2 standard deviations above the average 

increase of 1.4%. Similarly, in 2007 carryout stocks were only 8.56% of demand, but a massive 

acreage increase of 15.5%, by far the largest in this sample, reduced the skewness below the 
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mean. It is instructive to look at 2006 as well. Although ending stocks were bountiful at 19.67% 

of demand, a reduction in acreage of 4.6% made for the third largest skewness in the sample.  

5. Estimation procedure and results 

5.1. Estimating parameters of GLD distribution and implied higher moments 

As stated in section 3.1., for each contract, for each trading day, we separately estimate the 

parameters 3 4, ,and    in the GLD option pricing formula. In particular, we minimize the 

squared difference in option premiums calculated with the GLD formula, and prices of European 

options as implied by Black’s model. To do so, we first need a starting value for the implied 

volatility of an option with a strike price closest to the underlying futures price. The starting 

values for the 3 and 4 parameters were chosen to correspond to the skewness and kurtosis of 

the terminal futures price as they would be under the restriction that the logarithm of the terminal 

price is normally distributed with variance equal to 2t , where 2 is the square of the starting 

value for the implied sigma parameter. Excel Solver is used to run the minimization problem, 

utilizing a FORTRAN compiled library (.dll file) created by Corrado (2001) that estimates GLD 

European Call prices. A formula for the GLD European put option was then programmed in 

Visual Basic for Applications.  

Estimated lambda parameters are employed to calculate implied skewness and kurtosis. GLD 

option prices seem to work rather well, with an average absolute pricing error about 3/8 of a cent 

per bushel, and a maximum pricing error usually reaching not more than 2 cents (this occurs for 

the least liquid and most away from the money options). While there may be issues regarding the 

robustness of implied parameters with respect to starting values, the implied parameters seem to 
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be rather stable from one day to the next. For December 2007 corn, for example, the skewness 

estimated between June 11 and June 25, 2007 varies between 1.15 and 1.26. For that year, the 

average absolute pricing error was 7/8 of a cent per bushel, with a maximum pricing error of 7.9 

cents.  

For all years in the sample, the implied skewness is 1.2 to 3 times higher than it would be if the 

logarithm of the terminal futures price was really expected to be normal. Implied kurtosis is 1.2 

to 1.6 times higher than that predicted by Black’s model. We thus see that deviations from 

Black’s model are particularly pronounced in implied skewness.  

5.2. Dynamics of intra-year implied skewness: results 

The results of intra-year models for dynamics of implied skewness are presented in Table 3, and 

predicted implied skewness for each contract month is plotted in Figure 10. For all five contracts, 

the quadratic model improves fit dramatically over the linear model. To perform a formal test 

whether a model with one switching time and quadratic segments fits the data better than the 

quadratic model, we have used the bootstrapping procedure described by Cox, Hansen and 

Jimenez (2004). In doing this test, we shall refer to the quadratic model (16) as the restricted 

model and model (18) as the unrestricted model. These models are nested, i.e. model (16) is 

obtained by imposing restrictions 1 2 1 2 1 2, ,        . Under the null hypothesis that these 

restrictions hold the switching time 1 is not identified. To test the null hypothesis, we first make 

2000 bootstrap samples using the fixed-regressors residual bootstrapping method. In particular, 

for each simulation values of implied skewness are calculated by adding a draw from the 

empirical distribution of residuals to predicted value of the dependent variable. Fitting is done 

using the estimated coefficients from the restricted model, in this case model (16). Then, for each 
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bootstrapped sample, parameters of the unrestricted model, including switching time, are 

calculated by the same method as before, i.e. combining a grid search and concentrated restricted 

least squares. A Wald statistic 
 0 1

1
n

SSE SSE
W n

SSE


  is then calculated for that particular 

replication, where n is the number of observations in the sample, 0SSE is the sum of square 

errors in the restricted model (zero switching points) using bootstrapped data and 1SSE is the sum 

of square errors of model (18) using bootstrapped data. The entire process is repeated 2000 times 

to obtain a finite sample distribution of the Wald statistic. The null hypothesis is rejected if the 

Wald statistic obtained using the original data is higher than the 95th percentile of the simulated 

distribution. We see from table 3 that model (16) is strongly rejected in favor of model (18) for 

all five contract months.  

