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Abstract 

Crop rotation systems are an important part of agricultural production for managing pests, 

diseases, and soil fertility.  Recent interest in sustainable agriculture focuses on low input-use 

practices which require knowledge of the underlying dynamics of production and rotation 

systems.  Polices to limit chemical application depending on proximity to waterways and flood 

management require field-level data and analysis.  Additionally, supply elasticity estimates based 

on crop production as independent activities omit the dynamic effects of a cyclical rotation.  We 

estimate a dynamic programming model of crop rotation which incorporates yield and cost inter-

temporal effects in addition to field-specific factors including salinity and soil quality.  Using an 

Optimal Matching algorithm from the Bioinformatics literature we determine empirically 

observed rotations using a geo-referenced panel dataset of 14,000 fields over 13 years.  We 

estimate the production parameters which satisfy the Euler Equations of the field-level rotation 

problem and solve an empirically observed four-crop rotation.   

 

Introduction 

Crop rotations are an integral part of agricultural production for environmental, agronomic, and 

financial objectives.  Rotations reduce production costs and increase crop yields by managing 

pests and soil organic matter.  For example, alfalfa may be rotated with one year cotton to 

control root-knot nematodes and a minimum two year rotation of cotton or grains to control 

dodder weeds.  Similarly, tomatoes are rotated annually to increase soil productivity and are 

rotated up to three years with various small grains to control diseases (UCD IPM).  Rotation 

systems are based on a tradeoff between the immediate profits from a crop planted this season 

with the future costs (or benefits) realized through changes in yield and production costs for 

future crops.  Field-specific characteristics including soil classification, micro-climate, farmer 

management skills, and water quality also factor into the rotation decision.  In other words, 

agricultural production decisions are very often a dynamic process but rarely modeled as the 

solution to a dynamic economic problem.     

The field is the minimum decision unit of the farmer and, in many cases, the relevant level of 

disaggregation for agricultural policy analysis.  Farm-wide considerations such as risk and input 
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smoothing are certainly important for aggregate planting decisions but, fundamentally, we 

hypothesize farmers understand variation in land characteristics and manage rotations on 

individual fields.  Within a region, we observe that agricultural production exhibits significant 

spatial specialization, and it follows that where may be as important as what for many 

agricultural-environmental policies.  For example, environmental effects of nitrogen runoff 

depend on the spatial location (e.g. proximity to waterways) of the field(s) producing a specific 

set of crops.  As another example, regulations in California are being considered to limit 

chemical application to agriculture within a specific distance of surface water and irrigation.1

Farmers manage field rotation systems to capture inter-temporal spill-over effects between crops.  

Spill-over effects potentially include cost savings and yield increases.  As such, when faced with 

changing prices, or other exogenous shocks, farmers respond to both relative profitability and the 

long-term cost of breaking a rotation system.  Researchers have established, in various contexts, 

that there is a difference between dynamic and static supply elasticities (Nerlove 1979, Orazem 

  

Additionally, supply response to exogenous shocks, or policies, may depend on dynamic rotation 

adjustment costs.  The effect of breaking a rotation cycle is not captured in acreage response 

elasticity estimates based on aggregate data.  Treating agricultural production as part of a 

dynamic cycle at the field level offers valuable insights into these topics.      

Agricultural production is increasingly constrained by environmental concerns.  Agricultural-

environmental policies need to take into account spatial specialization in production.  Examples 

include nitrogen runoff from agriculture into groundwater or local streams, groundwater salinity, 

and a tradeoff between water for environmental, urban, and agricultural use.  Sustainable 

agriculture suggests a shift to lower input (chemical and pesticide) use and is likely to require 

farmers to employ tighter rotation management or shift rotation systems.  For example, Southern 

root knot nematode, in cotton, can be controlled through rotation with nematode resistant alfalfa 

varieties instead of application of chemicals like Temik or Vapam.  As a contemporary policy 

example, the California Department of Pesticide Regulation has proposed banning ground 

application of pesticides within 25 feet of waterways and within 100 feet for aerial applications.  

The proposed regulation would affect specific fields within farms and, like the other examples 

cited, is best modeled at field-level disaggregation.   

                                                            
1 More information at: http://www.cdpr.ca.gov/docs/legbills/regsdeve.htm 

http://www.cdpr.ca.gov/docs/legbills/regsdeve.htm�
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and Miranowski 1994, Tegene, Huffman and Miranowski 1988).   An interesting extension, 

which our framework encompasses, is how production cycles, or rotation systems, respond to 

price shocks.  Two different sets of fields may be planted to cotton in a given season but one may 

be part of a one year cotton-vegetable rotation, say to control seedling diseases, whereas the 

other may be in a multi-year cotton-alfalfa-vegetable rotation, perhaps to control nematodes.  

Both changes in relative prices and the dynamic cost of shifting out of breaking the rotation are 

important.  In other words, the fields (corresponding sets of fields) are in two different dynamic 

cycles and are likely to respond differently to exogenous shocks.   

Historically, decisions at the field-level of detail have been difficult to observe consistently 

across time in anything other than experimental plots.  We employ a unique geo-referenced panel 

dataset of field-level production covering over 14,000 fields (over 1 million acres) and 13 years.  

Using these data we estimate empirically observed rotations using an Optimal Matching 

algorithm originally developed for determining common genetic sequences (DNA base pairs).  

We set up the farmer field-level rotation problem and solve the model using dynamic 

programming.  We estimate the parameters of rotation problem, including yield and cost carry-

over effects as well as soil and salinity effects, for a four-crop, seven year alfalfa-cotton-grain-

fallow rotation.  We estimate parameters using Generalized Maximum Entropy based on 

observed farmer decisions and show that the model results in a dynamic cycle which responds as 

expected to price shocks and other perturbations.  Finally, we conclude by simulating a grain 

price shock and show how supply response may differ from aggregate models depending on 

where fields are in the rotational cycle. 

