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Abstract 

In the US forestry industry, wildfire has always been one of the leading causes of damage. 

This topic is of growing interest as wildfire has caused huge losses for landowners, 

residents and governments in recent years. While individual wildfire behavior is well 

studied (e.g. Butry 2009; Holmes 2010), a lot of new literature on broadscale wildfire risks 

(e.g. by county) is emerging (e.g. Butry et al. 2001; Prestemon et al. 2002). The papers of 

the latter category have provided useful suggestions for government wildfire management 

and policies. Although wildfire insurance for real estate owners is popular, the possibility to 

develop a forestry production insurance scheme accounting for wildfire risks has not yet 

been investigated. The purpose of our paper is to comprehensively evaluate broadscale 

wildfire risks in a spatio-temporal autoregressive scenario and to design an actuarially fair 

wildfire insurance scheme in the U.S. forest sector. Our research builds upon an extensive 

literature that has investigated crop insurance modeling. Wildfire risks are closely linked to 

environmental conditions. Weather, forestland size, aspects of human activity have been 

proved to be crucial causal factors for wildfire (Prestemon et al. 2002; Prestemon and 

Butry 2005; Mercer et al. 2007). In light of these factors, we carefully study wildfires 

ignited by different sources, such as by arson and lightning, and identify their underlying 

causes. We find that the decomposition of forestland ecosystem and socio-economic 

conditions have significant impacts on wildfire, as well as weather. Our models provide a 

good fit to data on frequency and propensity for fires to exist (e.g. R-square ranges from 

0.4 to 0.8) and therefore provide important fundamental information on risks for the 

development of insurance contracts.  A number of databases relevant to this topic are 

used. With the Florida wildfire frequency and loss size database, a complete survey of four 

measurements of annual wildfire risks is implemented. These four measurements are 

annual wildfire frequency, burned area, fire per acre and burned ratio at county level. In 

addition, the national forestry inventory and analysis (FIA) database, Regional Economic 

Information Systems (REIS) database and the national weather database have supplied 

forestland ecosystem, socioeconomic, and weather condition information respectively.  



 

With our spatio-temporal lattice models, impacts of environmental factors on wildfire and 

implications of wildfire management policies are assessed. Forestland size, private owners’ 

share of forestland, population and drought would positively contribute to wildfire risks 

significantly. Cold weather and high employment are found to be helpful in lessening 

wildfire risks. Among the forestland ecosystem, oak / pine & oak / hickory forestland would 

reduce wildfire risks while longleaf / slash & loblolly / shortleaf pine forestland would have 

a mixed impact. An interesting finding is that oak / gum / cypress forestland would reduce 

wildfire frequency, but would enhance wildfire propensity at the same time. Hurricanes 

could intensify wildfire risks in the same year, but would significantly decrease the next 

year’s wildfire risks.Meanwhile, cross sample validation verifies that our method can 

forecast wildfire risks adequately well. Since our approach does not incorporate any fixed-

effect indicator or trend as in the panel data analysis (Prestemon et al. 2002), it offers a 

universal tool to evaluate and predict wildfire risks. Hence, given environmental 

information of a location, a corresponding actuarially fair insurance rate can be calculated.  
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Introduction 

Forests cover a large land area in the United States. Since the early twentieth 

century, the forestland area has been stable around 302 million hectares, compromising 

about 1/3 of the total land of the United States. In a world context, the U.S. makes up 

about 10\% of the world's total forestland, and its timber production for industrial 

products accounts for about 1/4 of the world's production (Brad 2004). On average, 3 

pounds of forestry industry products are consumed by each U.S. resident every day. This 

means that every year an amount equivalent to 100-foot tree will be consumed by each 

American (Bonson). 

Although forest and timber industries play an important role in the U.S., they are 

constantly threatened by wildfire outbreaks. A wildfire is any uncontrolled fire in 

combustible vegetation that occurs in the countryside or in a wilderness area. The 

temperature of a wildfire could rise to 2600 degrees Fahrenheit. Since this temperature 

can melt down iron, properties and trees in its way are destroyed immediately. Also 

wildfires usually spread rapidly over large areas. The forward blasts could be as wide as 60 

feet and flames could rise up to 325 feet and move as fast as 100 miles per hour. This is 

especially true for violent crown fires - called “firestorms “or “blowups”, that engulf the 

top of huge trees as they sweep across the landscape (Bronson). These characteristics 

make it difficult to contain a large wildfire within a small space scale and extinguish it in a 

short period. The vector of wildfire transmission risks, involving significant weather events 

and idiosyncratic fuel buildups on the ground, makes containment a major challenge. 

In December 2003, Healthy Forest Restoration Act (Act 2003) was signed by 

President George W. Bush with the aim of protecting land from wildfire disasters. Preceded 

by the two worst wildfire seasons (2000 and 2002) after World War II, this act intends 

 



 

“to improve the capacity of the Secretary of Agriculture and the Secretary of the 

Interior to conduct hazardous fuels reduction projects on National Forest System land and 

Bureau of Land Management lands aimed at protecting communities, watersheds, and 

certain other at-risk lands from catastrophic wildfire, to enhance efforts to protect 

watersheds and address threats to forest and rangeland health, including catastrophic 

wildfire, across the landscape, and for other purposes” 

---------Healthy Forest Restoration Act, page 108 

After the passage of HFRA (Healthy Forest Restoration Act), many more hazardous 

fuel reduction projects on federal lands have been expedited to protect forest-adjacent-

communities from wildfire. This act has proved to be a significant effort in wildfire 

prevention. 

Disaster relief, a form of ad hoc assistance, is usually used to compensate property 

owners after disastrous wildfires. Some national organizations such as the American Red 

Cross offer immediate aid to victims after large wildfires. Other local non-profit funds, such 

as the Georgia Wildfire Relief Fund, provide assistance to affected residents and engage in 

local ecosystem restoration in a long term. However, affected private timber business 

owners are always highly dependent on the government disaster relief programs. For 

example, southern California got attacked by large wildfires during two consecutive years 

from 2007 to 2008. In 2007, the Internal Revenue Service (IRS) granted tax relief for 

southern California wildfire victims. After the 2008 wildfire season, both the IRS and the 

California state government granted tax relief for affected business owners in southern 

California. 

Widely spread disasters such as wildfire pose a significant hazard to timber 

production and thus warrant consideration of a relevant single-peril forest insurance 

product. First, such an approach can provide an actuarially fair rate, which may attract 



 

insurance companies and forestland owners to engage in a private insurance market. The 

possibility of removing the government externality in the disaster payment market will 

likely result in a more efficient market scheme. Second, the potential economic benefits 

from mitigation and reduction of the further spread of wildfire may be enhanced under 

such a specific-peril plan. 

The first benefit stems from the notion that comprehension of a particular hazard 

and its spatiotemporal transmission mechanism warrants the development of a class of 

single-peril insurance products that measure wildfire risks accurately. Given the fact that 

wildfire risks are usually catastrophic, if actuarially fair rates can be implemented in a 

single-peril insurance plan, risk-averse forestland owners will purchase such insurance 

products once insurance companies offer them to the market. Such a private insurance 

market can ease the destructive losses of forestland owners even in the absence of 

government interferences. Furthermore, as forest disaster relief is becoming a fast growing 

burden for governments worldwide (Holecy 2006), developments of private wildfire 

insurance products can lessen the government financial stress if unexpected ad hoc aids 

eventually become unnecessary. 

The second benefit stems from the notion that understanding spatiotemporal 

aspects of wildfire risks and recognizing the potential spatial externality can provide 

benefits to forestland owners, insurance companies, local and state governments and 

society generally. To fully capture those benefits requires a comprehensive study of 

spatiotemporal relationships of wildfire risks and observable forest characteristics and 

environmental factors. In addition, a practical effective insurance policy needs to minimize 

adverse selection and moral hazard issues and induce incentive-compatible actions by 

forestland owners to prevent wildfire risks. A fair premium insurance plan also needs to 

evaluate compliance policies that decrease outbreak chances by reducing hazards in 



 

advance. Prescribed burning permits could be an example of efforts made by forestland 

owners and governments to reduce wildfire risks. 

The State of Florida, with a significant forestland portion of its total land area and a 

history of frequent wildfire outbreaks, presents an ideal case study for modeling forest 

losses associated with wildfire risks. As many as 16 million acres of forestland cover almost 

half of Florida's total land area. Ranked among top four tree-planting states, Florida plants 

over 82 million trees every year, with 5 trees planted for each tree harvested. The forest 

and forest products industries have an economic impact of $16.5 billion, including 133,000 

jobs . At the same time, Florida suffers over 4000 wildfire occurrences on average every 

year with approximately 200,000 acres of forestland burned. Moreover, the fact that more 

than 300,000 private (non-industrial) landowners own half of Florida's forestland suggests 

a potential demand for forest wildfire insurance protection. 

This paper studies the spatiotemporal correlated risks of Florida wildfire outbreaks 

between 1981 and 2005. To model the spatial and temporal aspects of wildfire, it is critical 

to understand the underlying causes and propensity for wildfire. An extensive literature, 

including research by Prestemon et al. 2002 and Prestemon et al. 2005, investigated the 

temporal and spatial autocorrelation of wildfires and the relation of risk to underlying 

factors. Wildfire risks can be transmitted temporally and spatially and are affected by 

significant weather conditions as well as socio-economic factors. 

We use statistical models to quantify wildfire risks and estimate associated 

insurance indemnity and premium rates. The wildfire risks and associated premium rates 

are estimated for a county-level annual contract which would pay pre-specified 

indemnities to insured forestland owners of a specific county in the event that the wildfire 

frequency or propensity exceeds the pre-specified levels.  



 

The remainder of this chapter is organized a follows. Section 1 will derive the 

wildfire risks functions and introduce several statistical spatio-temporal models. Section 2 

will discuss the data and present some preliminary analysis results. Section 3 will analyze 

the empirical results. Section 4 will make conclusion remarks and discuss future extension 

of our studies.  

1. Conceptual Framework 

i. Functional forms of wildfire risks 

In an actuarially fair insurance plan, the insurance premium should be set equal to the total 

expected loss.  In a general term, if we define 𝑧 as a loss event, the expected loss should be 

expressed as 

𝐸 𝐿𝑜𝑠𝑠 =  𝑓 𝑧 ∗ 𝐸(𝑙𝑜𝑠𝑠|𝑧) 𝑑𝑧,                                                 (1.1) 

where 𝑓 𝑧  is the probability density for the event 𝑧, and 𝐸(𝑙𝑜𝑠𝑠|𝑧) is the conditional 

expected loss when the loss event 𝑧 occurs. If 𝑧 is a discrete variable with N possible 

outcomes, (1.1) can be rewritten as 

𝐸 𝐿𝑜𝑠𝑠 =  𝑃(𝑧 = 𝑖𝑁
𝑖=1 ) ∗ 𝐸(𝑙𝑜𝑠𝑠|𝑧 = 𝑖).                                    (1.2) 

If we use 𝑧 = 1 to denote a loss event, and  𝑧 = 0 otherwise, the expected loss can be 

expressed as 

𝐸 𝐿𝑜𝑠𝑠 = 𝑃 𝑧 = 1 ∗ 𝐸(𝑙𝑜𝑠𝑠|𝑧 = 1).                                       (1.3) 

Some insurance plan pays a fixed amount of money. For example, a life insurance 

policy will only pay the beneficiary in the event of death of the insured, without any 

possible partial payment, e.g. 𝐸(𝑙𝑜𝑠𝑠|𝑧 = 1) is a predetermined amount. Because in an 

actuarially fair insurance scheme, the premium should be set equal to expected loss 

𝐸 𝐿𝑜𝑠𝑠 , our main task is to model the loss probability 𝑃 𝑧 = 1 .  The loss probability is 

assumed to be contingent upon a set of observable covariates 𝑋 



 

𝑃 𝑧 = 1 = 𝐹(𝑋𝛽),                                                                    (1.4) 

where  𝛽 is the associated parameter vector. 

Although we have already gathered data of relevant observable covariates 𝑋 for 

wildfires such as weather and forestry conditions, how to define 𝑃 𝑧 = 1  is still a question. 

One difficulty stems from the fact that most of the wildfire counts in the Florida counties 

are more than once each year. The other difficulty is that a wildfire would probably never 

burn down a whole county, and burned size of each incidence varies enormously. However, 

if 𝑃 𝑧 = 1  can be viewed as the risk probability of one site being burned, it is reasonable 

to assume that this probability is uniform across a county in a specific year 

𝑧 =  
0    𝑖𝑓 𝑡𝑒 𝑠𝑖𝑡𝑒 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑔𝑒𝑡 𝑏𝑢𝑟𝑛𝑒𝑑
1                  𝑖𝑓 𝑡𝑒 𝑠𝑖𝑡𝑒 𝑔𝑒𝑡𝑠 𝑏𝑢𝑟𝑛𝑒𝑑

   .                                          (1.5) 

If each county is divided into n equally sized small sites, from the law of large numbers, it is 

known that 

lim𝑛→∞ 𝑃(𝑧 − 𝐸 𝑧 ) = lim
𝑛→∞

𝑃  
# 𝑧=1 

𝑛
− 𝑃 𝑧 = 1  = 0,  

or 

# 𝑧=1 

𝑛

𝑃
→ 𝑃 𝑧 = 1 .                                                         (1.6) 

Since # 𝑧 = 1  is the total number of burned sites among the total n sites,  
# 𝑧=1 

𝑛
  becomes 

the burned ratio of the total n sites in each county. If Y is denoted as the burned ratio of a 

county, the ratio 
# 𝑧=1 

𝑛
  will converge to the burned ratio when the total number of sites n 

increases to the infinity  

# 𝑧=1 

𝑛

𝑛   
→ 𝑌.                                                               (1.7) 

During a specific year in a county, both 𝑌 and 𝑃 𝑧 = 1  are fixed values. Then combining 

(1.6) and (1.7), the burned ratio Y becomes an indicator of the burning risk probability 

𝑌 = 𝑃 𝑧 = 1 .                                                            (1.8) 

After plugging (1.8) into (1.4), loss probability function can be formalized as 



 

𝑌 = 𝐹(𝑋𝛽),                                                               (1.9) 

where 𝑌 is the burned ratio. However, not only do we want to develop a reasonable 

insurance scheme, but also we hope to help with the wildfire management policies. 

Therefore, in addition to regressing on the burned ratio, the wildfire frequency, intensity 

and density will also be used as the dependent variable Y respectively in this essay.  

To estimate the general loss probability function (1.9), we start by investigating the 

wildfire causes. The occurrences of wildfire are due to many sources, among which arson 

and lightning are two major leading causes. In average, arsonists set 1.5 million fires each 

year in the United States, resulting in over 3 billion in damages, about 500 fatalities, and 

thousands of injuries (TriData Corporation). The analysis of Florida wildfire causes (Figure 

1.A) confirms this statement and shows that over 25% of wildfires are caused by arson and 

over 15% are caused by lightning.  Since these two causes take a large proportion of all the 

wildfires, it is necessary to look into the crucial factors affecting the functions of each one. 

Following is the classical crime function (Becker 1968) as applied in Butry & 

Prestemon(2005) 

𝐸𝑈𝑖 𝑂𝑖 = 𝜋𝑖𝑈𝑖 𝑔𝑖 − 𝑐𝑖 − 𝑓𝑖 𝑊𝑖 ,𝑤𝑖  + (1− 𝜋𝑖)𝑈𝑖 𝑔𝑖 − 𝑐𝑖 ,                          (1.10) 

where 𝐸𝑈𝑖  expresses the expected utility of committing a crime, 𝑔𝑖  and 𝑐𝑖  are the benefit 

and the cost of the incendiary respectively.  𝑓𝑖 𝑊𝑖 ,𝑤𝑖  is the loss when being caught, 

where 𝑤𝑖  is the wage and 𝑊𝑖  is the employment status. 𝜋𝑖  is the probability of being 

caught, which should be a function of law enforcement. Some analysis indicates that law 

enforcement effort may be simultaneously determined along with crime (Becker; Fisher 

and Nagin), so it is natural to consider 𝜋𝑖  as a function of 𝑔𝑖 , 𝑐𝑖 ,𝑊𝑖 ,𝑤𝑖   

𝜋𝑖 = 𝜋(𝑔𝑖 , 𝑐𝑖 ,𝑊𝑖 ,𝑤𝑖).                                                       (1.11) 



 

If we assume that the benefits of arson crimes are homogeneous in an area, which means 

that 𝑔𝑖  is a constant 𝑔 within the same area, the arson crime function should be a function 

of 𝑊,𝑤, 𝑐𝑖 . The production cost 𝑐𝑖  is a function of time available (Jacob and Lefgren), fuels, 

and weather (Gill and et al., Vega Carcia and et al., Prestemon and et al. 2002)  

𝑐𝑖 = 𝑐(𝐿𝑖 , 𝑓𝑢𝑒𝑙𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡),                                         (1.12) 

where 𝑠 is the location and 𝑡 is the time point. The leisure time available for each individual 

is also associated with the employment status and the wage 

𝐿𝑖 = 𝐿(𝑊𝑖 ,𝑤𝑖).                                                                 (1.13) 

Fuels are determined by land ground coverings. Since wildfires always happen on the 

forestland, it is natural to assume  

𝑓𝑢𝑒𝑙𝑠,𝑡 = 𝐹(𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡),                                                      (1.14) 

where 𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡  is the forestland condition at time t and location s. After plugging (1.13) 

and (1.14) into (1.12), the individual wildfire production cost function can be expressed as 

𝑐𝑖 = 𝑐(𝐿(𝑊𝑖 ,𝑤𝑖) ,𝐹(𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡),𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡).                              (1.15) 

Then the individual arson crime utility function is a function of the wage, the employment 

status, the forestland type and the weather condition  

𝐸𝑈𝑖 𝑂𝑖 = 𝜋 𝑔, 𝑐 𝐿 𝑊𝑖 ,𝑤𝑖 ,𝐹 𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡 ,𝑊𝑖 ,𝑤𝑖  

∗ 𝑈𝑖  𝑔 − 𝑐 𝐿 𝑊𝑖 ,𝑤𝑖 ,𝐹 𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡 − 𝑓𝑖 𝑊𝑖 ,𝑤𝑖  + 

 1− 𝜋 𝑔, 𝑐 𝐿 𝑊𝑖 ,𝑤𝑖 ,𝐹 𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡 ,𝑊𝑖 ,𝑤𝑖   

∗ 𝑈𝑖 𝑔 − 𝑐(𝐿(𝑊𝑖 ,𝑤𝑖) ,𝐹(𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡),𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡) .          (1.16) 

The arson decision made by each person is therefore made by maximizing (1.16) given 

 𝑔, 𝑊𝑖 , 𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡  and 𝑤𝑒𝑎𝑡𝑡𝑒𝑟𝑠,𝑡 . Hence the individual arson crime decision must be a 

function of all these covariates 

𝐴𝑟𝑠𝑜𝑛𝑖 = 𝐴𝑖(𝑔,𝑔𝑖 ,𝑊𝑖 ,𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡).                             (1.17) 



 

Consequently, the aggregate arson incidences of an area within a period should be 

determined by population, employments, forestry types and weather conditions, 

#𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑎𝑟𝑠𝑜𝑛 =  𝐴𝑖 𝑔,𝑊𝑖 , 𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡 
𝑛
𝑖=1 ,                  (1.18) 

where n is the population. 