We also estimate a model with two regimes changes. For the May contract, the optimal first 

switching time solves to a corner solution, i.e. 20 days less than the maximum time-to-maturity 

used in estimation. We interpret this as evidence that for the May contract, a model with two 

regime switching times does not explain the data any better than models with one change in 

regime, and is in fact a misspecification, i.e. number of break points is stipulated to be higher 

than actually exist. For other contract months, the optimal switching time solves out to the 

interior of the allowable set of times, and we need to perform a formal test to investigate if 

models with two switching times are indeed better representations of the data. Bootstrapping is 

again employed. In particular, the null hypothesis now is that true model is model (18), and the 

unrestricted model is model (19). Model (18) can be obtained from model (19) by restricting it, 

such that coefficients satisfy: 1 2 1 2 1 2, ,        .  
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We again use fixed-regressors residual-bootstrap technique and add draws from the empirical 

distribution of residuals obtained from model (18) to the implied skewness measures predicted 

using the estimated coefficients of model (18). For each replication, a Wald statistic 

 1 2

2
n

SSE SSE
W n

SSE


 is calculated, where 1SSE is the sum of square errors obtained by 

estimating model (18) on bootstrapped data, and 2SSE is calculated by estimating the model with 

two switching times on bootstrapped data. As before, the entire process is repeated 2000 times to 

obtain a finite sample distribution of the Wald statistic. The null hypothesis is rejected if the 

Wald statistic obtained using original data is higher than the 95th percentile of the simulated 

distribution. We find that the Wald statistics obtained using the original data are low enough that 

the null hypothesis cannot be rejected for any contract month, and p-values are exceptionally 

large. In conclusion, statistical tests show that a model with 1 regime change is superior. To test 

if model (18) explains the data any better than model (17) with two linear segments we can use 

standard critical values in Wald test, as both models have the same number of regimes. We find 

that the null is rejected for all contract months.  

The next issue to investigate and explain concerns evaluated knot times and their confidence 

intervals. Point estimates are found using the already explained estimation procedure. Residual-

based bootstrap is then used to obtain confidence intervals. For a particular contract month, 

simulated data is created by adding draws from the empirical distribution of residuals to the 

predicted implied skewness using the same model for which we evaluate confidence intervals of 

the knot. The model is then re-estimated on simulated data, and a new optimal knot value is 

noted. The procedure is repeated 2000 times, with the confidence interval obtained using the 

2.5th and 97.5th quantile as the lower and upper bounds, respectively. For model (18) with 
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quadratic segments, we find that the confidence intervals for switching times are substantial for 

May and July contracts. A possible reason is that the first segment in the model is convex, and 

the second concave, creating a rather smooth transition. In such a setting, changing the knot 

value can be very easily compensated for by changes in the slopes parameters. For the 

September, December and March contracts, both segments are estimated with concave curves, 

and exhibit much tighter confidence intervals of the switching times. Results are presented in 

Table 3. As a robustness check, we also calculate asymptotic confidence intervals using a 

method developed by Hansen (2000) that involves inverting a likelihood ratio statistic. We find 

that our bootstrapping method matches closely the results obtained using asymptotics for all 

contract months except July. For that contract month, the curve for the likelihood ratio statistic is 

rather flat and close to the asymptotic critical value for time-to-maturity values included in the 

bootstrapped confidence interval. In that sense, we perhaps could say that the bootstrap produces 

more conservative estimates for the confidence intervals. Another likely reason for observed 

differences could be that we estimate our model with the additional restriction of continuity in 

predicted variable, whereas asymptotic distribution is developed for unrestricted least squares 

estimation. 

In the model with 1 regime change and quadratic segments, optimal switching time for 

September contract is 69 days to maturity, and for December it is 160 days. It will help us to be 

able to map time-to-maturity measures to a particular date in a year. Option contract 

specifications state that last trading day is “The last Friday preceding the first notice day of the 

corresponding corn futures contract month by at least two business days.” The first notice day is 

the first day of the delivery month. For simplicity, we approximate the last option trading day to 

be 25th of the month preceding the delivery month. Under such an approximation, regime 
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switching times for new-crop contracts correspond to June 18th for the September contract and 

June 19th for the December contract. To test if regime switching times for these two contracts 

really fall on the same calendar date, we perform a Wald test. This is a non-standard test and we 

use residual-based bootstrapping to generate data under the null hypothesis that calendar 

switching dates are the same, which is equivalent to restriction that 90.DEC SEP      The null 

hypothesis is not rejected, and p-value is 0.9995, with the original Wald statistic is higher than 

only one out of 2000 Wald statistics simulated under the null hypothesis. The Crop progress 

report4 published in last week of June is normally the first such report to list corn silking 

progress. These reports suggest that on average about 5% of the U.S. corn crop is silking by June 

26th.  Thus, dynamics of implied skewness for new-crop contracts appear to change right at the 

start of the corn silking period.  