Existing Literature on Crop Rotations 

Heady (1948) first formalized the crop rotation problem with a static analysis of the hay-grain 

rotations observed in the U.S. Corn Belt.  Heady (1948) followed work by Johnson (1933), who 

should be credited as the first to consider the rotation problem.  Burt and Allison (1963) 

formalized the dynamics of rotations in the context of a wheat-fallow rotation.  They considered 

a dynamic programming approach to crop planting decisions, wheat or fallow, in every year 

dependent on the underlying state of the field (soil moisture).  Contemporary research on the 

economics of crop rotations stems from these seminal works and falls into four main areas: (i) 

linear programming models of production with fixed proportion rotation constraints, (ii) models 
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that lend themselves to econometric analysis and control for lagged crop choice, (iii) dynamic 

analysis which models crop rotation as a control variable consisting of the proportion of total 

land use, and (iv) multiple-phase optimal control dynamic models which estimate the switch 

point between two successive crops.   

Linear programming models of production with fixed rotation constraints commonly appear in 

the literature.  Hildreth and Reiter (1951) analyzed a corn-oats-hay rotation in the Corn Belt of 

the United States and treated specific rotations as individual production processes.  Initial linear 

programming models imposed rotation constraints, in essence fixed proportions, on production 

activities (Swanson 1956, Peterson 1955, Beneke and Winterboer 1973).  El-Nazer and McCarl 

(1986) built on the previous methodology and specified a set of rotational constraints that 

allowed the program to choose the optimal rotation.  They specified a static model that they 

hypothesized would satisfy the steady-state conditions and, consequently, represent a dynamic 

solution.  The tendency for overspecialization limits linear programming methods, making it 

necessary to impose significant constraints on the model in order to reproduce a rotation, limiting 

the effectiveness of the model for policy simulations.  

Hennessey (2006) formalized the theory behind models that lend themselves to econometric 

specification.  He considered rotation effects through changes in yield or changes in input use in 

a framework that allows for positive effects without excluding the possibility of negative effects.  

Current plantings can affect future plantings through increased yields (soil quality effects) or 

reduced inputs (capital savings), depending on the length of memory (how many previous years 

matter) of the rotation.  Recent studies that employed a reduced form econometric specification 

include Wu et. al. (2004) and Wu and Babcock (1998).  Both authors specified a reduced form 

multinomial logit model to analyze land use decisions.  The multinomial logit approach estimates 

the share of land producing each crop and a lagged crop choice term captures crop rotation.  

Tanaka and Wu (2004) evaluated the Conservation Reserve Program in the United States in a 

similar framework to investigate the effect of taxes on fertilizer, payments for land retirement, 

and payments on rotations.  They found that taxes on fertilizer have the largest direct impact on 

environmental effects, whereas a general increase in payments for land retirement leads to 

retirement of less fertilizer intensive lands.  Other research that analyzes the effects of rotations 

and land use decisions in the context of environmental concerns include studies on wildlife 
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abundance (Langpap and Wu 2008), watershed ecosystem protection (Langpap, Hascic and Wu 

2008), and ecosystem services (Antle and Stoorvogel 2006, Antle and Valdivia 2006).  

Economists often explicitly model the dynamics of crop rotations in a framework where 

aggregate land use proportions  represent crop rotations.  Modeling land in proportions makes 

the control variable continuous, as well as the underlying state equations, so traditional control 

theory applies.  Jaenicke (2000) analyzed the importance of soil quality in corn-soybean rotations 

within this framework.  Orazem and Miranowski (1994) applied a similar framework to a four 

crop rotation model.  The majority of this vein of literature focuses on the optimal fertilizer 

application rate and dynamic carryover effect (Kennedy et al. 1973, Kennedy 1981, Kennedy 

1986, Taylor 1983).  In these models, farmers choose the dynamically optimal fertilizer 

application based on expectations about future returns, current returns, and the different fertilizer 

carryover rates between sequential crops.  In the most compelling paper in this field, Thomas 

(2002) developed a dynamic model of crop rotation for optimal nitrogen management.  Crops 

utilize the nitrogen stock available in the soil over time, with different crops using or replacing 

nitrogen at different rates.  As such, the farmer faces a dynamic problem of optimal sequential 

planting decisions that aim to manage nitrogen in the ground and the corresponding rate of 

fertilizer application.  Thomas (2002) developed a structural dynamic model to account for this 

trade off and estimated a restricted version of the model using generalized method of moments 

(GMM).     

Another area of research includes dynamic multi-phase optimal control models.  These models 

represent a relatively new approach to modeling crop rotations and focus on the field-level 

decisions and switch points between crops.  The method specifies a set of controls that choose a 

set of optimal switching times between regimes.  Doole (2009) provided an algorithm for solving 

these problems with transition costs and Doole (2008) provided an application of the algorithm.  

He modeled the optimal rotation in a lucerne (alfalfa)-wheat phase rotation for managing 

ryegrass weeds.  In the multi-phase problem, he exogenously specifies the set of regimes and the 

optimal controls in each stage give the solution, as well as the switch point.  The number of 

stages must be exogenously specified in this approach since large state spaces render these 

models intractable.  This seems to limit the usefulness of the model for more complicated 

rotations involving several crops (stages).   
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In contrast to previous approaches which consider the dynamics of rotations in terms of 

aggregate land use proportions we explicitly model the discrete switching of field level 

decisions, subject to a continuous underlying state.  We model the state of the field as “fertility” 

which represents both rotational and field-specific effects.  Rotation effects include pest and 

disease management and soil fertility.  Field-specific effects include soil quality and shallow 

groundwater salinity.  In our dynamic programming model, we are able to represent rotations as 

dynamic cycles which are determined using empirical data.  We allow for both yield and cost 

rotational carry-over effects, consistent with the pests and soil organic content management 

benefits of rotations.  Cost and yield carry-over effects of rotation are modeled as deviations 

from the mean and are estimated using our geo-referenced panel data.  We show how this model 

responds to changes in prices and other shocks and highlight the relevance for important 

questions including dynamic supply elasticities, agricultural-environmental policies, and spatial 

variation in production. 