Another important wildfire cause is lightning, especially “dry lightning”. A dry 

lightning is a lightning that happens outside the raining area. After the dry lightning strikes 

the ground, whether a wildfire could happen does not only depend on the weather, but 

also on the forestland situation. Naturally the weather condition and the forestland type 

are the two main factors for a lightning to cause a wildfire. Hence the lightning caused 

wildfire ignitions can be expressed as 

#𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑙𝑖𝑔𝑡𝑒𝑛𝑖𝑛𝑔 = 𝐿𝑖𝑔𝑡𝑒𝑛𝑖𝑛𝑔 𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡  .                      (1.19) 

Debris burnings also cause many wildfires in the south (Figure 1). As it is a relatively 

inexpensive option to get rid of debris, debris burning is usually associated with socio-

economic conditions. Besides, a wildfire caused by unsafe debris burning, always a 

consequence of setting a fire at the wrong place (land ground) and the wrong time 

(weather), must be related to the forestry and weather conditions 

#𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝐷𝑒𝑏𝑟𝑖𝑠 = 𝐷𝑒𝑏𝑟𝑖𝑠 𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡 .                          (1.20) 

Therefore, combining (1.18), (1.19) and (1.20), the aggregate wildfire incidences 

from all sources can be expressed as 

#𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑠 =  #𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒𝑆𝑜𝑢𝑟𝑐𝑒𝑆𝑜𝑢𝑟𝑐𝑒 = 𝐹 𝑔,𝑊,𝑛,𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡 ,   (1.21) 

where 𝑊 is the vector of all the people’s wages in this community. As the arson benefit is 

non-monetary in most times, and assumed to be constant, we would like to drop this 

variable. Hence, the analysis of the main causes of wildfires leads us to investigate how 

forestland types, weather conditions and socio-economic conditions affect the wildfires 



 

incidences. Since wildfire propensity, density and burned ratio can be similarly derived 

from this theory modeling, we can write 

𝑌 = 𝐹 𝑊,𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡 ,                                       (1.22) 

where Y is a measurement of wildfire risks. 

ii. Statistical models 

Pooled Regressions 

As usual, a pooled linear regression is used at the beginning. The OLS regression takes a 

form of 

𝑌 = 𝑋𝛽 + 휀,                                                                                  (1.23) 

For each observation i,  

𝑦𝑖 = 𝑥𝑖𝛽 + 휀𝑖  ,                                                                      (1.24) 

where 휀𝑖  is i.i.d. white noise. 

Pure STAR (Spatio-Temporal Auto-Regressive) Model 

Annual wildfire counts have been found positively auto-correlated both temporally and 

spatially in Table 2. Therefore, it is needed to accommodate this data with an auto-

correlated structure. Whittle (1954) proposed a pure spatial auto-regression model in the 

form of 

𝑌 = 𝜌𝑊𝑌 + 𝜖,                                                              (1.28) 

where 𝜌 is the spatial dependence parameter and 𝑊 is a spatial weight matrix. However, 

the temporal dependence isn’t incorporated in (1.28). Thus we decided to combine (1.28) 

with an AR(1) process, and obainted a pure spatio-temporal auto-regression model  

𝑌 = 𝜌𝑠𝑊𝑠𝑌 + 𝜌𝑡𝑊𝑡𝑌 + 𝜖,                                                 (1.29) 



 

where the residuals of the vector 𝜖 are i.i.d. white noise such that 𝜖 ~𝑊(0, 𝛿2𝐼𝑆𝑇) , given S 

is the number of counties, and T is the number of years. In (1.29), 𝜌𝑠  measures the spatial 

dependence of wildfires, and 𝜌𝑡  measures the temporal dependence. The dependent 

vector is 𝑌 = (𝑦1 𝑦2 𝑦3 …𝑦𝑡 …𝑦𝑇)′. Each element 𝑦𝑡  is a vector of all counties’ dependent 

variable observations in the year 𝑡  

𝑦𝑡 = (𝑦1,𝑡  𝑦2,𝑡  𝑦3,𝑡  …𝑦𝑠,𝑡 …𝑦𝑆,𝑡)′, 

where 𝑦𝑠,𝑡  is the observation of the dependent variable in the county s during the year t. 

As a result, the dependent vector can be decomposed as  

𝑌 = (𝑦1,1 𝑦2,1 𝑦3,1  …𝑦𝑠,1 …𝑦𝑆,1 𝑦2,1 𝑦2,2 …𝑦𝑆,2 …𝑦𝑆−1,1 …  𝑦𝑆−1,𝑇  𝑦𝑆,𝑇)′.         (1.30) 

To avoid the singularity problem in the estimation stage, the spatial weight matrix 𝑊𝑠 in 

(1.29) should be carefully constructed as 

𝑊𝑠 = 𝐼𝑇⨂𝐵𝑜𝑟𝑑𝑒𝑟,                                                    (1.31) 

where ⨂ is the Kronecker product and 𝐵𝑜𝑟𝑑𝑒𝑟 is defined as 

𝐵𝑜𝑟𝑑𝑒𝑟 𝑖, 𝑗 =  

1

#{𝑘 :𝑘  𝑖𝑠  𝑎  𝑛𝑒𝑖𝑔 𝑏𝑜𝑟  𝑜𝑓  𝑖}
   𝑖𝑓 𝑗 𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔𝑏𝑜𝑟 𝑜𝑓 𝑖

0                              𝑖𝑓 𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑛𝑒𝑖𝑔𝑏𝑜𝑟 𝑜𝑓 𝑖
 .            (1.32) 

In this weight matrix, the sum of each row is 1, and in other words, the weighted sum of 

each individual county’s neighbors equal to 1. Hence, each element of 𝑊𝑠𝑌 in (1.31) will be 

the average of Y values of a county’s all neighbors. To model the temporal dependence, a 

temporal weight matrix 𝑊𝑡  is also required. The most straight forward and simplest way is 

to introduce an AR(1) process with 

𝑊𝑡 =  
𝐿 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐿

 

𝑆𝑇×𝑆𝑇

,                                                      (1.33) 

where 𝐿 is a lag operator. Now for each element of 𝑌, the equation (1.30) can be simplified 

as  

𝑦𝑠,𝑡 = 𝜌𝑠𝑦𝑠 ,𝑡 + 𝜌𝑡𝑦𝑠,𝑡−1 + 휀𝑠,𝑡 ,                                               (1.34) 



 

where 𝑦𝑠 ,𝑡  represents the average of neighboring 𝑦’s of the county s in the year t. 

 

Mixed STAR model 

Extraordinarily simple is the Pure-STAR model, but exclusion of the covariates X 

ignores the influences of the environmental factors on wildfires. Withstanding this 

problem, another form of auto-regressive model can be written as  

𝑌 = 𝑋𝛽 + 𝜌𝑠𝑊𝑠𝑌 + 𝜌𝑡𝑊𝑡𝑌 + 𝜖.                                          (1.35) 

In contrast to the Pure-STAR model, independent variables are addressed into this model, 

and thus it is viewed as a Mixed-STAR model. This model admits that not only the wildfires 

of spatial neighbors and temporal neighbors have direct impacts on the wildfires of a 

specific county in a specific year, but also the independent variables have direct influences 

on the wildfires. The equation (1.35) is in a matrix form, and each element of 𝑌 can be 

written as 

𝑦𝑠,𝑡 = 𝑥𝑠,𝑡𝛽 + 𝜌𝑠𝑦𝑠 ,𝑡 + 𝜌𝑡𝑦𝑠,𝑡−1 + 휀𝑠,𝑡  .                                              (1.36) 

Residuals-STAR model 

The above two STAR models already took spatio-temporal autocorrelation into 

consideration, and the equations (1.34) and (1.36) indicate that the average of neighboring 

dependents and the lagged dependent can directly affect the dependent. However, if the 

residuals of OLS regression are auto-correlated, which are usually found in our regressions, 

a model which can incorporate spatially and temporally correlated residuals is needed. A 

Residuals-STAR (residuals-saptio-temporal-auto-regressive) model is constructed as 

𝑌 − 𝑋𝛽 = 𝑢,                                                              (1.37) 

where  

𝑢 =  𝜌𝑠𝑊𝑠 + 𝜌𝑡𝑊𝑡 𝑢 + 𝜖.                                             (1.38) 



 

Basically this Residuals-STAR model assumes that, other than the part explained by the 

regressors, the remaining unexplained part of the dependent’s deviations are still auto-

correlated. Combining (1.37) and (1.38), we got 

𝑌 − 𝑋𝛽 =  𝜌𝑠𝑊𝑠 + 𝜌𝑡𝑊𝑡 (𝑌 − 𝑋𝛽) + 𝜖,                             (1.39) 

which is equivalent to 

𝑌 = 𝜌𝑠𝑊𝑠𝑌 + 𝜌𝑡𝑊𝑡𝑌 + 𝑋𝛽 − 𝜌𝑠𝑊𝑠𝑋𝛽 − 𝜌𝑡𝑊𝑡𝑋𝛽 + 𝜖 .                (1.40) 

Each element of 𝑌 can be written as 

𝑦𝑠,𝑡 = 𝜌𝑠𝑦𝑠 ,𝑡 + 𝜌𝑡𝑦𝑠,𝑡−1 + 𝑥𝑠,𝑡𝛽 − 𝜌𝑠𝑥𝑠 ,𝑡𝛽 − 𝜌𝑡𝑥𝑠,𝑡−1𝛽 + 휀𝑠,𝑡 ,                   (1.41) 

where 𝑥𝑠,𝑡 = (𝑥𝑠,𝑡
1 , 𝑥𝑠,𝑡

2 𝑥𝑠,𝑡
3  ,… , 𝑥𝑠,𝑡

𝐾 )  is the observation of independent variables in the 

county s at the year t, 𝑥𝑠 ,𝑡 = (𝑥𝑠 ,𝑡
1 , 𝑥𝑠 ,𝑡

2 𝑥𝑠 ,𝑡
3  ,… , 𝑥𝑠 ,𝑡

𝐾 ) is the neighboring average of the 

independents, and 𝑥𝑠,𝑡−1 is the independent variables’ observation in year t-1. Due to the 

nonlinear structure in (5.20), a FIML (full information maximum likelihood) estimation 

method is to be used. It assumes i.i.d. error term 휀 with  

𝐸 휀𝑠,𝑡 = 0,                                                               (1.42) 

𝑉𝑎𝑟 휀𝑠,𝑡 = Σ,                                                             (1.43) 

and it tries to minimize the objective function 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +  
𝑆𝑇

2
 𝑙𝑛 𝑑𝑒𝑡 𝑆∗  −  𝑙𝑛𝑆𝑇

𝑖=1  𝐽 ,                                  (1.44) 

where 𝑆∗ is the estimate for Σ, and 

𝐽 =
𝜕(𝑦𝑠,𝑡− 𝜌𝑠𝑦𝑠 ,𝑡+𝜌𝑡𝑦𝑠,𝑡−1+𝑥𝑠,𝑡𝛽−𝜌𝑠𝑥𝑠 ,𝑡𝛽−𝜌𝑡𝑥𝑠,𝑡−1𝛽 )

𝜕𝑦𝑠,𝑡
. 

The covariance of the parameter vector  𝜌𝑠 ,𝜌𝑡 ,𝛽
′ ′  is  𝑍  𝑆∗−1⨂𝐼 𝑍  

−1
 . Suppose there 

are p (here p=K+2) parameters in total, then 

𝑍 =  𝑍 1,𝑍 2,⋯𝑍 𝑝 . 



 

If we denote 𝑞𝑠,𝑡 = 𝑦𝑠,𝑡 −  𝜌𝑠𝑦𝑠 ,𝑡 + 𝜌𝑡𝑦𝑠,𝑡−1 + 𝑥𝑠,𝑡𝛽 − 𝜌𝑠𝑥𝑠 ,𝑡𝛽 − 𝜌𝑡𝑥𝑠,𝑡−1𝛽 , 𝑄 =

(𝑞1,1,𝑞2,1,…𝑞𝑠,𝑡 ,…𝑞𝑆,𝑇)′ and 𝑄𝑖 =
𝜕𝑄

𝜕𝜃 i
, each element of  𝑍  can be written as 

𝑍 𝑖 = 휀
1

𝑆𝑇
   

𝜕  𝑦𝑠,𝑡 −  𝜌𝑠𝑦𝑠 ,𝑡 + 𝜌𝑡𝑦𝑠,𝑡−1 + 𝑥𝑠,𝑡𝛽 − 𝜌𝑠𝑥𝑠 ,𝑡𝛽 − 𝜌𝑡𝑥𝑠,𝑡−1𝛽  

𝜕𝑦𝑠,𝑡
 

−1
T

t=1

𝑆

𝑠=1

∗ 

 
𝜕2(𝑦𝑠,𝑡− 𝜌𝑠𝑦𝑠 ,𝑡+𝜌𝑡𝑦𝑠,𝑡−1+𝑥𝑠,𝑡𝛽−𝜌𝑠𝑥𝑠 ,𝑡𝛽−𝜌𝑡𝑥𝑠,𝑡−1𝛽 )

𝜕𝑦𝑠,𝑡𝜕𝜃 i
−𝑄𝑖 ,                         (1.45) 

where 𝜃i  is the ith element of the parameter vector  𝜌𝑠 , 𝜌𝑡 ,𝛽
′ ′  and 휀 is the error vector. 

 

Pooled Regression with Prediction 

Similar to the analysis in the first sector, spatio-temporal autocorrelation is put aside at the 

beginning and pooled regressions are considered first. To forecast next year’s wildfire risks, 

the independent variable should be known values. Therefore, the function (1.22) should be 

changed to 

𝑦𝑡 = 𝐹(𝑦𝑡−1𝛽),                                                          (1.46) 

Among all the pooled regression models, the OLS regression has the simplest linear form, 

𝑦𝑡 = 𝑥𝑡−1𝛽 + 휀𝑡  , 

given 

𝑡 = 1,2⋯𝑇, 

where 𝑦𝑡 = (𝑦1,𝑡 ,𝑦2,𝑡 ,⋯𝑦𝑆,𝑡), S is the total number of counties. The error vector 휀𝑡 , is 

composed of i.i.d. white noise 휀𝑠,𝑡 , with 𝐸 휀𝑠,𝑡 = 0 and 𝑉𝑎𝑟 휀𝑠,𝑡 = 𝜍2.  Each element of 

𝑦𝑡  is 

𝑦𝑠,𝑡 = 𝑥𝑠,𝑡−1𝛽 + 휀𝑠,𝑡 .                                                     (1.47) 



 

The parameter estimate vector 𝛽  can be obtained from the OLS regression. When the data 

of T periods is available, the forecast of next year’s dependent variable’s observation 𝑦𝑠,𝑇+1 

should be 

𝑦𝑠,𝑇+1 = 𝑥𝑠,𝑇𝛽 .                                                            (1.48) 

When the dependent variable is a count data, the Poisson regression and the 

Negative-Binomial regression can be used. Similar with (1.26), for these two models, the 

regression on 𝑦𝑠,𝑡  is 

𝑙𝑜𝑔(𝑦𝑠,𝑡) = 𝑥𝑠,𝑡−1𝛽 + 휀𝑠,𝑡 ,                                                 (1.49) 

and the forecast of 𝑦𝑠,𝑇+1 would be 

𝑦𝑠,𝑇+1 = 𝑒𝑥𝑠,𝑇𝛽 .                                                          (1.50) 

Forecast with Mixed-ST model  

Following the spatio-temporal structure utilized by Anton et. al. (2008), Goodwin 

and Piggott (2009), a Mixed–ST (mixed spatio-temporal) model is assumed as 

𝑦𝑡 = 𝑥𝑡−1𝛽 + 𝜌𝑠𝑤𝑠𝑦𝑡−1 + 𝜌𝑡𝑤𝑡𝑦𝑡 + 휀𝑡 .                                     (1.51) 

where 𝑤𝑠 = 𝐵𝑜𝑟𝑑𝑒𝑟, which is defined in (1.32), and 

𝑤𝑡 =  
𝐿 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐿

 

𝑆×𝑆

. 