For carry contracts we find quite a different dynamic. Regime changes for the March, May and 

July contracts occur respectively at 130, 125 and 112 days to maturity. Suspecting that these 

days account for similar patterns across contracts, we tested whether regime changes occur at 

statistically significantly different time-to-maturity horizons. Similar to a previous hypothesis 

test, we express that hypothesis as restrictions on switching times: MAR MAY JUN      . The 

optimal switching time under the null hypothesis (that the restriction holds) is 128 days to 

maturity, and the null is not rejected. This common switch is manifested in Figure 8 as concave 

and substantial decrease in implied skewness close to contract expiry. This likely reflects the 

decline in overall uncertainty concerning terminal prices as maturity approaches. It is more 
                                                 

4 Crop Progress report is a government report produced weekly from April through November of each year by the 
National Agricultural Statistics Service, an agency of the United States Department of Agriculture. Historical 
Prospective Plantings reports can be accessed at 
 http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1048 
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interesting to note that for carry contracts, the first segment (i.e. before the switch) is convex for 

the May and July contracts, but concave for March. This could reflect that fact that for March 

contract, corn growth-sensitive period falls in the middle of the March contract lifetime, while 

for May and July this growth period is at the beginning of the contract life.  

Table 4. showcases the relative contribution of the corn growth period (silking through harvest, 

approximated by the dates June 20 to October 20) to skewness reduction during a contract’s 

lifetime. For carry contracts the days spent in second regime at the end of the contract life are 

excluded. For example, for the July contract, the maximum time to maturity was 350 calendar 

days. The contract traded for 230 calendar days prior to entering the “finish-line” period, i.e. the 

last 120 days in which we find a strong reduction of skewness. Out of those 230 days, 113 days, 

or 49.1% of time, falls in the growth sensitive period. At the maximum time-to-maturity horizon 

predicted implied skewness is 1.419, and at switch time it is 1.218. Although the growth 

sensitive period constitutes only one half of that time, it accounts for 76.5% of the difference 

between the maximum time-to-maturity horizon and switch time implied skewness. For the 

March contract, we see a situation that is even more extreme – the sensitive growth period 

constitutes 59.5% of the pre-switch life, but accounts for 94.3% of the difference between 

skewness at maximum time-to-maturity and at the switch-time.  

5.3. Intra-year variation in implied skewness: results 

Results of the previous section further justify using implied skewness for December contract 

over 10 days after June WASDE report in investigating effect of expected stocks-to-use at the 

end of a marketing year (Aug. 31) on implied skewness. To test this, a simple linear regression is 

estimated for the period 1995-2009 using implied skewness as the dependent variable. The 

independent variables include a constant, the expected ending stocks-to-use, the expected 
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planned change in planted acreage and changes in the unemployment rate. Regression statistics 

are reported in Table 5. Due to very low degrees of freedom (10), we have to rely on t-table for 

critical values, and use a one-tail test for the stocks-to-use coefficient. 

An 1 % increase in stocks-to-use reduces skewness by 0.015. This coefficient is statistically 

significant at the 95% confidence level. To put this number in perspective, the difference 

between the lowest and the highest ending stocks-to-use recorded in the sample reduces 

skewness from 1.47 to 1.24, which is 47% of the difference between the highest and the lowest 

recorded skewness in the sample. Coefficients for demand uncertainty and acreage response are 

also statistically significant and have the expected sign. 

6. Conclusions and further research 

An option pricing model based on a generalized lambda distribution provides a useful heuristic 

in thinking about determinants of the shape of terminal futures price conditional distributions. 

Results indicate that crop inventories and plant physiology play a significant role in determining 

the expected asymmetry of the terminal distribution. In particular, results reveal that implied 

skewness is much more persistent than implied by Black’s model. In years with low implied 

volatility implied skewness remains much higher than would be the case under the lognormality 

restriction, and dynamics are dominated not by time to maturity, but by temporal patterns in the 

resolution of uncertainty regarding crop yields.  

Further research will focus on extending this analysis to soybeans and wheat. The U.S. is a major 

world player in corn, with 55.6% of world exports. That is higher than 45.3% of world exports of 

soybeans, and much higher than 17.7% percent in wheat. Extending the analysis to other crops 

will identify the effect of trade and non-overlapping growing seasons in different countries on 



33 
 

the magnitude, inter-year differences and intra-year dynamics on implied higher moments of the 

terminal price distribution. 