Motivating A Model of Field Rotations 

Consider a farmer managing a specific field within the farm which can be planted to annual or 

multi-year crops on a seasonal (yearly) basis.  The field has a fixed size and is not subdivided in 

any given year.  For simplicity, and without changing the main conclusions, we normalize to a 

unit field size.  The farmer seeks to maximize the present discounted value of a future stream of 

profits by choosing the sequence of crops planted every season, i.e., the crop rotation.  Initially 

consider only the rotation effects.  The crop planted in the current season will have different 

effects on the pests, disease, fertility, and other field characteristics in subsequent years.  We 

represent the fertility of each field with an aggregate measure of pests, disease, weeds, and other 

field specific characteristics.  Fertility changes due to rotation, depending on the current crop and 

previous crop history.  Changes in fertility affect both costs and yields and will differ by crop.   

As an example, consider a two-crop rotation of alfalfa (fertility increasing) and grain (fertility 

depleting).  Soil organic content increases when growing alfalfa, but pests and diseases also 

increase and will eventually outweigh the improvements in soil quality and require rotation to a 

non-host crop.  A rotation with grain breaks the pest and disease cycle, but also depletes soil 

organic content.  Specifically, the crop choice, tc , as measured by the proportion of the field 
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planted to the respective crops at time t, where (0,1)tc ∈ , represents the control variable.  The 

case where 0tc =  corresponds to the entire field in grain, specifically, ( , )i grain alfalfa∈  as the 

crops corresponding to (0,1)tc ∈ .  Where iy  and ip  denote the average crop yield and price, 

respectively.  The fertility of the field, tf  at time t given 0(0)f f= , characterizes the state of the 

system.  Fertility changes over time depending on the current crop planted according to (E1). 

(E1) (1 )a t t g tf c c fα α= − − .   

Additionally, 0aα > and 0gα >  represent the marginal effects of planting a crop (alfalfa or 

grain) in the current period on the rate of change in fertility of the field.  Fertility affects current 

and future profitability through marginal changes to average crop yields, as captured by the 

parameters 0β > and 0δ > , which represent the marginal effect of current fertility on the yield of 

grain and alfalfa, respectively.  The key difference with this model is that we rarely observe 

fields being sub-divided and proportionally allocated to two different crops in any given growing 

season.  The size of a field is determined based on the need to efficiently use machinery and 

economies of scale.  The entire field is planted to one crop or the other in any given period 

(year).  The dynamically optimizing farmer rotation profit maximization problem with no 

discounting is defined by (P1).  

(P1)  

 

 

In addition to rotation effects on fertility, field-level decisions also depend on physical capital.  

Some of the more important features include soil quality, salinity, slope, and micro-climate.  

Since we are considering a small agricultural region (Kern County in our data) we can ignore the 

effects of micro-climate.  Additionally, slope is essentially zero across the entire region.  

However, we do see significant heterogeneity in soil quality and salinity levels across the region.  

As soil quality decreases, or salinity increases, crop yields decrease and the rate of yield decline 

0

0

max ( ) (1 )( )

. .

(1 ) (0)

T

t a t a t g t g

a t t g t

c y f p c y f p d t

s t

f c c f f f

δ β

α α γ

+ + − +

= − − + =

∫





**Draft Version**        July 2011 
 

9 
 

varies by crop (VanGenuchten and Gupta 1993).  We let sl and ec denote soil quality and shallow 

groundwater salinity with marginal yield effects of slη and ecη , respectively.  This will also affect 

the rate of change of fertility, uniformly across crops, by slρ  and ecρ .  The modified problem 

with no discounting is defined by (P2).    

 

(P2)  

 

 

The farmer chooses the optimal crop, at any point in time, by balancing the returns from current 

period profits with the anticipated future flow of profits as reflected in the stock value of fertility 

in the ground.  Intuitively, when fertility is low the co-state is high, representing a high value on 

the stock of fertility.  If fertility is initially low, alfalfa will be initially be optimal and fertility 

will increase (co-state decreases) up to the point that it is more profitable to plant grain when 

considering current returns and future fertility depletions.  After switching to grain, fertility will 

be depleted (co-state increases) up to a point that it becomes optimal to switch back to alfalfa.  

The process repeats infinitely in the absence of external shocks.  The piece-wise continuous 

control and, correspondingly, piece-wise continuous Hamiltonian make the solution to the 

optimal control problem non-trivial.  We estimate the dynamic programming equivalent 

formulation of (P2), in the following section, and corresponding solution paths.  We solve for the 

conditions for a repeating series of switches in the theoretical optimal control model in a 

subsequent paper. 

A Dynamic Programming Model of Field Rotations 

We observe average data on agricultural production in terms of prices, yields, and costs.  We 

also observe marginal rotation decisions in terms of switching between crops on a field.  

Specifically, we observe the field-level rotation, as a sequence of discrete switches, from which 

we infer the parameter values that farmers are responding to.  We use the data to model farmer 

rotation decisions in terms of deviations from the mean yield and costs, depending on the 

, , , ,0

0

max ( ) (1 )( )

. .