This model assumes that the lagged neighboring wildfires as well as the lagged wildfires 

have direct effects on the current wildfire incidences. For each element of 𝑦𝑡 , 

𝑦𝑠,𝑡 = 𝜌𝑠𝑦𝑠 ,𝑡−1 + 𝜌𝑡𝑦𝑠,𝑡−1 + 𝑥𝑠,𝑡−1𝛽 + 휀𝑠,𝑡 ,                            (1.52) 

The forecast of 𝑦𝑠,𝑇+1 would be 

𝑦𝑠,𝑇+1 = 𝜌𝑠 𝑦𝑠 ,𝑇 + 𝜌𝑡 𝑦𝑠,𝑇 + 𝑥𝑠,𝑇𝛽  .                                      (1.53) 

Forecast with Pure-ST Model  



 

In contrast with the Mix-ST model, which excluded all the covariates, this Pure-ST 

model is to determine whether most wildfires can be solely explained by the direct effects 

by lagged neighboring wildfires and lagged wildfires in the form of 

𝑦𝑡 = 𝜌𝑠𝑤𝑠𝑦𝑡−1 + 𝜌𝑡𝑤𝑡𝑦𝑡 + 휀𝑡 ,                                          (1.54) 

In this equation, the explanatory variables are excluded from the regression, and we only 

use the first order auto-regressive structure. In the former segment, the 1st order spatial 

dependence is modeled as the dependence between each county’s wildfires and its 

neighbors’ in the same period. However, in this Pure-ST model and the above Mixed-ST 

mode the spatial dependence is the dependence between each county’s wildfires and its 

neighbors’ lagged wildfires. Each element of 𝑦𝑡  has the form of 

𝑦𝑠,𝑡 = 𝜌𝑠𝑦𝑠 ,𝑡−1 + 𝜌𝑡𝑦𝑠,𝑡−1 + 휀𝑠,𝑡 .                                                (1.55) 

Consequently, wildfires in the next period is predicted by 

𝑦𝑠,𝑇+1 = 𝜌𝑠 𝑦𝑠 ,𝑇 + 𝜌𝑡 𝑦𝑠,𝑇.                                                   (1.56) 

Forecast with Pure-STAR Model 

To do the forecast, the Pure-STAR model is used again. Same as before, in this model the 

spatial auto-correlation is still modeled between the dependents in the same year 

𝑦𝑡 = 𝜌𝑠𝑤𝑠𝑦𝑡 + 𝜌𝑡𝑤𝑡𝑦𝑡 + 휀𝑡 ,                                              (1.57) 

which is equivalent to 

𝑦𝑡 = 𝜌𝑠𝑤𝑠𝑦𝑡 + 𝜌𝑡𝑦𝑡−1 + 휀𝑡 ,                                             (1.58) 

and each element of 𝑦𝑡  

𝑦𝑠,𝑡 = 𝜌𝑠𝑦𝑠 ,𝑡 + 𝜌𝑡𝑦𝑠,𝑡−1 + 휀𝑡 . 



 

However, unlike (1.56), which directly predicts the observation in the next period 𝑦𝑠,𝑇+1 

using the information at the period T, some matrix manipulation is needed to forecast the 

dependent in (1.58). From (1.58), we can get   

(𝐼𝑆 − 𝜌𝑠𝑤𝑠)𝑦𝑡 = 𝜌𝑡𝑦𝑡−1 + 휀𝑡 , 

Hence 

𝑦𝑡 = (𝐼𝑆 − 𝜌𝑠𝑤𝑠)−1𝜌𝑡𝑦𝑡−1 + (𝐼𝑆 − 𝜌𝑠𝑤𝑠)−1휀𝑡 .                              (1.59) 

To get the wildfire prediction in the time period T+1, most people would suggest using the 

estimator as 

𝑦𝑇+1 = (𝐼𝑆 − 𝜌𝑠 𝑤𝑠)
−1𝜌𝑡 𝑦𝑇 .                                                  (1.60) 

Although this estimation is unbiased, it omits the autocorrelation structure between 

residuals, which is in the second part at R.H.S. of (1.59). Therefore, another estimate of 

𝑦𝑇+1 is considered, which includes an estimate of 휀𝑇+1 and is in the form of 

𝑦𝑇+1 = (𝐼𝑆 − 𝜌𝑠 𝑤𝑠)
−1𝜌𝑡 𝑦𝑇 + (𝐼𝑆 − 𝜌𝑠 𝑤𝑠)−1휀𝑇+1 =  𝐼𝑆 − 𝜌𝑠 𝑤𝑠 

−1(𝜌𝑡 𝑦𝑇 + 휀𝑇+1 ).  (1.61) 

As the residuals part 휀𝑡  is assumed to follow the same distribution, a natural way to 

estimate 휀𝑇+1  is to get the average of residuals from the existing T periods, 

휀𝑇+1 =
 휀𝑡 
𝑇
𝑡=1

𝑇
.                                                               (1.62) 

For each 휀𝑡 ,  

휀𝑡 =  𝐼𝑆 − 𝜌𝑠 𝑤𝑠 𝑦𝑡 − 𝜌𝑡 𝑦𝑡−1.                                            (1.63) 

Combing (1.62) and (1.63), we have 

휀𝑇+1 =
  𝐼𝑆−𝜌𝑠 𝑤𝑠 𝑦𝑡−𝜌𝑡 𝑦𝑡−1
𝑇
𝑡=1

𝑇
.                                            (1.64) 

After we combined (1.59) and (1.64), we got another forecast for the dependent variable, 

𝑦𝑇+1 = (𝐼𝑆 − 𝜌𝑠 𝑤𝑠)
−1𝜌𝑡 𝑦𝑇 +

1

𝑇
 [𝑦𝑡 −  𝐼𝑆 − 𝜌𝑠 𝑤𝑠 

−1𝜌𝑡 𝑦𝑡−1]𝑇
𝑡=1 .            (1.65) 



 

For comparison, both (1.59) and (1.65) are used to forecast future wildfires. With the 

expressions of these two estimates, one important thing should be noticed. That is, each 

county’s 𝑦𝑠,𝑇+1 could not be directly predicted as it was before, but instead the vector of 

all the future values 𝑦𝑇+1  can only be simultaneously forecasted. The same out-of-sample-

check methods are also used with these two estimators (1.61)  and (1.65). 

 

Forecast with Mixed-STAR Model 

Similar to the above segment, a Mixed-STAR model is also used to forecast wildfires. Unlike 

in the Mixed-STAR Model segement, where the contemporaneous independent variables 

were used, lagged covariates are used in this part. The reason is that when wildfires in the 

time period T+1 are being forecasted at the end of the year T, only the information of first 

T period is available. The regression takes a form of 

𝑦𝑡 = 𝑥𝑡−1𝛽 + 𝜌𝑠𝑤𝑠𝑦𝑡 + 𝜌𝑡𝑤𝑡𝑦𝑡 + 휀𝑡 ,                                         (1.66) 

which is equivalent to 

𝑦𝑡 = 𝑥𝑡−1𝛽 + 𝜌𝑠𝑤𝑠𝑦𝑡 + 𝜌𝑡𝑦𝑡−1 + 휀𝑡 .                                           (1.67) 

The regression on each element 𝑦𝑠,𝑡  of the vector 𝑦𝑡  can be expressed as 

𝑦𝑠,𝑡 = 𝑥𝑠,𝑡−1𝛽 + 𝜌𝑠𝑦𝑠 ,𝑡 + 𝜌𝑡𝑦𝑠,𝑡−1 + 휀𝑠,𝑡 .                                      (1.68) 

Similar to (1.60) and (1.64), future wildfires in the period T+1 can be estimated in two ways, 

either 

𝑦𝑡 =  𝐼𝑆 − 𝜌𝑠 𝑤𝑠 
−1(𝑥𝑡−1𝛽 + 𝜌𝑡 𝑦𝑡−1),                                        (1.69) 

or 

𝑦𝑡 =  𝐼𝑆 − 𝜌𝑠 𝑤𝑠 
−1 𝑥𝑡−1𝛽 + 𝜌𝑡 𝑦𝑡−1  

+
1

𝑇
 [𝑦𝑡 −  𝐼𝑆 − 𝜌𝑠 𝑤𝑠 

−1 𝑥𝑡−1𝛽 + 𝜌𝑡 𝑦𝑡−1 ]𝑇
𝑡=1                           (1.70) 



 

 

Forecast with Residuals-STAR Model 

Other than imposing the auto-correlation of the dependent into the model, we have 

considered another possibility that the residuals are auto-correlated. The same model is 

applied as the one used in the Residuals-STAR Model segment, but lags of the independent 

variables are used instead of contemporaneous covariates.  

𝑦𝑡 − 𝑥𝑡−1𝛽 =  𝜌𝑠𝑤𝑠 + 𝜌𝑡𝑤𝑡 (𝑦𝑡 − 𝑥𝑡−1𝛽) + 휀𝑡 

𝑦𝑡 = 𝑥𝑡−1𝛽 +  𝜌𝑠𝑤𝑠 + 𝜌𝑡𝑤𝑡 𝑦𝑡 −  𝜌𝑠𝑤𝑠 + 𝜌𝑡𝑤𝑡 𝑥𝑡−1𝛽 + 휀𝑡 

𝑦𝑡 = 𝑥𝑡−1𝛽 + 𝜌𝑠𝑤𝑠𝑦𝑡 + 𝜌𝑡𝑤𝑡𝑦𝑡 − 𝜌𝑠𝑤𝑠𝑥𝑡−1𝛽 − 𝜌𝑡𝑤𝑡𝑥𝑡−1𝛽 + 휀𝑡 

𝑦𝑡 = 𝑥𝑡−1𝛽 + 𝜌𝑠𝑤𝑠𝑦𝑡 + 𝜌𝑡𝑦𝑡−1 − 𝜌𝑠𝑤𝑠𝑥𝑡−1𝛽 − 𝜌𝑡𝑥𝑡−2𝛽 + 휀𝑡  

Therefore, each element of 𝑦𝑡  is 

𝑦𝑠,𝑡 = 𝑥𝑠,𝑡−1𝛽 + 𝜌𝑠𝑦𝑠 ,𝑡 + 𝜌𝑡𝑦𝑠,𝑡−1 − 𝜌𝑠𝑥𝑠 ,𝑡−1𝛽 − 𝜌𝑡𝑥𝑠,𝑡−2𝛽 + 휀𝑠,𝑡 .             (1.71) 

Similarly with the above segment, two forecasts of 𝑦𝑇+1 are derived 

𝑦𝑇+1 =  𝐼𝑆 − 𝜌𝑠 𝑤𝑠 
−1(𝑥𝑇𝛽 + 𝜌𝑡 𝑦𝑇 − 𝜌𝑠 𝑤𝑠𝑥𝑇𝛽 − 𝜌𝑡 𝑥𝑇−1𝛽 ),                     (1.72) 

or  

𝑦𝑇+1 =  𝐼𝑆 − 𝜌𝑠 𝑤𝑠 
−1 𝑥𝑇𝛽 + 𝜌𝑡 𝑦𝑇 − 𝜌𝑠 𝑤𝑠𝑥𝑇𝛽 − 𝜌𝑡 𝑥𝑇−1𝛽   

+
1

𝑇
 [𝑦𝑡 −  𝐼𝑆 − 𝜌𝑠 𝑤𝑠 

−1 𝑥𝑡−1𝛽 + 𝜌𝑡 𝑦𝑡−1 − 𝜌𝑠 𝑤𝑠𝑥𝑡−1𝛽 − 𝜌𝑡 𝑥𝑡−2𝛽  ]𝑇
𝑡=1 .   (1.73) 

2. Data and Preliminary Analysis 

i. Databases 

The wildfire data used in this chapter is the Florida wildfire database obtained from the 

Florida State Forestry Division. Each observation has the initial time, location (the county), 

duration, fuel type, fire cause, and burned acreage of the wildfire. The time span is from 



 

1981 to 2005. We have got every county’s yearly wildfire count and annual burned acreage 

by aggregating the ignitions in each county every year. 

Different wildfire causes were analyzed and it is found that one wildfire is a 

function of some environment factors and socio-economic factors. Other than that analysis, 

in this part, the mechanism of wildfire ignitions will be checked comprehensively again. 

The fire environment triangle (Countryman 1972) of fuels, topography and weather will be 

evaluated. Also in the functional form of wildfire risks 

𝑌 = 𝐹 𝑊,𝑓𝑜𝑟𝑒𝑠𝑡𝑟𝑦𝑠,𝑡 ,𝑤𝑒𝑎𝑡𝑒𝑟𝑠,𝑡  

a number of independent variables should be selected. 

For almost all the wildfires, fuels are the vegetation on the ground, so it is 

important to understand the land ground conditions in Florida. The FIADB (Forest 

Inventory and Analysis Database) obtained from the U.S.D.A., which consists of 4 national 

forest inventory surveys from 1980 until 2007, contains all the forest characteristics of 

interest, such as owner types and timber categories. In the total forestland acreage for 

each county each year, the acreages of privately owned forestland, publicly owned 

forestland, and each forestland type are available. Then several important variables are 

derived: total forestland acreage, private owners’ share, public owned share and the share 

of each forest type group (e.g. Oak / pine group, Longleaf / slash pine group). However, 

these observations are not consecutively available since the FIADB has only 4 inventories 

(1980, 1987, 1995 and 2007). To make up for the missing values, we interpolated them 

with a “join” method (join points with straight lines) to obtain the whole time series. As 

different types of trees grow at different altitudes, the forest types information from this 

dataset not only directly provides the vegetation distributions, but also implicitly discloses 

the related topography conditions, which is the second leg of fire environmental triangle. 



 

According to the common knowledge to prevent wildfire, some categories of trees and 

bushes on the ground can increase wildfire risks while some other ones can decrease 

wildfire risks. We will evaluate the effects of forestland types on wildfires, and expect 

some type of trees like short leaf pines would be a crucial factor.  

In addition to the shares of different forestry groups, the forestry ownership 

structure is also important. From the arson crime theory, it is known that law enforcement 

plays a role in stopping arsons (Butry & Prestemon 2005). Compared with privately owned 

forestlands, government owned forestlands usually have more forest police and forest 

rangers, which should reduce arson risks and careless fire burnings.   

Weather, the third leg of fire environmental triangle, though easy to observe day by 

day, is difficult to measure at an annual basis. To get weather observations, we used the 

National Climate Database from the N.O.A.A.. This data provides monthly weather 

observations, such as temperature, precipitation and drought index, for the 8 climate 

zones in Florida. After matching all the 67 counties of Florida with the 8 climate zones, we 

got monthly observations for all the counties. In general, there are two main categories of 

weather condition variables. One is temperature and the other is drought. After a careful 

selection, we used the HDD index as the temperature indicator and the SP12 index as the 

drought measurement in this chapter.   

Although monthly temperatures are already reported in the database, they turned 

out not to be a good measurement of coldness or hotness. The reason is that the reported 

monthly temperature is the mean of all the days’ temperatures in a month, which neglects 

the variations. Instead, the HDD index is preferred. HDD, or "Heating degree days", is a 

measure of how much (in degrees), and for how long (in days), outside air temperature is 

lower than a specific "base temperature" (or "balance point"). This index is used to 

calculate related energy consumptions required to heat buildings. HDD's are calculated by 



 

subtracting the average temperature for a given day from 65°F. For example: A 45°F day 

results in 20 HDD's. Conversely, a 70°F day results in -5 HDD's, which is less than zero, in 

such case the HDD's for that day will automatically default to zero, as no significant energy 

for heating is necessary. Obviously, a higher HDD is equivalent to a colder weather. The 

monthly HDD index in the database is a sum of every day’s HDD’s in a month. In other 

words, HDD measures the coldness of that month. Since our empirical analysis is focused 

on the yearly wildfire frequency, we aggregated all the twelve months’ HDD’s of the same 

calendar year together. Because the sum of HDD’s is the total heating energy consumption 

in a specified year, it is a reasonable measurement of how cold that year is. However, in 

some cases, it is found that the relevant coefficient is too small to report, so instead of the 

yearly HDD index, we decided to use the daily averaged HDD index as an explanatory 

variable by dividing the yearly HDD index by 365. In contrast, another index CDD, or 

"cooling degree days", measures hotness. Unfortunately it is not appropriate to add the 

CDD index into the model due to an obvious reason: HDD and CDD tend to be linear 

correlated, and using both of them at the same time would cause a multi-colinearity 

problem.  

SP12 (Standardized Precipitation Index), measurement of drought, is a transformed 

form of the probability of observing a given amount of precipitation in 12 months.  A zero 

index value reflects the median of the distribution of precipitation, a -3 indicates a very 

extreme dry spell, and a +3 indicates a very extreme wet spell.  The more the index value 

departs from zero, the drier or wetter the recent 12 months is, when compared to the 

long-term climatology of the location. Therefore, the value of the SP12 index in December 

tells the drought condition of the past whole year.  

Another important weather phenomenon affecting wildfires is hurricane.  As 

mentioned in some wildfire reports (eg. President Report 2000), strong storm winds could 



 

exaggerate the spread and the intensity of large fires. Therefore hurricanes are also 

considered part of weather variables in this paper. In forestry literatures, there is a long 

debatable hypothesis that wildfire risks grow when trees are knocked down by hurricanes. 

Also, there is another argument that since government agencies will immediately remove 

the fallen trees and impose strict legal restrictions on wildfire burnings after the hurricane 

season, the wildfire hazards in the following year will be reduced. In this paper, these two 

hypothesizes will be tested.  