Thus far the literature has focused on evaluating the impacts of government reports on implied 

volatility coefficients. The model presented here allows us to extend this to higher moments and 

examine how reports (i.e., information) influence the entire distribution of prices, not just the 

second moment. For example, we could use weekly crop progress reports to explain inter-year 

differences in the evolution of skewness through the summer months. 

In the absence of high frequency data, many researchers use end of day reported prices for 

futures and options to evaluate implied higher moments. By re-estimating this model using only 

end of day data it is possible to examine the amount of noise and possible direction of bias such 

an approach brings to estimates of implied higher moments.  

What happens when storage is not available to partially absorb the shocks to supply? It would be 

interesting to use the GLD option pricing model to examine the evolution and determinants of 

higher moments of non-storable commodities. Further research is needed to examine the impact 

of durability of production factors for commodities that are themselves not storable.  

Finally, impacts of market liquidity and trader composition on the levels and stability of implied 

higher moments is a promising new area for research. With careful design of the analysis, we 

may be able to find a way to separate the part of the option price that is due to implied terminal 

price distributions from additional premium influences incurred due to hedging pressure or lack 

of market liquidity. 
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Figure 1. Typical pattern for implied volatility coefficients for options on agricultural futures  

 

Notes: Implied volatility coefficients are estimated for options on the December 2006 corn futures 
contract, on 6/26/2006 using Cox, Ross and Rubinstein’s binomial tree with 500 steps. The underlying 
futures price was $2.49/bu. Dots represent implied volatility coefficients for each strike, and the smooth 
line is a fitted quadratic trend.  
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Figure 3. Effects of Excess Kurtosis and Positive Skewness on Implied Volatility 

 

Notes: S stands for skewness, and K for kurtosis of terminal futures log-prices. Option premiums are 
calculated via Rubinstein’s Edgeworth binomial trees that allow for non-normal skewness and kurtosis, 
and implied volatility is inferred using Cox, Ross and Rubinstein’s binomial tree which assumes 
normality in terminal futures prices. The black line in the above diagram with S=0 and K=3 corresponds 
to assumptions of Black’s model, where implied volatility curve is flat across all strikes. Excess kurtosis 
(K>3) creates convex and nearly symmetric “smiles”, and positive skewness produces an upward sloping 
implied volatility curve. 
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Figure 6. Monthly projected corn yield 1980-2008 - deviation from trend  

 

 

 

 

 

 
Note: For each year, trend yield was calculated as a simple linear regression over previous years, starting 
in 1960. Monthly projected yields were obtained from the WASDE report either directly or by 
calculations based on projected planted area and expected production size.  

 

Figure 7. Monthly projected corn yield 1980-2008 - deviation from the final estimate (January) 

 

 

 

 

 

 

 

Note: For each month, projected yield was obtained from WASDE reports. Final estimates are taken from 
WASDE reports published in January.   
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Figure 9. Relationship between implied skewness and expected ending stocks-to-use 

 

 

Note: Years with increase in intended cultivated acreage of 5 or more percent are drawn using green 
rhombs. Years with the June-to-June increases in the unemployment rate of 1 percent or more are drawn 
using blue triangles.  
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Table 1. Determinants of implied skewness: descriptive statistics 

Descriptive Statistics 

Variable Mean Standard 
Deviation 

Min Max 

Implied Skewness 1.33 0.14 1.07 1.54 
Ending Stocks-to-Use (%) 
WASDE June Projection  

14.4 5.36 4.03 21.23 

Intended Acreage Planted – 
Percentage Change 

1.37 5.89 -4.84 15.48 

Unemployment Rate Change 0.17 0.23 -0.7 4.00 
 

Note: Implied skewness was calculated for December corn contracts as the average for implied 
parameters over 10 trading days following the June WASDE report. On average, 100-150 data points 
were used in estimating implied parameters for each trading day in the stated periods.  
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 Table 2. Corn supply/demand balance sheet 1995-2009.  
                  
  Marketing year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

S
U

PP
L

Y
 

E
xp

. 