(1 ) (0)

(1 ) 0

δ η η β η η

α α γ ρ ρ

+ − − + − + − −

= − − + + + =

− =

∫



T

t a t a sl b ec a t g g sl g ec t g

a t t g t sl ec

t t

c y f sl ec p c y f sl ec p dt

s t

f c c f sl ec f f
c c
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dynamic sequence of crops planted.  First, we identify the most common rotations using an 

Optimal Matching algorithm from the Bioinformatics literature.  Next, we describe a field-level 

model that captures rotation decisions as deviations from the mean yield and cost.  Finally, we 

estimate the parameters for the model based on observed farmer behavior using Generalized 

Maximum Entropy and solve an empirical dynamic model that yields observed rotations. 

  Data 

Kern County California is located at the southern end of the San Joaquin Valley.  Agriculture in 

the region is irrigated with water coming from State and Federal surface water projects and 

groundwater in addition to local surface supplies.  Our data include all irrigated agricultural land 

in Kern County between 1997 and 2009.  On each field and year we observe the crop grown, 

field size in acres, farm owner, and farm manager of the field.  We are able to uniquely identify 

and track fields across time using a geo-referenced dataset provided by the Kern County 

Agricultural Commissioner's Office.   

We observe physical characteristics of each field from data that we aggregate up to the field 

level.  Soil data is obtained from the United States Department of Agriculture (USDA) Soil 

Survey Geographic Database (SSURGO).2  Since soil type is unchanged from year to year over 

the time horizon of the data we take a cross section from 2002.  The data are geo-referenced and 

include 7 classifications for agricultural uses, developed by USDA.  Shallow groundwater 

salinity data are obtained from a 2002 analysis completed by the California Department of Water 

Resources.  Salinity is measured in electrical conductivity (EC) in mS/cm which is aggregated up 

to the field level.  Finally, we observe actual evapotranspiration (ET) and dry biomass production 

on a 30 by 30 meter scale from satellite data provided by SEBAL North America for 2002, 2005, 

2008, and 2009.3

Thoreson et al. 2009

  These data are collected using remote sensing techniques and a proprietary 

software/algorithm for determining land cover and water use which is accurate at over 90 percent 

( ).  We couple the spatial data with yield, price, and cost data from the Kern 

County Agricultural Comissioner’s Office and compiled by USDA’s National Agricultural 

Statistics Service (NASS).4

                                                            
2 Available at: http://soils.usda.gov/survey/geography/ssurgo/ 

  For all of these data, we aggregate up to the field level such that 

3 From: http://www.de-water.com/ 
4 Available at: http://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/Detail/index.asp 

http://www.de-water.com/�
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each individual field in the Kern County land use dataset has a unique soil type, salinity, 

biomass, and ET.  Figure 1 shows land use in 2005 by aggregate crop group. 

Figure 1.  Agricultural Land Use in Kern County 2005 

 

Rotation Identification – Optimal Matching 

Sequence alignment is a branch of research within bio-informatics which deals with identifying 

and comparing similar sequences of amino acids and DNA base pairs.  When scientists 

discovered that common gene sequences were a proxy for common ancestry and evolution there 

was a need to identify common parts of sequences across many individuals.  The goal of 

sequence alignment is to identify commonalities between individuals which can be used to create 

a “distance” weighting between other individuals in order to identify common genes.  The full 

problem is computationally intensive and doesn’t guarantee a unique solution.  With the 

development of better computers, the initial algorithm for analyzing multiple (two initially) 

sequences was published by Needleman and Wunsch (1970).  This has since been expanded 

significantly to encompass multiple sequence alignment, with a variety of algorithms that can 
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quickly identify common sequences across many observations.  Other fields that use these types 

of algorithms include finance, string editing, and language processing. 

We employ a simple version of a sequence alignment algorithm called Optimal Matching in 

order to empirically identify crop rotations.  Optimal Matching is another method for identifying 

commonalities across sequences which has a  range of applications (Abbott and Tsay 2000).  We 

employ a package, SQ-Ados, developed in Stata by Brzinsky-Fay, Kohler, and Luniak (2006).  

We use a sequence “suppression” option that condenses multiple sequential crops, of the same 

type, into a single observation and identifies commonalities across reduced form sequences.  For 

example, AABC is the same as ABBC and ABCC, etc.  We justify this by noting that rotations 

are a dynamic process, subject to external shocks, and we intend to formally model the 

underlying process.  We anticipate that price expectations and heterogeneity in land 

characteristics will induce farmers to grow crops for sequential years.  The goal of the sequence 

analysis is solely to identify potential, base, rotations. 

Table 1 summarizes the aggregate data and Table 2 summarizes the results. We show the 20 

most commonly observed sequences.  We select alfalfa-cotton-grain-fallow as the rotation that 

we will reproduce and simulate in what follows in the paper.  This is a combination of the top 

two rotations observed in Kern County, which we observe over 963 fields.  This rotation is 

selected because it offers an interesting rotation of crops with different salt tolerance, 

profitability, and includes fallow.  Fallowing a field is a zero profit (absent of rotational effects) 

event and is an interesting addition to the dynamic model.      