A hurricane is categorized as a powerful storm that begins over a warm sea with a 

wind speed of at least 65 knots. The hurricane dataset is also obtained from the N.O.A.A., 

and it traces all the hurricanes since 1851. It records each hurricane’s location and speed 

every six hours. We concentrated our attention on the hurricanes after 1980, and counted 

one incidence only if a hurricane trespasses a Florida county. Then we accumulated the 

incidences for each county every year and got the yearly hurricane counts in the Florida 

counties. 

To account for the opportunity costs to ignite a wildfire, the economic status of 

people in society will also be evaluated. Since poor people are more likely to set fires to 

burn fuels or for other purposes, it is likely that the poorer the area, the higher wildfire risk 

it faces (Butry and Prestmon 2005). Hence, socio-economic conditions can be an influential 

factor to cause wildfires, and especially incendiaries. For the socio-economic conditions, 

the REIS dataset, which is obtained from US Census of Labor and Statistics, is used. It tells 

the socio-economic situations in the Florida counties every year. Though there are many 

socio-economic variables available, population, employment and income are the main 

factors of concern which are dictated by the theory. Moreover, a measurement of low 

income population, the government transfer payment is considered. However, it turns out 

that the average income, the average transfer payment and the employment rate contain 



 

very similar information: how wealthy or poor this area is. Not surprisingly they are so 

correlated that only one of them can be used. After evaluating those variables carefully, we 

chose the employment rate, along with the population, to measure socio-economic 

conditions. 

Table 1 presents the definitions and summary statistics of the wildfire dependent 

variables and other relevant explanatory variables. Each dependent variable has records of 

all the 67 counties in Florida between years 1981-2005. This results in a total of 1675 

county-year combined observations. Meanwhile every explanatory variable covers the 

years from 1980 to 2005, consisting of 1742 observations. The reason that we need one 

more year’s observations of the covariates than those of the dependent is that the lags of 

regressors will be utilized in the prediction models. 

ii. Preliminary analysis 

The dataset used in this paper consists of all the Florida counties’ annual wildfire records 

and the associated environmental conditions from 1980 to 2005. If the fact that those 

counties are geographically adjacent is not important, then this data can be viewed as only 

a panel data. In such a circumstance, the ordinary panel data analysis methods, like the 

fixed-effect model and the random-effect model, are suitable for analysis. However, a 

couple of facts should not be ignored: the observations in this panel data could be both 

spatially and temporally auto-correlated. Figure 2 is the plot of four neighboring counties’ 

annual wildfire counts. Obviously, the movements of these four curves tend to have a 

similar pattern, so spatial autocorrelation may be the case. For each county, its time series 

has a downward trend, and does not follow a white noise pattern. This implies that a non-

stationary stochastic process may exist. Consequently, both spatial correlation and 

temporal correlation should be considered. 

 



 

3. Empirical analysis 

i. Contemporaneous Wildfire Risks  

Annual Wildfire Counts 

Table 3 presents the parameter estimates of different models when the dependent 

variable is annual wildfire count. The results tell some useful information.  First of all, 

across all those models, most independent variables have consistent impacts on the 

wildfire ignitions respectively. Secondly, not only most coefficients are significant, but also 

the directions of the impacts are as expected.  

Scale factors, total forestland size and population size, are always significantly 

positively linked to wildfires. This is due to the fact that a larger forestland or population 

implies a higher probability of wildfire incidence. For forestland conditions, the higher the 

private share of forestland, the more frequently wildfires happen. It is because that there 

are more police forces and forest rangers on the federal and state owned forestlands than 

on private owners’ forestlands. As a consequence, incendiaries and careless wildfire uses 

are more likely to take place on privately owned forestlands. Different forestland types 

affect wildfires in different ways. The longleaf / slash pine forestland & loblolly / shortleaf 

pine forestland group can decrease wildfire incidences. This effect is significant negative 

except in the Mixed-STAR model (column 3.c). Conversely, the impact of the oak / pine 

forestland & oak / hickory forestland group is consistently positive, and is significant in all 

the models expect in the Residuals-STAR model. Meanwhile, the oak / gum / cypress 

forestland group significantly reduces wildfires, except in the Mixed-STAR model. Nearly all 

the weather conditions have significant effects on wildfires. A higher HDD index, equivalent 

to a cooler year, significantly decreases wildfire risks. A drier weather, which is presented 

by a smaller value of the December’s SP12 index, significantly increases wildfires. Though 

only significantly in Poisson model, hurricanes are positively linked to wildfires in all the 



 

models that are without auto-regressive configurations. Employment, proxy of the 

opportunity cost to set arson ignitions (Prestemon and Butry 2005), significantly decreases 

wildfires when no autocorrelation is imposed. Unfortunately, the coefficient of 

employment ratio becomes insignificant in the Mixed-STAR model and it becomes positive 

in the Residuals-STAR model. However, these two unpleasant estimates are largely 

attributable to the multicollinearity problem, so generally the impact of employment on 

wildfires is still significantly negative.   

In order to better evaluate the impacts of those independent variables, the 

elasticities of all the independents in the Poisson model and in the Negative-Binomial 

model are also calculated. The results are similar between these two models. The private 

share of forestland has the highest elasticity while the forestland size and the HDD index 

also have relatively large impacts. For example, if the private share increase by 1%*(*this 1% 

increase is not representing an increase from 1% to 2%, but representing an increase by 1%, 

i.e. 1% to 1.01%), wildfire incidences will increase by 0.65%. Although none of the factors 

are elastic, most of them have elasticities bigger than 0.1. Among all the covariates, the 

hurricane has the smallest elasticity due to the fact that hurricanes rarely happen. 

When there are many independent variables in a single regression it is essential to 

make sure that no multi-collinearity exists. All the three rules of thumb-- VIF, tolerance and 

condition index-- are satisfied in the OLS, Pure-STAR and Mixed-STAR models. Therefore, 

no multicollinearity problems exist in those regressions. In the Residuals-STAR model, as 

the regression is in a non-linear form, no multi-collinearity analysis is available. 

The model fitness is fine in the OLS regression, as the R-square is 26%. The Pure-

STAR model enormously improves the R-square to around 56%. It means that over a half of 

the wildfires variations can be explained by the neighboring average and lagged wildfires. 

The Mixed-STAR model and the Residuals-STAR model have even higher R-squares because 



 

more regressors are used. Between these two models, the Residuals-STAR model has a 

better fitness and it implies that the Residuals-STAR model is preferred in wildfire count 

analysis. 

According to the previous analysis, if the pooled regressions, i.e. OLS, Poisson and 

Negative-Binomial models, produced uncorrelated residuals, a further consideration of 

auto-regressions is not needed. Therefore, spatio-temporal correlation of the pooled 

regression residuals is examined.  

Moran’s I index and Geary’s c index are still valid to check residuals’ spatial 

autocorrelation, by contrast, the Durbin-Watson test for temporal autocorrelation is 

illegitimate as long as the lagged dependent variables are involved in the regression 

(Nerlove and Wallis (1966), Durbin (1970), Dezhbaksh (1990)). Instead, the Breusch(1978)–

Godfrey(1978) serial correlation LM test, which is a robust statistic for lagged regressions, 

will be adopted. This Breusch-Godfrey statistic is used for a test of 𝐻0: no autocorrelation 

versus 𝐻1: residuals follows AR(P) or MA(P). After every regression, this test is carried out 

against the AR(1) model of the residuals and the autocorrelation sign is recorded at the 

same time. 

In the bottom of Table 3, the spatial correlation tests (Moran’s I and Geary’s c) 

results and the temporal correlation tests (DW and BG) results of the residuals in each 

model are reported. It is found that the residuals are still strongly positively spatio-

temporal correlated, which confirms the need to use auto-regressive models.  

After the auto-regressive models are imposed, positive spatial correlation is mostly 

eliminated. Of all the 24 years, only in at most 5 years, significant positive spatial 

autocorrelation exists in Table 3.B-D. However, the residuals have significant negative 

spatial correlation in some years. For example, the Moran’s I tests show that the negative 

spatial correlation of residuals is significant in 10 out of the 24 years at 0.1 level in the 



 

Residuals-STAR model (column 3.c), while in 10 of 24 in the Mixed-STAR model and in 15 of 

24 in the Pure-STAR model. These negatively correlated residuals may be caused by 

overestimating the positive spatial dependence, or may be due to the heterogeneity of the 

spatial autocorrelation between different counties.  

As DW tests are invalid for lagged regressions, BG tests are preferred in the 

temporal autocorrelation tests (column 3.b-d). The positive temporal autocorrelation 

problem is almost solved by the three STAR models, and negative autocorrelation of the 

residuals only exists in very few years in the Pure-STAR model and the Mixed-STAR model.  

The Pure-STAR model and the Mixed-STAR model have incorporated the spatio-temporal 

dependence of the dependent variable directly into the models, on the contrary, the 

Residuals-STAR model is constructed on the dependence of the residuals.  As a matter of 

fact, the temporal autocorrelation of the Residuals-STAR regression residuals is 

significantly negative in 17 out of 67 counties. This means that in some years, the positive 

temporal dependence of residuals is overestimated by the Residuals-STAR model. Also it 

implies that the spatial autocorrelation of residuals is not as strong as that of the 

dependent.   

In general, the STAR models fit the data better than the pooled regressions and 

most independent variables have significant impacts on wildfires.  

 

Trans-log Regressions of Annual Wildfire Count and Burned Acreage 

One concern with the OLS result in Table 3 is the low R-square values. This is 

understandable because the distribution of wildfire counts, as in Figure 4.A, is unlikely to 

be normal. Therefore, some data transformation techniques are considered. Figure 4.B 

represents the distribution of wildfire counts after they are taken logarithm of. Since it 

looks much more alike a normal distribution than before, it is better to use the logarithm 



 

of wildfire counts as the dependent variable.  Meanwhile, we are going to adopt the same 

set of explanatory variables in the regression analysis. However, for consistency, the 

positive numerical independent variables, including the two scale factors (the forestland 

size and the population size), will also be in trans-log forms. The weather factors, either 

already transformed from the weather observations, or with a lot of zeros in the case of 

hurricanes, are not suitable to be taken logarithms of. All the other variables are originally 

measured in percentages hence they don’t need any transformations.  

In addition to the frequencies of wildfires, the damages of wildfires are another 

important subject to study. The annual burned size measures the wildfire damages well. 

Figure 5.A depicts the distribution of annual wildfires burned sizes. Among wildfires, a lot 

of them only result in burning less than 5 acres, which is not a big loss. However, a 

disastrous wildfire could burn down thousands of acres of forestlands after it spreads 

widely, causing a loss much bigger than the total damages caused by hundreds of small 

wildfires. In other words, the variation of damages is so big that the largest burned size is 

thousands larger than the smallest ones. As a result, the distribution is far away from a 

normal distribution. Since there are a proportion of gigantic values, the popular count data 

models, such as the Poisson model and the Negative-binomial model, are not appropriate 

to use, even if the burned acreage can be thought as the total count of burned one-acre-

sites. In the same way, the natural logarithm of burned sizes are preferred, and the 

transformed data distribution, as in Figure 5.B, complies with a normal distribution well. 

Thus the trans-log form of annual burned sizes is used as the dependent variable. For the 

convenience to do comparisons, the same set of regressors are used as in the trans-log 

annual wildfire count regressions. The results are presented in Table 4.  

The overall results in Table 4 are analogous to those in Table 3. For example, the 

coefficients of the forestland size and the population size are always significantly positive 



 

in all the models. Although most variables have similar patterns of impacts on the wildfires 

in trans-log regressions as they did in Table 3, several things should be noticed. First of all, 

the R-square of the OLS regression (column4.a) on the logarithm of wildfire counts is 

improved a lot to 0.465 compared with 0.364 in Table 3. Similarly, in Table 4, the R-squares 

in the Pure-STAR model, the Mixed-STAR model and the Residuals-STAR model are all 

enhanced by around 10% compared with those in Table 3. Therefore, the logarithm 

transformation has improved the model fitness. Also the model fitness for burned acreage 

data is moderately good, with the R-square values ranging from 0.35 in the OLS model to 

around 0.5 in all the STAR models. 

Secondly, the two scale factors, forestland size and population, are still always 

significantly positive in all the regressions. But they affect the wildfire frequency in a 

different way from the way they affect the intensity. For the forestland size variable, the 

elasticity of its impact on wildfire counts is bigger than that on wildfire burned sizes. In the 

meantime, the impact of the population variable is also much more elastic on the burned 

acreages than on the wildfire count. 

Forestland ecosystem affects wildfires through various ways. The private owners’ 

share always significantly increases wildfires both in frequency and intensity, which 

coincides with our expectation. The impact of the longleaf / slash pine forestland & loblolly 

/ shortleaf pine forestland group is insignificant in all the models except the one in the OLS 

regression on wildfire counts, and the sign of its coefficient flips irregularly. The share of 

oak / pine forestland & oak / hickory forestland group significantly decreases both wildfires 

and burned sizes in most models, which exhibits a different pattern compared with Table 3. 

The elasticity of this forestland type’s share is moderate in the regressions on wildfire 

count while its elasticities in the regressions on burned sizes are one of the highest.  The 

oak / gum / cypress forestland share significantly increases burned sizes while it 



 

significantly decreases wildfire ignitions. This interesting finding implicates that this 

forestland type can alleviate the chance of wildfire ignition, and at the same time it can 

help with wildfire contaminations. 

The weather factors, temperature and drought, affect wildfires in the direction as 

we expected, except that the HDD index is positive in the Mixed-STAR model and the 

Residuals-STAR model. This issue is due to the multi-collinearity problem in these models. 

With an unstable coefficient and a big variance at most times, hurricanes have no definite 

impact detected. 

As the socio-economic indicator, the employment ratio has the highest elasticity in 

most models, and is significantly negatively linked to wildfires. However, its coefficient 

becomes significantly positive in the Residual-STAR model, which is a side-effect caused by 

the multi-collinearity problem.  

In these trans-log regressions, each coefficient represents the related elasticity 

since all the variables are either percentages or logarithms. It is found that for each 

independent variable, the elasticity of its impact on wildfire counts is smaller than that on 

the wildfire burned sizes. This stems from the fact that burned sizes always have bigger 

values than wildfire counts. 

With the values of tolerance and VIF, no multi-collinearity is detected. However, 

some big condition index values imply that multi-colinearity problems exist sometimes. 

This issue may have lead to some abnormal values of the coefficients of the HDD index and 

the employment ratio in the Residuals-STAR model. 

The spatial autocorrelation tests suggest that the OLS residuals are still mostly 

spatial-correlated, and the STAR models almost eliminate the spatial dependence between 

residuals. The temporal autocorrelation test results for residuals, however, suggest that 

the temporal dependence may be overestimated. The DW and BG tests results for the OLS 



 

regression residuals have shown that in most counties wildfire count residuals are positive 

correlated, while only in a few counties burned acreage residuals are positively correlated. 

However, after imposing spatio-temporal autoregressive structures, no counties have 

significant positive correlated residuals, but around 1/4 – 1/3 of the 67 counties have 

significant negative correlated residuals.  It implies that the STAR models have assumed 

such a strong homogenous positive temporally dependence for all the counties that the 

regression residuals in some counties revert to be negatively correlated. 

In conclusion, the logarithm transformation of data enhances the model fitness. 

Most variables showed desired signs, but occasionally the emerged multi-collinearity 

problems caused some coefficients to be irregular. The forest factors affected wildfires in 

different ways. The STAR models solved the spatio-dependence problem, but might have 

over-estimated the temporal dependence.   

 

Wildfire Density and Burned Ratio 

In the former two segments, both the wildfire frequency and the wildfire intensity are 

modeled. Besides those two wildfire attributes, another important topic to study is wildfire 

densities. Two kinds of fire density measurements (Prestemon et al. 2002) can be used. 

One is the wildfire count per acre of forestland, which is usually called the “wildfire 

density”, and the other is the wildfire burned ratio, which is the proportion of burned 

acreage out of the total forestland acreage in a county. These two measurements 

represent the densities of wildfire frequency and wildfire intensity respectively. 

Figure 6.A depicts the percentage distribution of wildfire count per acre and 

obviously the distribution is not normal. Since this is not a count data, the Poisson model 

and the Negative-Binomial model are inappropriate. However, after a logarithm 

transformation, the distribution is muck likely to be normal (Figure 6.B). 



 

The same thing happens to the burned ratio. The burned ratio distribution (Figure 

7.A) is very long tailed and is concentrated mostly close to 0. The reason why it has some 

values beyond 1 is that some wildfires had developed so large that they crossed the county 

borders. Since in this data the records only have wildfire origins and spread sizes and no 

specific paths, we accredited all the burned acreages to the originated counties. In this way, 

some burned ratios could be bigger than 1. Simply dropping them would cause sample 

shrinking, and setting them to 1 would also cost some useful information. Therefore, we 

decided to keep these “outliers” since they contain the information about the intensity of 

those wildfires. A transformation is needed for burned ratio data, and like the wildfire 

count per acre variable, after the natural logarithm is taken the data is much more like a 

normal distribution (Figure 7.B). Though the burned ratio, which is already a percentage 

variable, may be a better choice to use as the dependent, its abnormal distribution forces 

us to use its logarithm instead. 

Therefore, the logarithm of wildfire count per acre and the logarithm of burned 

ratio will be used as the dependents, and the same set of explanatory variables will be 

used.  However, for consistency, as the dependents are densities, the scale factors will also 

be changed to densities, i.e. using forestland ratio instead of forestland size, and using the 

average number of residents per acre of county land instead of the population size. Other 

factors remain the same forms as in Table 3 and Table 4.  