Exp. acres planted 73.3 79.0 81.4 80.8 78.2 77.9 76.7 78.0 79.0 79.0 81.4 78.0 90.5 86.0 85.0 
Exp. acreage change -7.4% 11.0% 2.4% 0.7% -2.5% 0.6% -3.5% 2.9% -0.1% 0.4% 0.6% -4.6% 15.6% -8.1% -1.2% 
Exp. yield 119.7 126.0 131.0 129.6 131.8 137.0 137.0 135.8 139.7 145.0 148.0 149.0 150.3 148.9 153.4 

R
ea

li
ze

d 

Acres planted 71.2 79.5 80.2 80.2 77.4 79.5 75.8 79.1 78.7 80.9 81.8 78.3 93.6 86.0 86.5 
Acres harvested 65.0 73.1 72.7 72.6 70.5 72.4 68.8 69.3 70.9 73.6 75.1 70.6 86.5 78.6 79.6 
%Harvested 91.3% 91.9% 90.6% 90.5% 91.1% 91.1% 90.8% 87.6% 90.1% 91.0% 91.8% 90.2% 92.4% 91.4% 92.0% 
Yield 113.5 127.1 127.0 134.4 133.8 137.1 138.2 130.2 142.2 160.4 147.9 149.1 151.1 153.9 164.7 
Production 7,374 9,293 9,366 9,761 9,437 9,968 9,507 9,008 10,114 11,807 11,112 10,535 13,074 12,101 13,110 
Beginning stocks 1,558 426 883 1,308 1,787 1,718 1,899 1,596 1,087 958 2,114 1,967 1,304 1,624 1,673 
Imports 16 13 9 19 15 7 10 14 14 11 9 12 20 15 8 
Total supply 8,948 9,732 10,258 11,088 11,239 11,693 11,416 10,618 11,215 12,776 13,235 12,514 14,398 13,740 14,792 

D
E

M
A

N
D

 

E
xp

. 

Exp. total demand 8,600 8,820 9,000 9,360 9,480 9,645 9,725 9,535 10,405 10,560 11,060 11,525 12,960 12,140 13,190 
Exp. ending stocks 347 909 1,259 1,727 1,759 2,048 1,621 1,084 806 2,215 2,176 987 1,433 1,600 1,603 
Exp. stocks-to-use 4.03% 10.3% 13.9% 18.4% 18.5% 21.2% 16.7% 11.4% 7.7% 20.9% 19.6% 8.5% 11.1% 13.2% 12.2% 

R
ea

li
ze

d 

Feed & residual 4,696 5,360 5,505 5,472 5,664 5,838 5,877 5,558 5,798 6,162 6,141 5,598 5,938 5,205 5,159 
Food/Seed/Ind. 1,598 1,692 1,782 1,846 1,913 1,967 2,054 2,340 2,537 2,686 2,981 3,488 4,363 4,993 5.938 
    Ethanol N/A N/A N/A N/A N/A N/A N/A 996 1,168 1,323 1,603 2,117 3,026 3,677 4,568 
Exports 2,228 1,797 1,504 1,981 1,937 1,935 1,889 1,592 1,897 1,814 2,147 2,125 2,436 1,858 1,987 
Total demand 8,522 8,849 8,791 9,299 9,514 9,740 9,820 9,490 10,232 10,662 11,269 11,211 12,737 12,056 13,084 
Ending stocks 426 883 1,467 1,789 1,725 1,953 1,596 1,128 983 2,114 1,966 1,303 1,661 1,684 1,708 
Stocks-to-use 5.0% 10.0% 16.7% 19.2% 18.1% 20.1% 16.3% 11.9% 9.61% 19.8% 17.5% 11.6% 13.0% 14.0% 13.1% 

  Avg. farm price 3.24 2.71 2.43 1.94 1.82 1.85 1.97 2.32 2.42 2.06 2.00 3.04 4.20 4.06 3.55 
 

Note: Acres planted and harvested are measured in million acres, yield in bushels per acre, beginning and ending stocks, imports, exports and 
other demand categories are measured in million bushels. Average farm price measured in U.S. dollars per bushel. Corn marketing year starts on 
September 1 of the current calendar year, and ends on August 31 the following calendar year. Expected acres planted based on “Prospective 
Plantings” report published at the end of March preceding the marketing year. Expected total demand, ending stocks, and stocks-to-use are taken 
from June WASDE report. For example, marketing year 2001/02 (denoted in table simply as 2001) started on 09/01/2001, and ended on 
08/31/2002. For that year, expected acres planted was published on 03/31/2001 and expected total demand, ending stocks and stocks-to-use were 
taken from WASDE report published in 06/12/2002. Variables used in econometric analysis are bolded.  
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Table 3. Models of intra-year skewness dynamics: regression results 