Table 1.  Summary of Rotations, by field, in Kern County 
Fields in Top 20 Rotation 4,500 
Total Fields in Annual Crops (plus Alfalfa) 7,939 
Total Fields in Perennials 6,290 
Total Fields 14,229 
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Table 2. Identified Rotations in Kern County between 2000 and 2009 

Top 20 Rotations 
Number of 

Fields Percent of top 20 
Percent of 

Total 
Alfalfa-Cotton-Grain 534 11.87 6.73 
Alfalfa-Grain-Fallow 429 9.53 5.40 

Alfalfa-Grain 356 7.91 4.48 
Alfalfa-Corn-Cotton-Grain 353 7.84 4.45 

Alfalfa-Cotton 297 6.60 3.74 
Continuous Fallow 226 5.02 2.85 

Fallow-Grain 215 4.78 2.71 
Fallow-Cotton-Grain 194 4.31 2.44 

Grain-Potato-Vegetable 191 4.24 2.41 
Corn-Cotton-Grain 182 4.04 2.29 

Corn-Grain 178 3.96 2.24 
Cotton-Grain 175 3.89 2.20 

Fallow-Grain-Potato-Vegetable 166 3.69 2.09 
Alfalfa-Cotton-Grain-Vegetable 153 3.40 1.93 

Alfalfa-Cotton-Vegetable 146 3.24 1.84 
Fallow-Grain-Vegetable 135 3.00 1.70 

Cotton Monoculture 131 2.91 1.65 
Fallow-Vegetable 126 2.80 1.59 

Cotton-Grain-Potato-Vegetable 109 2.42 1.37 
Fallow-Cotton 102 2.27 1.28 

Fallow-Potato-Vegetable 102 2.27 1.28 
 

Since alfalfa is a perennial crop we use satellite data to estimate the mean yield in any given year 

and treat different years of alfalfa as different crops.  Specifically, we allow for four years of 

alfalfa and estimate the mean yield of a field at any point in the four year sequence.  Using 

SEBAL satellite data we identify the mean alfalfa yield by field for 2002 and using the Kern 

geo-referenced data we determine the age of the stand.  Figure 2 summarizes the distribution of 

alfalfa yields across fields and Table 3 summarizes the corresponding mean alfalfa yields. 
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Figure 2. Alfalfa Yield Distribution in Kern County 2002 by Fields 

 

Table 3. Mean Alfalfa Yield by Year (tons/ac) 

 

 

Model Formulation and Parameter Estimation 

We define the dynamic programming, four-crop rotation model as follows.  We extend the basics 

of the previous model to allow for cost carry over effects and allow the farmer to have basic 

expectations over future prices. The farmer has expectations about future prices and has direct 

knowledge of the soil type and water quality associated with the individual field.  The farmers’ 

problem is to determine an infinitely repeating cycle for optimal management of crop plantings 

on the field.    

Let tc  denote planting crop c  in period t  for 1,2,...,t T= to a unit field size.  We write ( )tp c as 

the price of a unit of output (yield in tons) of crop c  in period t  which yields ( )y c  average yield 

in tons per acre.  Assume that average yield, ( )y c , is constant over time.  The variable costs of 

production are constant over time and denoted ( )A c , we do not model fixed costs in this version 

of the model.  Thus, the average profits generated from the field, in the absence of rotational 

effects, are defined by (D1). 
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 (D1) ( ) ( ) ( )t tp c y c A cπ = −    

We introduce rotational effects, as represented by the effect of crop rotation on the state of the 

field, in terms of adjustments to mean costs and yields.  Let ts be the state variable that represents 

the underlying “fertility” of the field, which depends solely on a function of the crop planted in 

the previous period, 1( )t ts g c −= .  At any point in time yields, and thus profits, are affected by the 

fertility of the field.  Following the suggestions by Hennessey (2006), crop rotations result in 

yield increases and input savings.  To capture yield effects (output boost) we introduce a function 

that adjusts average yield by crop (positive or negative) depending on the state of the system (a 

function of previous crop choice).  Let ( , )t tc sΓ denote the yield adjustment function for crop c  

in period t  given state ts .  Assume that this functional form is stationary.  Input savings are 

included in a similar fashion, denoted ( , )t tc sΨ . 

In addition to rotational effects, yields vary with soil quality and water quality.  Thus, we 

introduce two coefficients to capture the effect of salt and soil on yields.  Let these be denoted by 

1( )cβ and 2 ( )cβ representing the marginal effect of salt and soil on crop yields, respectively.  We 

assume that these are stationary and unaffected (directly) by crop rotation.   

Farmers form expectations about future prices in order to make current production decisions.  To 

model prices that are uncertain at any point in time we allow prices to follow a first-order 

Markov process, with five states per crop, to represent farmer price expectations.  We estimate 

the corresponding transition matrix based on County Agricultural Commissioner time series of 

price data.  This simplification allows us to model prices as being time independent.  Taking this 

into account and letting the discount factor be δ , the farmers’ optimal rotation problem is 

written in (D2). 

( ) ( ){ }1 2
0

1

max ( ) ( ) ( , ) ( )* ( )* ( ) ( , )

( 2) . .
( )

t

T
t

t t t t t t t t t tc t

t t

t

p c y c c s c ec c sl A c c s

D s t
s g c
p follows a first order Markov Process

δ β β
=

+

−Γ − − − −Ψ

=

∑
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Following Bellman (1957) we can express this problem using the Bellman Equation.  Let ( )tV s

be the value function, which is the maximum attainable sum of current and future profits from 

cropping activities given that the field is in state s at time t.   

( )
( )

1 1 1 1

1 2

( 3) ( , ( ), ( ))

( ) ( ) ( , ) ( )* ( )*
max

( ) ( , ) ( , ( ), ( ))t
t

t t t t

t t t t t t t
pc

t t t t t t t

D V s p c y c

p c y c c s c ec c sl
E

A c c s V s p c y c

β β

β

− − − − =

−Γ − −  
 
− −Ψ +  

 

This formulation satisfies the contraction mapping theorem and lends itself to the solution 

methods used in Dynamic Programming. Specifically, we assume an infinite time horizon for the 

problem and use value function iteration to find a fixed point of the Bellman Equation.  From 

there we determine the optimal policy function, which gives the optimal crop planting decision, 

at any point in time, given the state of the system.  We simulate the alfalfa-cotton-grain-fallow 

rotation and assume a one year crop lag as detailed in Equation (D2).  Instead of specifying 

functions for the soil, salt, yield carryover, and cost carryover effects we specify these as 

individual crop specific parameters, constant across time.  Given the above model definition, 

there are 106 parameters.  After imposing restrictions on second, third, and fourth year alfalfa, 

the dynamic model reduces to 61 parameters.  These parameters are as follows. 