The regression models are as same as those in Table 4, and the results (Table 5) are 

similar to Table 4. Most predictors have desired signs, but several things should be paid 

attention to. One scale factor, population density, still has significant a positive coefficient. 

Somehow, the other scale factor, the forestland ratio, has a significant negative impact on 

wildfire density and burned ratio. At first, it is thought to be abnormal. However, it is of 

perfect sense when it is carefully evaluated. On one hand, the negative sign stems from the 



 

way how the variables are constructed. For example, the dependent variable wildfire count 

per acre is the wildfire count divided by forestland size, and the forest ratio variable is the 

proportion of the forestland size in a county. As the forestland size actually appears on the 

both sides of the regression equation, the coefficient of the forestland ratio may be 

distorted. On the other hand, the negative coefficient means that given a fixed land size of 

each county, if the forestland size is higher in this county, fewer wildfire incidences would 

happen on each acre of forestland. This explains why a higher forest ratio reduces wildfire 

densities.  

The forestry conditions have similar impacts on both densities as they did on 

wildfire frequencies and intensities. The coefficient of the private share is always positive, 

but not significant in the Residuals-STAR model (column 5.D).The impact by the share of 

longleaf / slash pine forestland & loblolly / shortleaf pine forestland group is insignificant in 

most models and the sign of its coefficient changes irregularly. The share of oak / pine 

forestland & oak / hickory forestland group is significantly linked to both wildfire densities 

in most regressions. Moreover, the oak / gum / cypress forestland share increases the 

burned ratio while it significantly decreases the wildfire count per acre. This phenomenon 

confirms our findings that an oak / gum / cypress forestland is not a good place to ignite 

wildfires, but is helpful to worsen damages. 

Like in Table 4, in almost all the regressions of Table 5 the weather factors and the 

socio-economic conditions have significant coefficients with expected signs, except the 

HDD index in some scenarios and the employment ratio in the Residuals-STAR model 

(column 5.D). Again these two cases are both victims of multi-collinearity problems. Multi-

collinearity, as implied by the high condition index value, could be a problem in the Mixed-

STAR model and Residuals-STAR model. However, another weather factor, hurricane, has 

no significant impacts on wildfires.  



 

The overall fitness in Table 5 is best among all the three tables in this chapter. Even 

in the OLS regression, the R-squre is 68% when the dependent is wildfire count per acre 

and 55% when the dependent is burned ratio, implying that the selected predictors explain 

the variations of wildfire densities forcefully well.  

The spatial autocorrelation tests suggest that the OLS residuals are significantly 

positively auto-correlated in nearly a half of the total surveyed years. According to Moran’s 

I index and Geary’s c index, the STAR models sufficiently alleviate the spatial dependences 

of residuals. Although the OLS residuals exhibit strong positive temporal autocorrelation in 

most counties, the imposing of STAR models pushes the regression residuals more inclined 

to be negatively temporally auto-correlated. 

 

Conclusion 

In this part, six regression models and five dependent variables are utilized to study 

the wildfire behavior. We started by investigating the annual wildfire count. In addition to 

the OLS regression, the Poisson regression and the Negative-Binomial regression were 

applied to this count data.  In addition, STAR models were adopted to take spatio-temporal 

dependence into consideration.  Moreover, logarithms of wildfire counts and burned 

acreages were used as dependent variables, but only the OLS model and STAR models are 

applied. In the final part, densities of wildfire frequency and intensity are also studied. 

Generally the model fitness is good enough, especially after the logarithm function 

of wildfires was utilized. Most independent variables have significant coefficients and some 

useful wildfire management policy implications have been suggested. Forestland size and 

population always increase wildfire risks except that higher forestland ratio is linked to a 

lower wildfire density. A county with a bigger share of privately owned forestland faces a 

higher wildfire risk. This implies that, in the opposition of the suggestions to better protect 



 

national forests (President Report 2000), it is more efficient to decrease wildfires by 

increasing surveillance efforts on private forestlands.  

Different types of forestland groups affect wildfire risks differently. It is indefinite 

whether the longleaf / slash pine forestland & loblolly / shortleaf pine forestland group can 

decrease wildfires. Meanwhile, the oak / pine forestland & oak / hickory forestland group 

is significantly negatively linked to wildfires*(* Although its coefficient is positive 

sometimes in Table 3, since we prefer the trans-log regression, we follow the conclusions 

derived from Table 4 and 5). In addition, the oak / gum / cypress forestland can decrease 

the wildfire frequency and increase the wildfire intensity at the same time. Therefore, an 

appropriately arranged forestland system can reduce wildfires, i.e. with more coverage of 

oak / pine forestland & oak / hickory forestland. 

Weather conditions have direct influences on the wildfires. A higher drought index, 

which is equivalent to a wetter ground condition, significantly decreases wildfire risks. A 

cooler temperate, which is represented by a higher HDD index, decreases wildfires in most 

cases. The hypothesis about the casual relationship between hurricane and wildfires has 

been tested. A hurricane incidence has a relatively small impact on wildfires ignitions, and 

its coefficient doesn’t have a consistent sign. However, as its coefficient in the Poisson 

Regression is significantly positive, it is possible that hurricanes may have enhanced 

wildfire risks in the same calendar year.   

Socio-economic conditions are also closely related to wildfire risks, i.e., it is found 

that a county with a good record of employment percentage is likely to have less wildfires. 

 Unfortunately, multi-collinearity exists in some scenarios when the lags of 

dependents are added into regressions. Sometimes this problem distorted the coefficients 

of HDD index and employment ratio in the Mixed-STAR models and the Residual-STAR 

models.  



 

Because wildfires are significantly positive spatio-temporal auto-correlated, STAR 

models are incorporated into the analysis. As found in the regressions, nearby wildfires and 

recent wildfires have significantly positive effects. Therefore, wildfire management 

agencies should be more alert when experiencing a recent “bad” year or being surrounded 

by “hot spots”. Although the STAR models may have over-estimated the residuals’ 

temporal autocorrelation, they successfully removed spatial dependence between 

residuals.  

Overall, our analysis makes it possible that wildfire mechanisms are well 

understood.  

ii. Forecast Wildfire Risks 

Substantial analysis has been focused on how wildfires originated and how physical and 

social factors affect wildfires within a same period. The majority of wildfire risks can be 

explained by those models, and appropriate forest management policy implications have 

been proposed. However, another even more important question arises, whether wildfire 

risks can be predicted. If so, precautious advice on wildfires preventions can be offered, 

and more importantly, a fair insurance scheme can be designed.  

For most agricultural insurance contracts such as the all perils output insurance 

contract, farmers sign the contracts at the beginning of each calendar year, and the 

insurance covers the subsequent whole year. It is reasonable to assume a same scenario 

for the wildfire insurance contract. At the beginning of each year, wildfire occurrences, 

environmental conditions and socio-economic statistics of the past year available, the tasks 

is to estimate the next year’s wildfires based on those known information. To predict the 

future wildfires, the following models are used. 

 

Forecast Annual Wildfire Count 



 

In Table 6 all the mentioned forecast models from the section 1.2 are applied when 

the dependent is annual wildfire count. Although all the independent variables used are 

lags, the parameter estimations for most of them are still significantly desirable.  

First of all, the scale factors, forestland size and population, are always significantly 

positive.  Secondly, the forestry structure matters in predicting wildfires. Private share is 

significant in worsening the next year’s wildfire count, also with the biggest elasticity. The 

oak / gum / cypress forestland, with significant negative coefficient, can reduce the future 

wildfires. However, neither the oak / pine forestland & oak / hickory forestland group nor 

the longleaf / slash pine forestland & loblolly / shortleaf pine forestland group has a 

consistent effect.  

In these prediction models weather conditions behave differently from the current 

models. Despite the fact that the HDD index is always significantly negative as expected, 

the coefficient of drought index SP12 flips its signs across different models and its 

magnitude varies enormously. One interesting thing to notice is that hurricane now plays a 

negative impact on next year’s wildfire count. This is not counter intuitive, and instead it 

implicitly suggests that the hypothesis of hurricane causing more wildfires right now is true. 

The reason stems from the truth that the hurricane rarely happens: a surge of hurricane 

incidences in the past year usually means no chance of hurricane strikes in the coming year. 

In other words, the hurricanes are temporally negatively correlated. Therefore, an increase 

of hurricanes in the current year implies a decrease of hurricanes next year, and 

consequently results in a decrease of wildfires. Moreover, many wildfire agencies have 

claimed that trees knocked down by the hurricanes may cause wildfires later on. Hence 

trees removal actions are always taken immediately after hurricanes and the local 

government usually adds stricter constraints on the wildfire uses such as prescribed fires 



 

permissions. Those posterior disastrous steps are likely to put off the wildfire risk in the 

following year.  

The employment ratio, just like it did in the chapter 5, always has a significantly 

negative coefficient except in the Residuals-STAR model (column 6.f). 

According to the elasticities values of the explanatory variables in the Poisson 

model and the Negative-Binomial model, none of the independents is elastic and the 

forestland size and the private share are most elastic. 

The temporal dependence parameter 𝜌𝑡  is significantly positive in all the scenarios, 

which confirms the preliminary analysis. However, the spatial dependence 𝜌𝑠  is negative in 

the Mixed-ST model (column 6.b) and Pure-ST model (column 6.c). Since the spatial 

parameter in these two scenarios is modeled as the impact from the lagged neighboring 

wildfires in these two models, the negative signs and the relatively small values suggests 

that this impact is more likely to be indirect. In contrast, the direct spatial impact from 

neighboring wildfires in the same year (column 6.d, 6.e & 6.f) is always significantly positive. 

The model fitness is good enough, with the R-square value of 0.5-0.6, when the 

spatial-temporal structure is incorprated. However, the R-square values in Table 6 are 

smaller than those explanatory models in chapter 5 in every corresponding model. This is 

not surprising because all the independent variables in this part are observations from the 

lagged year. Those lagged explanatory variables can’t explain wildfires as comprehensively 

as the contemporaneous explanatory variables. 

According to the three rules of thumb, multi-collinearity does not exist in Table 6. 

Moreover, the spatial and temporal autocorrelation of the regression residuals is checked 

using Moran’s I index and Geary’s c index. As long as the STAR models are not used, the 

positive spatial autocorrelation is strong, even in the Pure-ST and Mixed-ST models 

(column 6.b & 6.c). This suggests that only modeling the dependence between lagged 



 

neighbors’ wildfires and current wildfires can’t solve the spatial autocorrelation problem. 

However, the STAR models (column 6.d, 6.e, 6.f) have residuals tend to be more negatively 

spatially auto-correlated. In the view of the DW test, the positive temporal autocorrelation 

is strong in the Pooled regressions (column 6.a). After the spatial-temporal dependence 

structure is applied, the results of BG test (column 6.b-f) indicate that the temporal auto-

correlation is almost solved.  

Finally, As long as the forecasts for the dependent variables can be derived, it is 

necessary to do an out-of sample-check. This database has the records of wildfires from 

1981 to 2005. The parameter vector 𝛽 is estimated using the data of 1981 to 2004, and 

with this estimate the observations of dependent variable in 2005 can be forecasted. 

Therefore, the sum of the squared differences between forecasts and observed values 

measures the forecast power to predict the wildfires in 2005, which is reported in the row 

labeled with “check up: 2005”. In a similar way, after the parameter vector is estimated by 

using the 1981-2003 data, another out-of sample check can be performed with the year 

2004’s observations. The results are reported in the row labeled with “check up: 2004”. 

These two out-of-sample-checks will be performed in all the prediction models. The out of 

sample checks suggest the Pure-STAR model (column 6.d) with the forecast (1.61)  bring in 

the best prediction of the year 2005, and the Negative-Binomial model (column 6.a)  has 

the best prediction of the year 2004. This is a little surprising, but may be due to the 

idiosyncratic data structure in the forecasted year. 

Overall, the independents behave closely like they did in chapter 5, because all 

those factors fluctuate merely from year to year.  Hurricanes variable is now always 

significant with a negative sign. Because the ST models didn’t model spatial dependence 

directly, in this case the results of STAR models are more favorable. 

 



 

Forecast Annual Wildfire Count with Natural Logarithm Transformation 

Due to the fact that the distribution of the logarithm of wildfire counts looks much likely to 

be normal, the trans-log form of wildfire counts is chosen to be the dependent variable. 

Moreover, since this is not a count data, the Poisson Model and Negative-Binomial model 

are dropped in this part. 

From the results, we found similar conclusions with the former segment. The scale 

factors are significantly positive, and the employment ratio significantly decreases next 

year’s wildfire count except in the Residuals-STAR model (column 7.f).  Among the forestry 

conditions, the share of privately owned forestland has a significantly positive impact and 

the share of oak / gum / cypress forestland group has a significantly negative impact on the 

wildfires. Somehow the impacts by the group of longleaf / slash pine forestland & loblolly / 

shortleaf pine forestland and the group of oak / pine forestland & oak / hickory forestland 

are ambiguous.  As weather conditions, analogous to the results in Table 6, in Table 7 the 

coefficient of HDD index and hurricane are significantly negative while the coefficient of 

Drought Index SP12 is unstable. Employment ratio can significantly decrease wildfires, 

except in the Residual-STAR model (column 7.f). The multi-collinearity problem exists if the 

spatial-temporal dependence model is applied. It is because that the lagged independents 

must have a strong linear relation with the lagged dependent, as we found in chapter 5. 

After the dependent is taken a logarithm of, the model fitness is improved 

compared with Table 6, though not as well as the current analysis models (Table 4). Again, 

spatial autocorrelation can only be eliminated after STAR models (column 7.d, 7.e & 7.f) 

are imposed. In the ST models (column 7.b & 7.c), the spatial dependence parameter 𝜌𝑠  is 

not stable and the residuals are still positively spatially auto-correlated. The positively 

temporal autocorrelation is diminished after the spatio-temporal structure is applied 



 

(column7.b-f), but may have been over-estimated by the use of 𝜌𝑡  because the residuals in 

those models tend to be negatively temporal correlated (BG test). 

The out-of-sample-checks suggest that the Poisson model (column7.a) and the 

estimator (1.61)  in Pure-STAR model (column 7.d) have the best forecasts for the year 

2004 and 2005 respectively, but this may be solely due to the data idiosyncratic attributes 

in these two years. 

 

Forecast Annual Burned Acreage with Natural Logarithm Transformation 

All the conclusions drawn from Table 8 are exactly same as in Table 7 except two forestry 

conditions. Figure 5 shows that the logarithm of burned acreage is more appropriate to use 

as the dependent variable, and the same models as in Table 7 are applied. The share of the 

oak / pine forestland & oak / hickory forestland group now consistently decreases the next 

year’s burned acreage. Similar to what we found in chapter 5, the oak / gum / cypress 

forestland helps to enhance the future annual burned acreage significantly. 

The out of sample check indicate that Poisson model (column 8.a) and the 

estimator (1.61)  in Pure-STAR model (column 8.e) provides the best forecasts of 2004 and 

2005 respectively in this case. 

 

Forecast the Logarithm of Wildfire Count Per Acre 

To predict the density of wildfire frequency, the logarithm of wildfire count per acre is 

adopted as the dependent in view of the fact that the tans-log form is close to the normal 

distribution. 

Most results in Table 9 are similar to those in Table 6, which is used to predict the 

logarithm of wildfire count. However, several things need to pay attention. The oak / pine 



 

forestland & oak / hickory forestland group now consistently decreases the next year’s 

wildfire frequency density, while it didn’t in Table 7. Beside the SP12 index, now the HDD 

index is inconsistent on how to affect the wildfire frequency density. The forest ratio has a 

negative impact on the wildfire density and the reason for the coefficient to be negative is 

as same as that in chapter 5. That is, the more forestland one county has, the lower chance 

each acre gets burned. The model fitness is fairly high, with the R-square of 0.6-0.8. 

The out of sample check shows that the Poisson model (column 9.a) and the 

estimator (1.61)  in Pure-STAR model (column 9.d) have the best forecasts for 2004 and 

2005 respectively. 

 

Forecast the Logarithm of Annual Burned Ratio 

At last, the burned ratio is studied, which is the main concern of our interest. If the future 

burned ratio could be predicted appropriately, a method to design an actuarially fair 

wildfire risk insurance scheme is established. 

Except that the multi-collinearity problem is not severe at all in this part, the results 

in Table 10 are similar with Table 8. The out-of-sample-checks suggest the best forecasts 

for 2004 and 2005 are provided by the Poisson model (column 10.a) and the estimator 

(1.61)  in the Pure-STAR model (column 10.d) respectively. Since the R-square is as good as 

at least 0.6 across the models, it provides a reliable forecast method after all. 

 

Conclusion on the Prediction Analysis 

In this section several statistical models are adopted to predict future wildfires. The 

underlying idea is to regress current wildfires on the lagged explanatory variables. If the 



 

results are good enough, current information can be used to forecast next year’s wildfire 

risks. 

In the view of model fitness, the logarithm transformation is indeed helpful. In the 

regressions, most explanatory variables have significant impacts on future wildfires. 

Moreover, most of the coefficients of the independents have same signs as in chapter 5, 

because forestry conditions, socio-economic status and weather factors don’t change a lot 

from year to year. 

The forestland size and population always significantly increase wildfires, but the 

forestland ratio significantly decreases wildfire densities. Among forestry conditions, the 

private share of forestland has a positive impact on wildfires. The oak / gum / cypress 

forestland can reduce wildfire frequency as well as increase wildfire intensity.  