 March May July September December 
Maximum time to maturity  
 

330 290 350 275 350 

Number of observations 2736 2558 3058 2321 3448 
1. Linear model with no regime change 
SSE 178.49 156.39 180.62 166.28 295.67 
R2 0.55 0.56 0.30 0.34 0.58 
2. Quadratic model with no regime change 
SSE 171.32 135.61 159.60 114.36 163.98 
R2 0.57 0.62 0.38 0.55 0.77 
3. Linear model with one change in regime (timing is estimated endogenously) 
 
SSE 170.94 127.50 143.83 98.90 158.80 
R2 0.57 0.65 0.45 0.61 0.77 
Switch time 63 64 62 56 162 
4. Quadratic model with one change in regime (timing is estimated endogenously) 
SSE 167.36 126.36 141.17 96.10 158.30 
R2 0.58 0.65 0.46 0.62 0.77 
Switch time 130 125 112 69 160 
Switch date Oct, 19 Dec, 22 Mar, 6 Jun, 18 Jun, 19 
Switch time 95% CI (boot.) (119-140) (86-167) (80-149) (49-94) (151-169) 
Switch time 95% CI (asy.)§ (113-144) (86-151) (70-95) (51-95) (142-183) 
Wald test: (2) vs. (4)      
Critical val. (simul., 95%) 10.89 10.94 10.57 10.73 10.77 
Wald-statistic 64.72 187.14 399.30 441.11 123.76 
(p-value) 0.0000 0.0000 0.0000 0.0000 0.0000 
Wald test: (3) vs. (4)      

Critical val:  2 0.95, 2   5.99 5.99 5.99 5.99 5.99 

Wald-statistic 58.56 23.06 57.65 67.64 10.98 
(p-value) <0.001 <0.001 <0.001 <0.001 0.004 
Wald tests for knots:  

Null: 90DEC SEP     
  Wald: 4.16, Crit. val.: 24.74 (p-value: 0.001) 

Null: 
MAR MAY JUL       

Wald: 1.35, Crit. val.: 6.83 (p-value: 0.662)   

5. Quadratic model with two changes in regime (timing is estimated endogenously) 
 
SSE 167.28 126.19 140.96 95.59 158.16 
R2 0.58 0.65 0.46 0.62 0.77 
Switch time 1 120 268† 270 220 270 
Switch time 2 75 137 110 77 159 
Wald test: (4) vs. (5)      
Critcal val. (simul., 95%) 13.82  13.79 11.57 12.15 
Wald-statistic 1.30 N/A 4.55 1.47 3.05 
p-value 0.9265  0.9094 0.9690 0.9575 

† Model estimates to a corner solution, and is therefore treated as misspecified.  

§ Estimated using asymptotic likelihood ratio test developed by Hansen (2000), which does not impose 
restriction of continuity in predicted variable.
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Table 4. Relative contribution of corn growth-sensitive period to reduction in implied skewness 

Contract    
March % of contract life % skewness reduction 
non-growth period 40.5%   5.7% 
in growth period 59.5% 94.3% 
May % of contract life % skewness reduction 
non-growth period 39.1% 19.6% 
in growth period 69.1% 80.4% 
July % of contract life % skewness reduction 
non-growth period 50.9% 23.5% 
in growth period 49.1% 76.5% 
September % of contract life % skewness reduction 
non-growth period 76.0% 7.5% 
in growth period 24.0% 92.5% 
December % of contract life % skewness reduction 
non-growth period 64.6% 33.47% 
in growth period 35.4% 76.53% 
 

Note: For carry contracts (March, May, and July), percentages reported refer to contract life before a 
regime switch, i.e. excluding the last four months of contracts life. For new-crop contracts (September 
and December), percentage reported are over the entire contract life. 
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Table 5. Determinants of implied skewness: regression results 

Explanatory variables Dependent Variable:  
GLD Implied Skewness 

Constant 1.55 
(0.10) 

 
Ending Stocks-to-Use (%) 

 
-1.28 
(0.64) 

 
Intended Acreage Planted –  
      Percentage Change  

 
-1.52 
(0.58) 

 
Unemployment 
      Percentage Change 

 
-0.07 
0.02 

Degrees of Freedom 10 
Mean Root Square Error 0.075 

2R  0.66 
 

Note: The critical t-statistic for 10 d.f. at 95% confidence is 1.81 for one-tail tests and 2.22 for two-tail 
tests. All coefficients are statistically significant at the 95% confidence level (Ending stocks-to-use 
coefficient is significant at the 95% using one-tailed test, or 90% using two-tailed test).  
 