1
4 1

2
4 1

7 7

7 7

soil

salinity

yield carryover effect

cost carryover effect

β

β
×

×

×

×

Γ

Ψ

 

Where 1β  and 2β  are 4 by 1 vectors of crop specific soil and salinity yield adjustment 

parameters, respectively.  We anticipate that these are positive, reflecting a negative effect of 

decreasing soil quality and increasing shallow groundwater salinity.  The parameters ψ  andγ  

represent cost and yield carryover effects due to crop rotation, respectively.  The i,j entry of each 

matrix represents the yield or cost adjustment from planting crop i today given crop j was planted 
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in the previous year.  We anticipate that these parameters can take any sign, representing both the 

positive and negative agronomic effects from rotating crops.  

We observe the base alfalfa-cotton-grain-fallow rotation on 963 fields in the data.  We define 

crop { }1, 2, 3, 4, , ,i and j a a a a c g f∈ , prices as ip , and average yields as iy .  Additionally, there 

is variation in yield, unobserved in the panel dataset, but observed in County level data across 

years.  Yield variation is due to non-rotation factors such as weather shocks and water supply.  

We estimate the yield variance, 2
iσ , using County Agricultural Commissioner data for Kern 

County between 2000 and 2009.  We define the crop specific profits on a single field from 

growing crop i following crop j in any year t in (E2) 

(E2) [ ]( ) ( ), | 1 2( ) ( ) ( , ) ( )* ( )* ( ) ( , )t i j t ip i y i i j i ec i sl F i i jπ ε β β= + −Γ − − − −Ψ  

 Where 2~ (0, )i iNε σ  and sl and ec measure shallow groundwater salinity and soil quality, as 

defined previously. 

Assuming farmers are profit maximizing agents, behaving according to the model specified 

above, there are a set of 42 dynamic first-order conditions that must hold in order for the base 

alfalfa-cotton-grain-fallow rotation to be observed.  For example, if alfalfa is observed on a field 

in the current year then the field will rotate into cotton in the subsequent period and was fallowed 

in the previous period (prior to year 1 alfalfa).  This implies six conditions that must be satisfied 

for each year of the alfalfa crop (four years).  Similar logic holds for fields that, at a point in 

time, are observed in cotton, grain, or fallow.  These conditions will not hold exactly in all cases, 

thus we specify an error term and use this system of equations for the estimation procedure.  

These are defined, without error term, by equations (E3) to (E6) 

(E3) | |c a i aπ π≥  for all i c≠  

 (E4) | |g c i cπ π≥  for all i g≠  

(E5)  | |f g i gπ π≥  for all i f≠  
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(E6) | |a f i fπ π≥  for all i a≠  

There are 42 first-order conditions and 61 parameters, the problem is underdetermined, which 

may explain why there is a dearth of empirical estimations in the literature.  The problem is ill-

posed and one solution is to use Generalized Maximum Entropy (GME) (Jaynes 1963) (Shannon 

1948) (Mittelhammer, Judge and Miller 2003).  GME is based on the Kullback-Leibler criteria 

and is based on the idea that, given that you have incomplete observations about a statistical 

process, the best way to recover parameters is to impose probabilistic structure on the model in 

such a way that it is consistent with observed data and imposes as little additional information as 

possible. 

The GME problem is specify support values over the unknown parameters, and estimate the 

probability weights over each parameter support distribution by imposing minimal additional 

information and satisfying the known data constraints.  For each field we observe the average 

price per ton of yield, soil quality, shallow groundwater salinity levels, and the average yield, 

where the actual yield is stochastic between fields.  We define a truncated uniform support space 

for all the parameters: yield rotation-carryover, cost rotation-carryover, soil, salinity, and error 

terms.  The GME estimation procedure is to maximize the entropy measure by choosing the 

probability weights over the support values subject to the data constraints.  The data constraints 

include the 42 first order conditions, and the requirement that each of the probability supports 

sum to one, as well as the typical non-negativity restrictions. 

The support space for the parameters in the GME program is a truncated uniform distribution.  

The yield rotation-carryover parameters support is +/- 35 percent of average crop yield.  The cost 

rotation-carryover parameters support is +/- 50 percent of average variable production costs.  

Finally, the salt and soil yield adjustment parameters, corresponding to decreasing soil quality or 

increasing salinity, support is 0 to -40 percent of average crop yield.  In general, we impose a 

loose probabilistic structure on the model, consistent with agronomic literature on rotation, 

salinity, and soil effects. 
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Parameter Estimation Results 

We solve the GME program in the General Algebraic Modeling Software (GAMS) using the 

conopt3 non-linear solver.  An iteration of the program solves in just over 20 minutes.  We 

bootstrap standard errors for the parameters with 500 boot-strap iterations.  Results of the GME 

estimation are shown in Tables 4, 5, and 6, which we discuss in turn below.  Standard errors are 

reported in parentheses. 

Table 4 summarizes the marginal effect of salinity and soil on average yields.  Parameters are 

interpreted as the marginal adjustment in tons per acre to mean yield due to a one unit change in 

salinity or soil quality.  Salinity is measured in dS/m and soil is by SSURGO definitions, as 

discussed previously.  The estimated marginal effect of salinity on crop yield is consistent with 

the literature.  Namely, alfalfa is relatively salt-intolerant and cotton and grain are more salt 

tolerant.  The estimated marginal effects, in percentage terms, reflect this agronomic information 

with alfalfa realizing the largest yield decrease. 