As a weather condition, a high HDD index, which is equivalent to a cool year, can 

significantly decrease the next year’s wildfires, and an outbreak of hurricane implies a low 

wildfire risk next year. The employment ratio can significantly reduce wildfires except in 

the Residuals-STAR model. 

The fitness of this model is substantially well although sometimes the multi-

collinearity problem exists. The spatio-temporal models alleviated the positive temporal 

autocorrelation of the residuals. But they may also over have emphasized the temporal 

dependence so that the residuals are inclined to be negatively temporally auto-correlated. 

The ST models and STAR models have incorporated the spatial dependence in different 

ways. The ST models modeled spatial dependence 𝜌𝑠  as the dependence between lagged 

neighbors’ wildfires and the current wildfires. Meanwhile, the STAR models modeled took 

the spatial dependence 𝜌𝑠  as the dependence between counties in the same period. The 

results suggest that 𝜌𝑠  in the ST model is not stable and the residuals are still positively 



 

spatial auto-correlated. Therefore, the spatial dependence between lagged neighbors’ 

wildfire and current wildfires is very likely to be indirect and the STAR models are preferred. 

The out-of-sample-checks for the year 2004’s wildfires and the year 2005’s wildfires 

didn’t provide a universally best forecast estimator, most likely due to the idiosyncrasy of 

the observations in each year. 

4. Concluding Remarks 

In this chapter, wildfires’ behavior is studied and several econometric models are applied 

to explain wildfire mechanism and to predict wildfire risks.  Wildfire causes have been 

analyzed when forestry conditions, socio-economic factors and weather are taken into 

consideration. More importantly, it is found that wildfires are both spatial and temporal 

auto-correlated. 

With the wildfire data in the Florida state, several models, including pooled 

regressions such as OLS and Poisson and Negative Binomial models and spatio-temporal 

autoregressive models are used. In section 1.3 how those explanatory variables influence 

the wildfires in the same year are analyzed. In order to do forecasts, the lagged 

explanatory variables are adopted to explain the current wildfires.  

In most cases, the independent variables are influential and the spatio-temporal 

auto-regressive structure is needed. Generally, the influences of most independent 

variables are identified and found to be significant, i.e. the oak / gum / cypress forestland 

decreases the wildfire frequency as well as increases the intensity. It is also verified that 

hurricane strikes increase wildfires in the same calendar year, but significantly decreases 

wildfire risks in the subsequent year. Therefore, a number of forestry management policy 

suggestions and precautious actions are proposed. 



 

Though sometimes the multi-collinearty problem exists, the overall fitness of the 

models suggests that those models are sufficiently well to explain and forecast the 

wildfires.  

Meanwhile, cross sample validation verifies that our method can forecast wildfire 

risks adequately well. Since our approach does not incorporate any fixed-effect indicator or 

trend as in the panel data analysis (Prestemon et al. 2002), it offers a universal tool to 

evaluate and predict wildfire risks. Hence, given environmental information of a location, a 

corresponding actuarially fair insurance rate can be calculated.  

However, as we found in the spatial-temporal tests for the residuals and out of 

sample checks, the idiosyncratic characteristic of the data raises a challenge to find a 

universally perfect model. Therefore, the robustness of the theory needs to be further 

looked into. 

In this chapter, wildfire risks are calibrated and an insurance plan is designed by 

measuring the burned ratio. However, one potential problem arises from the theoretical 

assumption that each wildfire will cause a total loss. In reality, the loss ratio is least likely to 

be homogeneous. One solution is to figure out the loss density distribution associated with 

the wildfire intensity. As long as both of these two factors can be measured accurately, a 

perfectly actuarial fair wildfire insurance scheme should be executed.  
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Figure 1.A. Causes: 1=lightning; 2=campfire; 3=cigarette; 4=debris burning; 5=incendiary/arson; 

6=equipment; 7=railroad; 8=children; 9=unknown; 10=misc 

 

Figure 1.B. Fueltype: 1=palmetto-gallberry; 2=dense pine (fire in crown); 3=swamp; 4=blowy leaf (eg. 

turkey oak); 5=grassy fuels; 6=muck (organic soils); 7=other 

Figure 1. Wildfires Decomposition by different causes and fuel types 
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Table 1. Definition and statistics of variables 

Variable Definition N Mean Std. Dev. 

Dependent Variables 

Wildfire count Yearly wildfire count in each county 1675 77.7665672 67.52843 

Log(wildfire 
count) 

Log of Yearly wildfire count in each county 1675 4.027236 0.84778 

Log(wildfire  count 
per acre) 

Log(wildfire incidence per acre of forestland in 
each county)  

1675 -8.11495 1.03162 

Burned acreage Annual burned acreage in each county 1675 2977.11869 11471 

Log(burned 
acreage) 

Log(Annual burned acreage in each county) 1675 6.517001 1.61070 

Log (burned ratio) Log (Annual burned acreage in each county/ 
total acreage of forestland in each county) 

1675 -5.62518 1.87544 

Independent variables 

Forestland 
(in 10,000 acres)  1          

Size of forestland in each county (in 10,000 
acres) 

1742 2.458959 1.54222 

Log(forestland)  1  Log(size of forestland  in each county, acres) 1742 12.14218 0.83690 

Forestland ratio Size of forestland/ size of the county 1742 0.516821 0.28138 

Private owned 
share of 
forestland       

Privately owned forestland share of total 
forestland in the county 

1742 0.743458 0.25859 

longleaf / slash 
pine & loblolly / 
shortleaf pine 
share 

Aggregate shares of longleaf / slash pine group 
and loblolly / shortleaf pine group of total 
forestland in the county 

1742 0.414437 0.18408 

Oak / pine & oak / 
hickory share 

Aggregate shares of oak / pine group and oak / 
hickory group of the total forestland in the 
county 

1742 0.207606 0.12438 

Oak / gum / 
cypress share 

Share of Oak / gum / cypress group of the total 
forestland in the county 

1742 0.220949 0.12413 

Daily average of 
HDD Index  1              

Total of HDD index for a year divided by 365 1742 2.792059 1.42474 

December SP12 
index             

Probability of observing a given amount of 
precipitation in this year 

1742 0.253104 0.97988 

Hurricane 
incidences 

Annual hurricane incidences in each county 1742 0.181975 0.47771 

Population (in 
10,000)   

Size of population (in 10,000 heads) 1742 2.074341 3.53070 

Log(population)  1 Log( population in heads) 1742 11.19606 1.47601 

Log(population 
density) 

Log(population in heads/total forestland size in 
acres) 

1742 -1.86473 1.35473 

Employment 
ratio 2          

Employed workers/total population size 1742 0.426678 0.11656 

 1 We divided population and forestland size by 10,000 and sum of HDD by 365 so as to avoid the case that coefficients are too small 

(less than 0.000001) to repoart, but we use original measurement when we take natural logarithm of them.  

 2 Instead of the traditional definition which is percentage of total workforce who are unemployed and are looking for a paid job, 

employment rate here is defined as employed workers divided by total population. 

 

 

http://www.businessdictionary.com/definition/percentage.html
http://www.businessdictionary.com/definition/workforce.html
http://www.businessdictionary.com/definition/unemployed.html
http://www.investorwords.com/3569/paid.html
http://www.businessdictionary.com/definition/job.html


 

 

Figure 2. Wildfire counts in 4 neighboring counties 
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Figure 3. Florida wildfire counts in 6 selected years 

 

 

 



 

Table 2: Spatial autocorrelation tests with P values for annual wildfire count 

Year Moran’s 𝑰 index - P value Geary’s 𝒄 index-P value 

1981 0.007007  0.366366 
1982 0.2672673  0.8558559 
1983 0.6256256   0.965966 
1984 0.1621622  0.9309309 
1985 0.004004  0.7717718 
1986 0.1201201  0.6936937 
1987 0.041041  0.3453453 
1988 0.043043  0.6866867 
1989 0   0.034034 
1990 0.029029  0.6756757 
1991 0.004004  0.2282282 
1992 0.025025  0.4824825 
1993 0.001001   0.027027 
1994 0  0.1261261 
1995 0.004004  0.1871872 
1996 0.049049 0.3793794 
1997 0.005005  0.04004 
1998 0   0.016016 
1999 0.029029  0.2672673 
2000 0.001001  0.0540541 
2001 0.032032  0.5855856 
2002 0  0.0800801 
2003 0.016016  0.1511512 
2004 0.003003  0.0610611 
2005 0.049049  0.3493493 

 

 

Table 3. Spatial and temporal autocorrelation test 

Dependent variable Fire count Burned 
acreage 

Log( annual 
count) 

Log(acre
age) 

Log(Fires 
per acre) 

Log(Burne
d ratio) 

 
 
 
 

Moran 

 

Positive 

21*        

21**        

12*** 

23*        

20**        

14*** 

21*        

21**        

12*** 

23*        

20**        

14*** 

25*        

25**        

24***        

22*        

20**        

16***        

 

Negative 

0*         

0**         

0*** 

0*         

0**         

0*** 

0*         

0**         

0*** 

0*         

0**         

0*** 

0*         

0**         

0*** 

0*         

0**         

0*** 

Years 25 

 
 
 
 

Geary 

 

Positive 

7*         

4**         

0*** 

13*         

5**         

1*** 

7*         

4**         

0*** 

13*         

5**         

1*** 

25*        

24**        

22*** 

12*         

9**         

5*** 

 

Negative 

2*         

1**         

0*** 

0*         

0**         

0*** 

2*         

1**         

0*** 

0*         

0**         

0*** 

0*         

0**         

0*** 

0*         

0**         

0*** 

Years 25 

 
 
 
 

DW 

 

Positive 

63*        

56**        

37***         

32*        

23**         

9***         

60*        

53**        

41***         

37*        

28**        

11***         

59*        

53**        

44***         

36*        

31**        

15***       

 

Negative 

0*         

0**         

0*** 

0*         

0**         

0*** 

0*         

0**         

0*** 

1*         

0**         

0*** 

0*         

0**         

0*** 

1*         

0**         

0*** 

Counties 67 

Notes: Single (*), double (**), and triple (***) denote significance at 0.10, 0.05, and 0.01 levels, respectively. 



 

 

4.A 

 

4.B 

Figure 4. Distributions of wildfire count and logarithm(wildfire count)  
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Table 3. Different regression models for wildfire count 

Table (3.a) (3.b) (3.c) (3.d) 

Model OLS Model Poisson Model Negative Binomial 
Model 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝒙𝒕𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕 − 𝒙𝒕𝜷
=  𝝆𝒔𝒘𝒔

+ 𝝆𝒕𝒘𝒕 (𝒚𝒕
− 𝒙𝒕𝜷) 

Parameter Estimate 
(Std. Error) 

Estimate 
(Std. 
Error) 

𝐄𝐥𝐚𝐬𝐭𝐢𝐜𝐢𝐭𝐲𝟏 Estimate 
(Std. 
Error) 

𝐄𝐥𝐚𝐬𝐭𝐢𝐜𝐢𝐭𝐲𝟏 Estimate 
(Std. 
Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

𝛒𝐭             0.53002*** 
(0.01432) 

0.48721*** 
(0.01548) 

0.533683*** 
(0.00807) 

𝛒𝐬            0.40934*** 
(0.02448) 

0.32610*** 
(0.02652) 

0.400541*** 
(0.0197) 

Intercept 25.84599*** 
(9.85694)       

3.6282*** 
(0.0195)        

 3.7893*** 
(0.1097) 

 -0.80831 
(2.14588) 

-13.79226** 
(6.70002) 

-25.9446 
(31.8432) 

Forestland 
(in 10,000 acres)         

19.20304*** 
(1.16463) 

0.2098*** 
(0.0020)      

0.5155401 0.2314*** 
(0.0138) 

0.5687887  6.79788*** 
(0.82161) 

18.30473*** 
(1.5536) 

Private owned 
share of 
forestland       

69.96086*** 
(8.92214) 

0.8866*** 
(0.0185) 

0.6566387 0.8628*** 
(0.1076) 

0.6400208  9.62310* 
(5.74662) 

19.13293* 
(13.8456 

longleaf / slash 
pine & loblolly / 
shortleaf pine 
share 

-29.10498** 
(14.06510) 

-0.3945*** 
(0.0275) 

-0.161534 -0.4032** 
(0.1713) 

-0.1659  -5.41713 
(9.12389) 

-48.3589* 
(25.5486) 

Oak / pine & oak / 
hickory share 

2.86475 
(13.57592) 

0.0772*** 
(0.0265) 

0.0170621 0.0109  
(0.1546) 

0.0026999  19.84621** 
(8.67917) 

-26.1469 
(26.8554) 

Oak / gum / 
cypress share 

-6.24797 
(15.04022)       

-0.0861*** 
(0.0298) 

-0.018092 -0.2895* 
(0.1750) 

-0.063647  -10.95672 
(9.54568) 

-69.6704**** 
(26.9592) 

Daily average of 
HDD Index             

-11.00835*** 
(1.61592) 

-0.1106*** 
(0.0032) 

-0.3091 -0.1502*** 
(0.0182) 

-0.419518  -0.53304 
(1.15255) 

12.14503*** 
(1.9405) 

December SP12 
index             

-23.4624*** 
(1.45450) 

-0.2797*** 
(0.0027) 

-0.070521 -0.2914*** 
(0.0165) 

-0.073739  -9.91210*** 
(1.05098) 

-14.3669*** 
(1.0198) 

Hurricane 
incidences 

2.06111 
(6.80376) 

0.0327*** 
(0.0135) 

-0.001386 0.0248  
(0.0792) 

-0.000087  -2.47853 
(4.22363) 

-4.29628 
(4.8533) 

Population (in 
10,000)   

5.19468*** 
(0.59446)       

0.0625*** 
(0.0010) 

0.129779 0.0574*** 
(0.0076) 

0.119019  1.99316*** 
(0.38390) 

4.351747*** 
(0.6889) 

Employment ratio        -20.23241 
(14.33557)      

-0.2806*** 
(0.0280) 

-0.119223 -0.3148* 
(0.1719) 

-0.134162  -0.46723 
(8.98291) 

5.987855*** 
(1.2623) 

Scale/Dispersion  1.0000  0.4195  
(0.0143) 

    

Min. Tolerance 0.30090     0.94309 0.28191  

Max. VIF 3.32338     1.06035 3.54722  

Max. Con. Index 21.06790     4.74331 24.48811  

R-Square      0.2640     0.5622 0.6105 0.6556 

 
 
 
Moran 

 
Pos. 

21*         
15**         
11*** 

19*         
16**         
12*** 

 20*         
18**         
15*** 

 2*          
2**          
2*** 

5*          
4**          
3***         

2*          
2**          
2***         

 
Neg. 

0*          
0**          
0*** 

0*          
0**          
0*** 

 0* 
0**          
0*** 

 15*         
15**          
8*** 

6*          
5**          
2*** 

10*          
5**          
4*** 

 
 
 
Geary 

 
Pos. 

8*          
4**          
2*** 

10*          
6**          
2*** 

 10*          
4**          
2*** 

 3*          
2**          
1*** 

4*          
2**          
0*** 

1*          
1**          
0***         

 
Neg. 

2*          
2**          
0*** 

2*          
2**          
0*** 

 2*          
1**          
0*** 

 15*         
14**         
11*** 

11*          
8**          
3*** 

10*          
8**          
4*** 

years 25 25  25  24 24 24 

 
 
 
DW 

 
Pos. 

41*         
33**         
19***         

42*         
36**         
22***         

 41*         
34**         
21***         

      

 
Neg. 

0*          
0**          
0*** 

0*          
0**          
0*** 

 1*          
0**          
0*** 

    

 
 
BG 

 
Pos. 

10*          
7**          
3*** 

12*          
9**          
4*** 

 12*          
9**          
4*** 

 2*          
1**          
0** 

3*          
2**          
0*** 

2*          
0**          
0*** 

 
Neg. 

0*          
0**          
0*** 

1*          
1**          
0*** 

 1*          
1**          
0*** 

 4*          
2**          
0*** 

3*          
1**          
0*** 

9*          
4**          
1*** 

counties 67 67  67  67 67 67 

Notes: Single (*), double (**), and triple (***) denote significance at 0.10, 0.05, and 0.01 levels, respectively. 

 1: Elasticities are evaluated at the mean values of explanatory variables. For both Poisson and Negative binomial models, the elasticity is 

given by 𝑋 𝑘𝛽𝑘 . 

 



 

 

5.A 

 

5.B. 