Table 4. Salt and Soil Parameter Estimates 
Salinity Yield Parameters 

ALF1 ALF2 ALF3 ALF4 COT GRN FAL 
0.6750 0.6750 0.6750 0.6750 0.0576 0.2305 n/a 
(0.000) (0.00) (0.00) (0.000) (0.030) (0.110) . 

       Soil Yield Parameters 
ALF1 ALF2 ALF3 ALF4 COT GRN FAL 
0.1197 0.1197 0.1197 0.1197 0.0120 0.0386 n/a 
(0.000) (0.000) (0.000) (0.000) (0.011) (0.002) . 

 

Parameter estimates for the rotation adjustment effects for costs and yield are reported in Tables 

5 and 6.  An entry in the matrix is interpreted as given that crop (column) was planted last period 

the marginal change in costs/yield relative to the average if crop (row) is planted this period.  

Parameter estimates are based on farmer behavior and, as such, should be interpreted as the 

implied yield and cost rotational adjustments based on observed farmer behavior.  Entries 

denoted with “n/a” represent imposed restrictions. 
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Table 5.  Estimated Effect of Rotation on Costs 
Cost Adjustment Parameters 

 
ALF1 ALF2 ALF3 ALF4 COT GRN FAL 

ALF1 14.7314 15.5969 16.3223 14.2686 22.8320 14.0300 -17.4597 
SE (0.113) (0.024) (0.011) (0.000) (0.393) (0.020) (0.010) 

ALF2 -17.6089 n/a n/a n/a n/a n/a n/a 
SE (0.005) . . . . . . 

ALF3 n/a -21.8552 n/a n/a n/a n/a n/a 
SE . (0.711) . . . . . 

ALF4 n/a n/a -26.8385 n/a n/a n/a n/a 
SE . . (0.006) . . . . 

COT 51.6447 61.0621 77.6275 -58.3097 88.2000 94.8150 64.5438 
SE (0.000) (0.130) (0.045) (0.056) (0.000) (0.002) (0.004) 

GRN 29.5550 29.5550 29.5550 29.5550 -51.4000 55.2550 30.7217 
SE (0.000) (0.000) (0.003) (0.001) (0.002) (0.000) (0.000) 

FAL 23.0000 23.0000 23.0000 23.0000 23.0000 -200.0000 23.0000 
SE (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 

Table 6. Estimated Effect of Rotation on Yields 
Yield Adjustment Parameters 

 
ALF1 ALF2 ALF3 ALF4 COT GRN FAL 

ALF1 -0.9020 -1.1002 -1.1621 -0.7201 -1.2000 -0.6160 1.5788 
SE (0.003) (0.004) (0.007) (0.000) (0.000) (0.000) (0.009) 

ALF2 1.0242 n/a n/a n/a n/a n/a n/a 
SE (0.004) . . . . . . 

ALF3 n/a 1.1952 n/a n/a n/a n/a n/a 
SE . (0.001) . . . . . 

ALF4 n/a n/a 1.1996 n/a n/a n/a n/a 
SE . . (0.004) . . . . 

COT -0.0755 -0.1209 -0.1347 0.0937 -0.1350 -0.3393 -0.1277 
SE (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) 

GRN -0.2233 -0.2233 -0.2233 -0.2233 0.5800 -1.0933 -0.2442 
SE (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.053) 

FAL n/a n/a n/a n/a n/a n/a n/a 
SE . . . . . . . 

 

The elements below the main diagonal (and in the top right corner) in the matrices of Table 5 and 

6 are the key parameters for the rotation problem.  The base sequence of crops in the rotation is 
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alfalfa year 1 through alfalfa year 4, cotton, grain, and then fallow.  For example, when grain 

follows cotton this translates into an average cost savings of $51.40 per acre and an average 

grain yield increase of 0.58 tons per acre.  If, instead, cotton were to follow cotton this would 

imply an increase in variable costs of $88 per acre and a decrease in average cotton yield of 

0.135 tons per acre.  In other words, farmers are behaving as if average costs and yields were 

adjusted according to the matrices in Tables 5 and 6. 

  Simulation of the Model 

We substitute the parameter estimates from the GME program back into the dynamic program 

(D2), and define the Bellman Equation (D3).  We solve the program using Value Function 

Iteration which solves for the fixed point of the Bellman equation.  The program converges in 

slightly over 200 iterations. 

First we demonstrate the base results of the model in Figure 3, below.  We assume a field starting 

in fallow, over a 50 year time horizon with average salinity and soil conditions.  As shown, we 

can reproduce the base alfalfa-cotton-grain-fallow rotation.  The field is in an infinite cycle of 

alfalfa-cotton-grain-fallow.  We show this cycle over fifty years in Figure 3. 

Figure 3. Average Conditions - Base Results 

 

Parameters of the average conditions, base results, are based on the fundamental alfalfa-cotton-

grain-fallow rotation.  On any given field this rotation is observed over some sequence of years 
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in the data.  However, other crops may be grown or the rotation may be of different length.  The 

extent of this difference depends on relative prices, salinity, and soil quality. 

  Policy Simulation 

In the data we also observe rotations that deviate from the base (alfalfa-cotton-grain-fallow) as 

relative prices change.  To demonstrate this, we impose price shocks and show how different 

fields respond.  To demonstrate the model for these situations we create a grain price shock from 

$195/ton to $295/ton in year 15 lasting 10 years.  We consider a 30 year horizon for this 

example.  This is a stylized example of the grain price spike in 2007/2008. 

Figure 4 shows the field described above, over average salt and soil, except this field is initially 

fallowed.  As shown, in year 15 the farmer has already made the decision to plant first year 

alfalfa.  Thus the optimal decision is to cycle through 4 years of alfalfa, into cotton, and then into 

a grain monoculture for the duration of the price spike.  Note that if the grain price spike is of 

shorter duration (say only 3 years) then this field never rotates into grain during the price spike.  