Figure 5. Percentage distributions of annual burned acreage and its logarithm 
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Table 4. Different Models to regress logarithms of wildfire count and burned acreage 

Table  (4.a) (4.b) (4.c) (4.d) 

Model 𝒚𝒕 = 𝒙𝒕𝜷 𝒚𝒕 = 𝝆𝒔𝒘𝒔𝒚𝒕 + 𝝆𝒕𝒚𝒕−𝟏 𝒚𝒕
= 𝒙𝒕𝜷+ 𝝆𝒔𝒘𝒔𝒚𝒕 + 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕 − 𝒙𝒕𝜷
=  𝝆𝒔𝒘𝒔 + 𝝆𝒕𝒘𝒕 (𝒚𝒕
− 𝒙𝒕𝜷) 

Dependent 
Variable 

Log 
(Annual 
Wildfire 
Count) 

Log(Annua
l burned 
acreage) 

Log 
(Annual 
Wildfire 
Count) 

Log(Annua
l burned 
acreage) 

Log 
(Annual 
Wildfire 
Count) 

Log(Annua
l burned 
acreage) 

Log 
(Annual 
Wildfire 
Count) 

Log(Annua
l burned 
acreage) 

Parameter Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

𝛒𝐭   0.67268*** 
(0.01532) 

0.47445*** 
(0.01914) 

0.57495*** 
(0.01817) 

0.40473*** 
(0.02144) 

0.623657*** 
(0.0153) 

0.431506*** 
(0.0143) 

𝛒𝐬   0.38869*** 
(0.02271) 

0.43309*** 
(0.02426) 

0.25946*** 
(0.02308) 

0.36484*** 
(0.03174) 

0.384161*** 
(0.0202) 

0.526584*** 
(0.0264) 

Intercept -6.40046*** 
(0.34207)     

-3.66092*** 
(0.71693) 

-0.37525*** 
(0.09476) 

0.30288* 
(0.17697)        

-2.97406*** 
(0.29107) 

-4.06166*** 
(0.67154) 

-27.9071  
(47.4404) 

4.852337 
(11.5053) 

Log(Forestland
) 
 

0.57919*** 
(0.02360) 

0.39003*** 
(0.04946) 

  0.19174*** 
(0.02101) 

0.17900*** 
(0.04501) 

0.58103*** 
(0.0532) 

0.468562***  
(0.0730) 

Private owned 
share of 
forestland       

1.37143*** 
(0.09349) 

1.12269*** 
(0.19594) 

  0.31326*** 
(0.07392) 

0.38185** 
(0.17508) 

0.389999** 
(0.1732) 

0.445987  
(0.3336) 

Longleaf / slash 
pine & loblolly / 
shortleaf pine 
share 

-0.42725*** 
(0.14471) 

-0.31985  
(0.30330) 

  -0.16994  
(0.10936) 

0.19668  
(0.27478) 

0.08652  
 (0.3351) 

0.367765  
(0.5651) 

Oak / pine & 
oak / hickory 
share 

-0.91321*** 
(0.14653) 

-2.71642*** 
(0.30710 

  -0.14007 
(0.10992) 

-0.83585*** 
(0.27952) 

-0.46911  
(0.3933) 

-1.71897** 
(0.7247) 

Oak / gum / 
cypress share 

-0.60064*** 
(0.16042) 

0.88070*** 
(0.33623) 

  -0.20714* 
(0.11908) 

0.58914** 
(0.29881) 

-0.30745  
(0.3426 

1.132981* 
(0.5969) 

Daily average 
of HDD Index             

-0.14725*** 
(0.01783) 

-0.21694*** 
(0.03736) 

  -0.0008739  
(0.01481) 

-0.0008099  
(0.03680) 

0.095016*** 
(0.0223) 

0.038008 
(0.0720) 

December SP12 
index             

-0.29373*** 
(0.01557)         

-0.45961*** 
(0.03263) 

  -0.14543*** 
(0.01312) 

-0.20425*** 
(0.03209) 

-0.17867*** 
(0.0135) 

-0.21917*** 
(0.0409) 

Hurricane 
incidences 

0.07203  
(0.07284) 

-0.04577  
(0.15267) 

  0.00225  
(0.05295) 

-0.21100 
(0.13276) 

-0.02379 
(0.0463) 

-0.22526* 
(0.1362) 

Log 
(Population) 

0.37148*** 
(0.01609) 

0.64565*** 
(0.03373) 

  0.12768*** 
(0.01356) 

0.33380*** 
(0.03282) 

0.258266*** 
(0.0255) 

0.501272*** 
(0.0409) 

Employment 
ratio        

-1.87775*** 
(0.17059) 

-3.27142*** 
(0.35754) 

  -0.51562*** 
(0.12988) 

-1.63149*** 
(0.32104) 

0.308647*** 
(0.0342) 

0.589009*** 
(0.0582) 

Min. Tolerance 0.32577 0.32577 0.88298 0.89211 0.28705 0.29166   

Max. VIF 3.06963 3.06963 1.13253 1.12093 3.48366 3.42868   

Max. Con. I. 82.08846 82.08846 18.24734         13.61331         109.40284 95.41638   

R-Square      0.4648 0.3487 0.6588 0.4610 0.7044 0.4968 0.7384 0.5091 

 
 
 
Moran 

 
Pos. 

13*          
9**          
4*** 

14*         
10**          
5*** 

1*          
1**          
0*** 

1*          
1**          
0*** 

5*          
2**          
1***         

2*          
1**          
0*** 

1*          
1**          
0***         

0*          
0**          
0***        

 
Neg. 

1*          
1**          
0*** 

2*          
2**          
0*** 

7*          
5**          
0 

12*          
6**          
1*** 

2*          
2**          
1*** 

9*          
5**          
2*** 

8*          
5**          
2*** 

15*         
13**          
6*** 

 
 
 
Geary 

 
Pos. 

9*          
8**          
6*** 

18*         
16**         
12*** 

1*          
1**          
1*** 

1*          
1**          
1*** 

8*          
5**          
2*** 

4*          
2**          
1*** 

4*          
3**          
0*** 

1*          
1**          
0*** 

 
Neg. 

1*          
1**          
0*** 

0*          
0**          
0*** 

3*          
2**          
1***         

3*          
1**          
0***        

2*          
1**          
1*** 

2*          
0**          
0*** 

2*          
2**          
2*** 

5*          
3**          
0*** 

year 25 25 24 24 24 24 24 24 

 
 
 
 
DW 

 
Pos. 

44*         
38**        
24***         

13*         
10**          
3*** 

           

 
Neg. 

1*          
1**         
1*** 

4*           
3**           
2*** 

      

 
 
 
 
BG 

 
Pos. 

26*         
19**          
9*** 

3*          
2**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

 
Neg. 

1*          
1**          
1*** 

5*          
3**          
1*** 

16*          
5**          
1*** 

24*         
14**          
7*** 

10*          
2**          
0*** 

22*         
14**          
6*** 

26*         
15**          
1*** 

25*         
16**          
7*** 

counties 67 67 67 67 67 67 67 67 

Notes: Single (*), double (**), and triple (***) denote significance at 0.10, 0.05, and 0.01 levels, respectively. 

 



 

 

6.A 

 

6.B 

Figure 6. Percentage distributions of annual wildfire density and its logarithm 
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7.A 

 

7.B 

Figure 7. Percentage distributions of annual wildfire burned ratio and its logarithm 
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Table 5. Different Models to regress logarithms of fire count per acre and burned ratio 

Table  (5.a) (5.b) (5.c) (5.d) 

Model 𝒚𝒕 = 𝒙𝒕𝜷 𝒚𝒕 = 𝝆𝒔𝒘𝒔𝒚𝒕 + 𝝆𝒕𝒚𝒕−𝟏 𝒚𝒕
= 𝒙𝒕𝜷+ 𝝆𝒔𝒘𝒔𝒚𝒕 + 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕 − 𝒙𝒕𝜷
=  𝝆𝒔𝒘𝒔 + 𝝆𝒕𝒘𝒕 (𝒚𝒕
− 𝒙𝒕𝜷) 

Dependent 
Variable 

Log 
(Wildfire 
count per 
acre of 
forestland) 

Log 
(Burned 
ratio) 

Log 
(Wildfire 
count per 
acre of 
forestland) 

Log 
(Burned 
ratio) 

Log 
(Wildfire 
count per 
acre of 
forestland) 

Log 
(Burned 
ratio) 

Log 
(Wildfire 
count per 
acre of 
forestland) 

Log 
(Burned 
ratio) 

Parameter Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

𝛒𝐭   0.69895*** 
(0.01714) 

0.55717*** 
(0.02125) 

0.53596*** 
(0.01761) 

0.39164*** 
(0.02102) 

0.588656*** 
(0.0167) 

0.411483*** 
(0.0145) 

𝛒𝐬   0.34664*** 
(0.02095) 

0.41311*** 
(0.02538) 

0.25996*** 
(0.02080) 

0.34272*** 
(0.03002) 

0.410631*** 
(0.0238) 

0.5203*** 
(0.0277) 

Intercept -5.82880*** 
(0.10242) 

-1.54386*** 
(0.22329) 

0.33298** 
(0.13769) 

-0.36759*** 
(0.13111) 

-1.01448*** 
(0.17762) 

-0.01525 
(0.22107) 

-4.62167 
(82.5361) 

-6.20862*** 
(1.5124) 

Forestland 
Ratio 
 

-2.62855*** 
(0.10010) 

-4.23759*** 
(0.21822) 

  -1.11324*** 
(0.08579) 

-2.21738*** 
(0.21285) 

-2.68915*** 
(0.2134) 

-4.11477*** 
(0.3792) 

Private owned 
share of 
forestland       

0.95877*** 
(0.08484) 

0.30890* 
(0.18496) 

  0.17490*** 
(0.06721) 

-0.04651 
(0.16536) 

0.317795** 
(0.1473) 

0.101368 
(0.3120) 

Longleaf / slash 
pine & loblolly / 
shortleaf pine 
share 

0.04948 
(0.13904) 

0.47948  
(0.30311) 

  0.00943 
(0.10703) 

0.53092* 
(0.27603) 

0.238136 
(0.3027) 

0.649365 
(0.5203) 

Oak / pine & 
oak / hickory 
share 

-1.13957***  
(0.13577) 

-2.90665*** 
(0.29599) 

  -0.35124*** 
(0.10452) 

-1.13294*** 
(0.27289) 

-0.494 
(0.3193) 

-1.68376*** 
(0.6504) 

Oak / gum / 
cypress share 

-0.86334*** 
(0.13577) 

0.48957  
(0.32331) 

  -0.53171*** 
(0.11318) 

0.13895 
(0.29081)       

-0.59182** 
(0.2995) 

0.989263* 
(0.5470) 

Daily average 
of HDD Index             

-0.86334  
(0.01927) 

0.07042* 
(0.04201) 

  0.12288*** 
(0.01621) 

0.21533*** 
(0.04123) 

0.12955*** 
(0.0233) 

0.171322** 
(0.0762) 

December SP12 
index             

-0.29429*** 
(0.01456) 

-0.46167*** 
(0.03174) 

  -0.15626*** 
(0.01241) 

-0.22945*** 
(0.03144) 

-0.17793*** 
(0.0141) 

-0.21763*** 
(0.0413) 

Hurricane 
incidences 

0.07657  
(0.06810) 

-0.04448 
(0.14846) 

  0.00822 
(0.05065) 

-0.20214 
(0.13058) 

-0.00649 
(0.0466) 

-0.19415 
(0.1336) 

Population 
density 

0.23003*** 
(0.01571) 

0.35223*** 
(0.03424) 

  0.06834*** 
(0.01271) 

0.17157*** 
(0.03169) 

0.109052*** 
(0.0252) 

0.251253*** 
(0.0477) 

Employment 
ratio        

-1.89963*** 
(0.15339) 

-2.92526*** 
(0.33439) 

  -0.52504*** 
(0.12111) 

-1.39226*** 
(0.30357) 

0.118312*** 
(0.0359) 

0.346029*** 
(0.0723) 

Min. Tolerance 0.25481 0.25481 0.59977 0.72632 0.21942 0.21238   

Max. VIF 3.92445 3.92445 1.66732 1.37680 4.55752 4.70848   

Max. Con. 
Index 

24.17543 23.99894 27.73875 8.77367         67.56304 29.46754        

R-Square      0.6839 0.5455 0.7946 0.6155 0.8195 0.6437 0.8290 0.6470 

 
 
 
Moran 

 
Pos. 

11*          
8**          
5*** 

10*          
9**          
4*** 

1*          
0**          
0***         

1*          
0**          
0*** 

5*          
1**          
0*** 

1*          
1**          
0*** 

1*          
1**          
0*** 

0*          
0**          
0***         

 
Neg. 

1*          
0**          
0*** 

2*          
2**          
0*** 

5*          
4**          
2*** 

11*          
5**          
1*** 

6*          
3**          
1*** 

6*          
4**          
3*** 

8*          
5**          
3*** 

17*         
15**          
7*** 

 
 
 
Geary 

 
Pos. 

11*          
9**          
4*** 

17*         
13**         
10*** 

2*          
1**          
0*** 

1*          
1**          
0*** 

6*          
3**          
0*** 

2*          
2**          
1*** 

4*          
2**          
0*** 

1*          
1**          
0*** 

 
Neg. 

1*          
1**          
0*** 

1*          
0**          
0*** 

2*          
2**          
2*** 

3*          
2**          
0*** 

2*          
2**          
2*** 

3*          
1**          
0*** 

5*          
2**          
2*** 

5*          
2**          
1*** 

years 25 25 24 24 24 24 24 24 

 
 
 
DW 

 
Pos. 

39*         
37**         
29*** 

14*          
8**          
4*** 

1*          
1*          
0*         

0*          
0**          
0***         

       

 
Neg. 

1*          
1**          
0*** 

7*          
4**          
1*** 

13*          
5**          
1*** 

26*         
18**          
8*** 

    

 
 
 
BG 

 
Pos. 

30*         
26**         
11*** 

4*          
2**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

1*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

 
Neg. 

1*          
1**          
0*** 

6*          
4**          
0*** 

13*          
3**          
1*** 

24*         
14**          
7*** 

6*          
1**          
0*** 

22*         
12**          
4*** 

23*         
10**          
0*** 

24*         
15**          
7*** 

counties 67 67 67 67 67 67 67 67 

Notes: Single (*), double (**), and triple (***) denote significance at 0.10, 0.05, and 0.01 levels, respectively. 

 

 



 

Table 6. Different models to predict annual count 

Table (6.a) (6.b) (6.c) (6.d) (6.e) (6.f) 

 𝒚𝒕
= 𝒙𝒕−𝟏𝜷 

 
 

Poisson Model 

 
 

Negative Binomial Model 

𝒚𝒕
= 𝒙𝒕−𝟏𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕−𝟏
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕−𝟏
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝒙𝒕−𝟏𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕 − 𝒙𝒕−𝟏𝜷
=  𝝆𝒔𝒘𝒔

+ 𝝆𝒕𝒘𝒕 (𝒚𝒕
− 𝒙𝒕−𝟏𝜷) 

Parameter Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

𝐄𝐥𝐚𝐬𝐭𝐢𝐜𝐢𝐭𝐲𝟏 Estimate 
(Std. Error) 

𝐄𝐥𝐚𝐬𝐭𝐢𝐜𝐢𝐭𝐲𝟏 Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

𝛒𝐭      0.60453*** 
(0.01842) 

0.66624*** 
(0.01719)       

0.53002*** 
(0.01432) 

0.51138*** 
(0.01533) 

0.437214*** 
(0.00718) 

𝛒𝐬      -0.13923*** 
(0.02473) 

-0.20527*** 
(0.02305) 

0.40934*** 
(0.02448) 

0.43408*** 
(0.02365) 

0.500419*** 
(0.0203) 

Intercept 20.92755** 
(10.35073) 

3.6007***        
(0.0196) 

 3.7812*** 
(0.1150) 

 19.22080*** 
(7.15957) 

36.29542*** 
(1.95879) 

-0.80831 
(2.14588) 

-33.0332*** 
(6.48249) 

-7.94793 
(34.2725) 

Lag of 
Forestland 
(in 10,000 acres)         

20.02549*** 
(1.23120) 

0.2196*** 
(0.0020)       

0.5396171 0.2348*** 
(0.0147) 

0.5770473 7.72605*** 
(0.86282) 

  8.06296*** 
(0.78446) 

20.35515*** 
(1.3265) 

Lag of Private 
owned share of 
forestland       

80.15939*** 
(9.44461) 

1.0208*** 
(0.0186) 

0.7652139 1.0205*** 
(0.1126) 

0.7649991 15.29453** 
(6.23272) 

  12.85277** 
(5.72110) 

28.29427** 
(12.1110 

Lag of Longleaf / 
slash pine & 
loblolly / 
shortleaf pine 
share 

-31.95911** 
(14.70106) 

-0.4165*** 
(0.0274) 

-0.172516 -0.6004*** 
(0.1798) 

-0.248659 17.74991* 
(9.68105) 

  28.21510*** 
(8.82986) 

-37.5238 
(22.8597) 

Lag of Oak / pine 
& oak / hickory 
share 

-4.71984 
(14.32984) 

0.0072 
(0.0266) 

0.0014607 -0.2078 
(0.1632) 

-0.042297 27.36288*** 
(9.34320) 

  37.20301*** 
(8.51917 

2.251537 
(25.2867) 

Lag of Oak / gum 
/ cypress share 

-9.41198  
(15.80864) 

-0.1386*** 
(0.0298) 

-0.030829 -0.3526* 
(0.1829) 

-0.078425 5.80155  
(10.26105) 

  -1.70059 
(9.42315) 

-56.4083** 
(22.9999) 

Lag of Daily 
average of HDD 
Index             

-
12.55794*** 
(1.67588) 

-0.1357*** 
(0.0031) 

-0.382 
 

-0.1455*** 
(0.0193) 

-0.409562 -9.27841*** 
(1.10784) 

  -6.88770*** 
(1.02594) 

-3.69993* 
(2.0729) 

Lag of December 
SP12 index             

-9.90406*** 
(1.53949) 

-0.1213*** 
(0.0028) 

-0.023542 -0.1313*** 
(0.0180) 

-0.025482 4.21859*** 
(1.12564) 

  8.20500*** 
(0.96839) 

-0.63636 
(1.4856) 

Lag of Hurricane 
incidences 

-3.44590  
(7.18044) 

-0.0451*** 
(0.0142)       

-0.00148 -0.0696 
(0.0831) 

-0.002286 -2.41062 
(4.56311) 

  -3.13451 
(4.18743) 

-2.46899  
(4.9050) 

Lag of 
Population (in 
10,000)   

5.24713***       
(0.64073 

0.0628*** 
(0.0011) 

0.1273566 0.0563*** 
(0.0083) 

0.1141138 1.77842*** 
(0.42217) 

  2.21017***       
(0.38535) 

4.64926*** 
(0.5877) 

Lag of 
Employment 
ratio        

-22.23841 
(15.33700) 

-0.3010*** 
(0.0286) 

-0.127493 -0.3234* 
(0.1854) 

-0.136978 -15.83370 
(9.82083) 

  -8.27262 
(9.01396) 

6.713863***      
(1.1002) 

Scale/Dispersion  1.0000  0.4738  
(0.0159) 

        

Min. Tolerance 0.30875     0.29432 0.73309 0.94309 0.29792  

Max. VIF 3.23884     3.39764 1.36408 1.06035 3.35658  

Max. Con. Index 20.88127     24.20283 4.45534 4.74331 23.79281  

R-Square      0.1799     0.5486 0.5102 0.5622 0.6199 0.6163 

 
 
 
Moran 

 
Pos. 