In other words, it is more profitable to grow grain during the price spike, but it does not 

immediately outweigh the dynamic cost of switching out of the rotation.  Alternatively, if the 

grain price spike is higher, the field rotates directly into grain.  When the spike ends, the farmer 

shifts the field back into first year alfalfa and continues the base observed rotation. 

Figure 4. Average Conditions – Grain Price Spike 

 

Figure 5 shows a field situated over high salinity or poor soil quality, the results are the same for 

both, subject to the same grain price shock.  The dynamically optimizing farmer initially plants 
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the field to a continuous alfalfa-fallow rotation.  This is a result of the effect of poor soil or high 

salinity on crop yield, it is not profitable at initial prices to plant the field into other crops.  

Alfalfa increases soil organic content but, at the same time, pests and disease build up.  Every 

four years the field is cleared by rotation into fallow.  When the grain price spike hits, in year 15, 

the farmer has just finished a 4 year alfalfa rotation.  It is optimal to shift the field into grain 

monoculture for the duration of the price spike.  After the spike, the field is put back into an 

alfalfa-fallow rotation.  Again, we would see different effects if the field was in first, second, or 

third year alfalfa at the time of the price spike. 

Figure 5. Poor Soil or High Salinity – Grain Price Spike 

 

Figure 6 shows a field over very marginal land, with high salinity and poor soil quality.  At 

average prices, this field is never optimal to plant.  With a grain price spike in year 15, grain 

monoculture becomes profitable for the duration of the price increase, at which point the field is 

fallowed again.  This case highlights the potential for fallow (marginal) land to be brought into 

production during price spikes.  Note that average grain yield on this field is much lower than 

other fields, given the high salinity and poor soil quality. 
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Figure 6. Poor Soil Quality and High Salinity – Grain Price Spike 

 

We motivated this paper with two examples of why field-level decisions are important: spatially-

dependent agricultural-environmental policies and dynamic supply response.  We illustrate the 

latter with an example.  Fields in the exact same rotation, but at different points in the rotation 

cycle, will respond differently to relative price changes.  In this case, we highlight the same grain 

price spike described above.  Figure 7 shows two fields that are over the same salinity level and 

the same soil type.  Specifically, soil is average quality and salinity is high.  This is comparable 

to the field in Figure 3 with high salinity.  The difference between the two fields shown in Figure 

7 is that they are at different points in the rotation when the grain price spike hits.  This induces 

different responses across fields, as shown in Figure 7.  The top field, in third year alfalfa in year 

15, cuts the alfalfa rotation short at three years and shifts into a cotton-grain rotation for the 

duration of the price spike.  In contrast the bottom field is in fourth year alfalfa, plants cotton in 

the following year, and then shifts into a cotton-grain rotation for the duration of the price spike.  

The difference is the rotation adjustment costs, given the current state of the field, are too high to 

skip cotton in the rotation.   

The importance of this result is that supply response to price shocks (or, more generally, policy 

response to any policy) will be dependent on both the price shock and the dynamic effects of 

rotation on a given field.  Additionally, across sets of fields within a region, different sets of 

fields may be planted to the same crop but are part of different rotations.  For example, as shown 

in Table 1, alfalfa-grain-fallow and vegetable-grain-fallow are two different rotations although 

both include grain.  Each is governed by a different underlying dynamic rotation process, and 
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resulting cycle, thus we anticipate different responses to price shocks.  In other words, the costs 

of rotation adjustment vary both within and across rotation systems.  We leave this for future 

work. 

Figure 7. Average Soil and Moderate Salinity Grain Price Spike; Demonstrating the Importance 
of Rotation Cycle 

 

Conclusion 

In this paper we determine empirically observed rotations using an Optimal Matching algorithm 

from the bioinformatics literature.  We formulate a dynamic model to estimate observed 

rotations, estimate the parameters for the model based on observed farmer behavior, and solve 

the dynamic rotation problem.  Finally, we apply the model to an example grain price spike and 

demonstrate the effects of price spikes on rotational cycles.  The solution of the rotation problem, 

over average conditions, is an infinitely repeating cycle of the observed rotation: alfalfa-cotton-

grain-fallow.  As relative prices, salinity, and soil quality change (across fields or due to 
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exogenous shocks) the optimal rotation changes accordingly.  In addition to the novelty of the 

data, model, and estimation, this type of model and analysis is relevant for estimating dynamic 

supply response elasticities and evaluating agricultural-environmental policies.     

The dynamic costs of switching a rotation are important when agriculture is facing exogenous 

shocks such as price spikes.  As the relative profitability of one crop increases the farmer may 

switch into this crop or simply shift the rotation system.  There is a future cost, in terms of profits 

forgone by breaking the pest and disease management cycle, which we capture in our dynamic 

model.  Treating agricultural production as a static process, or modeling supply in aggregate 

proportions, may omit important dynamic features of production.   

As agriculture is increasingly constrained by environmental concerns, agricultural-environmental 

policies are more important and need to realize spatial specialization in agricultural production.  

Policies that limit pesticide application or reduce nitrates are spatially dependent on individual 

field locations.  For example, modeling in terms of aggregate land use proportions offers limited 

insights into a policy that restricts pesticide application near surface water (including irrigation 

ditches).  If any part of a field is affected, the farmer would likely adjust management practices 

on the entire field.  We expect the rotation system to adjust accordingly and only field-level 

analysis can capture this type of response.  Additionally, aggregate, regional analysis of 

agricultural production overlooks heterogeneity in human and physical capital within a region.  

As geo-referenced land use and satellite production data become more widely available field 

modeling and accounting for dynamic rotation effects become more important.  In other words, 

where is as important as what.   
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