16*          
10**          
4***         

19*         
13**          
6*** 

 20*         
16**          
6*** 

 15*         
13**          
7*** 

18*         
16**         
12*** 

2*          
2**          
2*** 

5*          
5**          
4***         

2*          
2**          
0***         

 
Neg. 

0*          
0**          
0*** 

0*          
0**          
0*** 

 0*          
0**          
0*** 

 0*          
0**          
0*** 

0*          
0**          
0*** 

15*         
15**          
8*** 

10*          
9**          
8*** 

20*        
19**         
12*** 

 
 
 
Geary 

 
Pos. 

6*          
4**          
1*** 

6*          
5**          
1*** 

 6*          
5**          
1*** 

 9*          
6**          
5*** 

12*          
9**          
6***         

3*          
2**          
1*** 

5*          
5**          
1*** 

1*          
1**          
0***         

 
Neg. 

2*          
0**          
0*** 

2*          
0**          
0*** 

 2*          
0**          
0*** 

 2*          
1**          
0*** 

0*          
0**          
0*** 

15*         
14**         
11*** 

12*         
11**          
8*** 

19*         
16**          
9*** 

years 25 25  25  24 24 24 24 24 

 
 
 
DW 

 
Pos. 

46*         
37**         
22***       

48*         
38**         
20***         

 47*         
36**         
20***         

           

 
Neg. 

0*          
0**          
0*** 

0*          
0**          
0*** 

 0*          
0**          
0*** 

      

 
 
 
BG 

 
Pos. 

9*          
6**          
4*** 

12*          
5**          
3*** 

 10*          
6**          
3*** 

 3*          
1**          
0*** 

1*          
0**          
0*** 

2*          
1**          
0*** 

5*          
4**          
2*** 

11*          
7**          
1*** 

 
Neg. 

0*          
0**          
0*** 

0*          
0**          
0*** 

 0*          
0**          
0*** 

 2*          
0**          
0*** 

3*          
1**          
0*** 

4*          
2**          
0*** 

4*          
2**          
0*** 

2*          
1**          
0***          

counties 67 67  67  67 67  67 67 

check up (2005) 𝟐 159432.76 164416.41  163712.13  74843.497 58757.096 21521.843 

32841.464 𝟒 
62525.812             

425607.37 𝟒 
44074.975              

483100.7 𝟒 
check up (2004) 𝟑 85523.385 86139.126  84245.262  19533.545 30775.609 72236.266            

362352.85 𝟒 
32984.376             

338786.34 𝟒 
50579.731             

380313.65 𝟒 

Notes: Single (*), double (**), and triple (***) denote significance at 0.10, 0.05, and 0.01 levels, respectively.  

 1: Elasticities are evaluated at the mean values of explanatory variables. For both Poisson and Negative binomial models, the elasticity is given by 𝑋 𝑘𝛽𝑘 . 

 2: Each reported value is the sum of squared forecast errors when we forecast the wildfires of year 2005 using 1981-2004 data.  

 3: Each reported value is the sum of squared forecast errors when we forecast the wildfires of year 2004 using 1981-2003 data.  

 4: Those are got when we include the estimate of residuals in the forecast equation. 

 



 

Table 7. Models to predict logarithm of annual wildfire count in each county 
Table (7.a) (7.b) (7.c) (7.d) (7.e) (7.f) 

 
Models 

𝒚𝒕 = 𝒙𝒕−𝟏𝜷 𝒚𝒕
= 𝒙𝒕−𝟏𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕−𝟏
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕−𝟏
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝒙𝒕−𝟏𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕 − 𝒙𝒕−𝟏𝜷
=  𝝆𝒔𝒘𝒔

+ 𝝆𝒕𝒘𝒕 (𝒚𝒕
− 𝒙𝒕−𝟏𝜷) 

Parameter Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

𝛒𝐭  0.70523*** 
(0.02157) 

0.83936*** 
(0.02068) 

0.67268*** 
(0.01532) 

0.62849*** 
(0.01874) 

0.536464*** 
(0.0153) 

𝛒𝐬  -0.06451* 
(0.02601) 

0.06893*** 
(0.02576) 

0.38869*** 
(0.02271) 

0.37560*** 
(0.02094) 

0.485871*** 
(0.0213) 

Intercept -6.46542***     
(0.36981) 

-1.93481***     
(0.32115) 

-0.80342** 
(0.15146) 

-0.37525*** 
(0.09476) 

-3.24757***     
(0.28487) 

-15.0037* 
(8.2618) 

Lag of 
log(Forestland)         

0.58267*** 
(0.02554) 

0.19261*** 
(0.02231)      

  0.18354*** 
(0.02036) 

0.585121***      
(0.0450) 

Lag of Private 
owned share of 
forestland       

1.48377*** 
(0.10140) 

0.38765*** 
(0.08144) 

  0.21628*** 
(0.07469) 

0.456972** 
(0.1545) 

Lag of Longleaf / 
slash pine & 
loblolly / shortleaf 
pine share 

-0.54242*** 
(0.15523) 

0.05707 
(0.11790) 

  0.15622 
(0.10755) 

0.073747 
(0.2877) 

Lag of Oak / pine 
& oak / hickory 
share 

-1.04412*** 
(0.15898) 

-0.09141 
(0.12133) 

  0.08994 
(0.11071) 

-0.43744 
(0.3462) 

Lag of Oak / gum 
/ cypress share 

-0.68685*** 
(0.17327) 

-0.17194 
(0.13060) 

  -0.07180 
(0.11937) 

-0.22936 
(0.3031) 

Lag of Daily 
average of HDD 
Index             

-0.14491*** 
(0.01901) 

-0.08712*** 
(0.01462) 

  -0.05543*** 
(0.01346) 

0.021564 
(0.0265) 

Lag of December 
SP12 index             

-0.12124*** 
(0.01693) 

0.08981*** 
(0.01475) 

  0.11704*** 
(0.01257) 

-0.01148 
(0.0159) 

Lag of Hurricane 
incidences 

-0.08231 
(0.07895) 

-0.11012* 
(0.05810) 

  -0.11619** 
(0.05310) 

-0.07266* 
(0.0435) 

Lag of  
log (Population)   

0.37157*** 
(0.01747) 

0.10782*** 
(0.01510) 

  0.08869*** 
(0.01384) 

0.258499*** 
(0.0223) 

Lag of 
Employment ratio        

-1.93565*** 
(0.18760) 

-0.60001*** 
(0.14443) 

  -0.35062** 
(0.13228) 

0.303846*** 
(0.0287) 

Min. Tolerance 0.33475 0.30434 0.72119 0.88298 0.30268  

Max. VIF 2.98731 3.28585 1.13253 1.13253 3.30380  

Max. Con. Index 81.77689 108.50138 18.65215 18.24734         106.43400  

R-Square      0.3710 0.6439 0.6028 0.6588 0.7025 0.7061 

 
 
 
Moran 

 
Pos. 

8*          
6**          
2***        

15*         
11**          
7 

17*         
16**         
11***         

1*          
1**          
0*** 

1*          
1**          
1*** 

1*          
0**          
0***         

 
Neg. 

1*          
1**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

7*          
5**          
0 

4*          
3**          
2*** 

14*         
12**          
7*** 

 
 
 
Geary 

 
Pos. 

9*          
7**          
2*** 

17*         
12**          
8*** 

17*         
14**         
11*** 

1*          
1**          
1*** 

4*          
1**          
1***         

1*          
0**          
0*** 

 
Neg. 

1*          
1**          
0*** 

1*          
0**          
0*** 

0*          
0**          
0*** 

3*          
2**          
1***         

3*          
1**          
1*** 

6*          
3**          
2*** 

years 25 24 24 24 24 24 

 
 
 
DW 

 
Pos. 

48*         
46**         
26***         

          

 
Neg. 

0*          
0**          
0*** 

     

 
 
 
BG 

 
Pos. 

26*         
19**          
6*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

 
Neg. 

0*          
0**          
0*** 

8*          
4**          
0*** 

10*          
5**          
0*** 

16*          
5**          
1*** 

17*         
10**          
2*** 

12*          
3**          
0*** 

Counties 67 67 67 67 67 67 

check up (2005) 𝟏 63.263602 35.57923 32.406817 26.424517 

21.214065 𝟑 
34.732176             

56.944448 𝟑 
44.402395             

95.296688 𝟑 

check up (2004) 𝟐 20.571851 11.164984 15.507054 42.692813            

82.499196 𝟑 
26.889703             

65.591233 𝟑 
21.503793             

107.36948 𝟑 

Notes: Single (*), double (**), and triple (***) denote significance at 0.10, 0.05, and 0.01 levels, respectively. 

 1: Each reported value is the sum of squared forecast errors when we forecast the wildfires of year 2005 using 1981-2004 data.  

 2: Each reported value is the sum of squared forecast errors when we forecast the wildfires of year 2004 using 1981-2003 data.  

 3: Those are got when we include the estimate of residuals in the forecast equation. 



 

Table 8. Models to predict the logarithm of annual burned acreage in each county: 

Table (8.a) (8.b) (8.c) (8.d) (8.e) (8.f) 

 
 
Models 

𝒚𝒕 = 𝒙𝒕−𝟏𝜷 𝒚𝒕
= 𝒙𝒕−𝟏𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕−𝟏
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕−𝟏
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝒙𝒕−𝟏𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕 − 𝒙𝒕−𝟏𝜷
=  𝝆𝒔𝒘𝒔

+ 𝝆𝒕𝒘𝒕 (𝒚𝒕
− 𝒙𝒕−𝟏𝜷) 

Parameter Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

𝛒𝐭  0.45774*** 
(0.02430) 

0.57937*** 
(0.02322) 

0.47445*** 
(0.01914) 

0.41602*** 
(0.02193) 

0.41302*** 
(0.0144) 

𝛒𝐬  -0.15002*** 
(0.03444) 

0.01732*** 
(0.02887)        

0.43309*** 
(0.02426) 

0.44233*** 
(0.02990) 

0.548024*** 
(0.0271) 

Intercept -3.50051*** 
(0.74315) 

-0.91785 
(0.72268) 

2.51242*** 
(0.18328) 

0.30288* 
(0.17697)        

-4.81392*** 
(0.66986) 

5.323736 
(12.3817) 

Lag of 
log(Forestland)         

0.37510*** 
(0.05132)      

0.20583*** 
(0.04734) 

  0.20072***      
(0.04464) 

0.470579***      
(0.0717) 

Lag of Private 
owned share of 
forestland       

1.22829*** 
(0.20376) 

0.48311** 
(0.18826) 

  0.39448** 
(0.17762) 

0.503412 
(0.3394) 

Lag of Longleaf / 
slash pine & 
loblolly / shortleaf 
pine share 

-0.53194* 
(0.31194) 

-0.06752 
(0.28942) 

  0.51968* 
(0.27200) 

0.398547 
(0.5628) 

Lag of Oak / pine 
& oak / hickory 
share 

-2.97625*** 
(0.31948) 

-1.41312*** 
(0.3008) 

  -0.61555** 
(0.28450) 

-1.66832** 
(0.7301) 

Lag of Oak / gum 
/ cypress share 

0.70855** 
(0.34820) 

0.48719 
(0.31912) 

  0.63875** 
(0.30067) 

1.182445** 
(0.5980) 

Lag of Daily 
average of HDD 
Index             

-0.18791*** 
(0.03821) 

-0.17340*** 
(0.03586) 

  -0.04622 
(0.03405) 

-0.04618 
(0.0712) 

Lag of December 
SP12 index             

-0.27441*** 
(0.03401) 

-0.10333*** 
(0.03444) 

  0.05481* 
(0.03115) 

-0.13663*** 
(0.0439) 

Lag of Hurricane 
incidences 

-0.30302* 
(0.15866) 

-0.23380 
(0.14215) 

  -0.26482** 
(0.13395) 

-0.11805 
(0.1313) 

Lag of  
log (Population)   

0.64615*** 
(0.03511) 

0.35729*** 
(0.03537) 

  0.31171*** 
(0.03351) 

0.499127*** 
(0.0398) 

Lag of 
Employment ratio        

-3.33819*** 
(0.37698) 

-1.83036*** 
(0.34852) 

  -1.61800*** 
(0.32907) 

0.58155*** 
(0.0553) 

Min. Tolerance 0.33475 0.31885 0.72572 0.89211 0.32121  

Max. VIF 2.98731 3.13629 1.37795 1.12093 3.11319  

Max. Con. Index 81.77689 95.09572 14.06757 13.61331         93.83948  

R-Square      0.2964 0.4225 0.3540 0.4610 0.4861 0.5026      

 
 
 
Moran 

 
Pos. 

12*          
9**          
3*** 

7*          
6**          
4*** 

13*         
11**          
6*** 

1*          
1**          
0*** 

1*          
0**          
0*** 

0*          
0**          
0***         

 
Neg. 

1*          
0**          
0*** 

1*          
1**          
0*** 

0*          
0**          
0*** 

12*          
6**          
1*** 

9*          
7**          
2*** 

17*         
15**          
9*** 

 
 
 
Geary 

 
Pos. 

19*         
18**          
9*** 

11*          
9**          
4*** 

12*         
10**          
6*** 

1*          
1**          
1*** 

2*          
1**          
0*** 

1*          
0**          
0*** 

 
Neg. 

0*          
0**          
0*** 

1*          
0**          
0*** 

0*          
0**          
0*** 

3*          
1**          
0***        

1*          
1**          
0*** 

4*          
2**          
0*** 

years 25 24 24 24 24 24 

 
 
 
DW 

 
Pos. 

25*         
13**          
7***         

          

 
Neg. 

2*          
1**          
0*** 

     

 
 
 
BG 

 
Pos. 

7*          
5**          
1*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

 
Neg. 

1*          
1**          
0*** 

12*          
6**          
2*** 

17*         
14**          
4*** 

24*         
14**          
7*** 

19*         
12**          
7*** 

19*         
13**          
6*** 

Counties 67 67 67 67 67 67 

check up (2005) 𝟏 171.19602 136.12877 123.56706 102.74964 

102.28712 𝟑 
128.26596             

404.93751 𝟑 
261.7547             

549.96744 𝟑 

check up (2004) 𝟐 114.84316 84.122016 112.17891 156.45708            

255.07911 𝟑 
119.31252             

306.06023 𝟑 
93.80009             

264.77826 𝟑 

Notes: Single (*), double (**), and triple (***) denote significance at 0.10, 0.05, and 0.01 levels, respectively. 

 1: Each reported value is the sum of squared forecast errors when we forecast the wildfires of year 2005 using 1981-2004 data.  

 2: Each reported value is the sum of squared forecast errors when we forecast the wildfires of year 2004 using 1981-2003 data.  

 3: Those are got when we include the estimate of residuals in the forecast equation, like (1.65), (6.26) & (6.31). 



 

Table 9. Models to predict logarithm of wildfire count per acre in each county each year: 

Table (9.a) (9.b) (9.c) (9.d) (9.e) (9.f) 

 𝒚𝒕 = 𝒙𝒕−𝟏𝜷 𝒚𝒕
= 𝒙𝒕−𝟏𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕−𝟏
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕−𝟏
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝒙𝒕−𝟏𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕 − 𝒙𝒕−𝟏𝜷
=  𝝆𝒔𝒘𝒔

+ 𝝆𝒕𝒘𝒕 (𝒚𝒕
− 𝒙𝒕−𝟏𝜷) 

Parameter Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

𝛒𝐭  0.65819*** 
(0.02284) 

0.83936*** 
(0.02068) 

0.69895*** 
(0.01714) 

0.57874*** 
(0.01991) 

0.505073*** 
(0.0159) 

𝛒𝐬  -0.04078* 
(0.02417) 

0.06893*** 
(0.02576) 

0.34664*** 
(0.02095) 

0.34732*** 
(0.01977) 

0.523495*** 
(0.0237) 

Intercept -5.86372*** 
(0.11187) 

-2.40850*** 
(0.18621) 

-0.80342** 
(0.15146) 

0.33298** 
(0.13769) 

-0.32957* 
(0.17662) 

-4.19785* 
(2.4170) 

Lag of forestland 
ratio 

-2.56629*** 
(0.10888) 

-0.83153*** 
(0.10204)        

  -0.58663*** 
(0.09400) 

-2.6966*** 
(0.1916) 

Lag of Private 
owned share of 
forestland       

1.06870*** 
(0.09311) 

0.31121*** 
(0.07669) 

  0.14925** 
(0.07044) 

0.405818*** 
(0.1324) 

Lag of Longleaf / 
slash pine & 
loblolly / shortleaf 
pine share 

-0.08481 
(0.15091) 

0.17018 
(0.11974) 

  0.22684** 
(0.10954) 

0.097471 
(0.2649) 

Lag of Oak / pine 
& oak / hickory 
share 

-1.27076*** 
(0.14909) 

-0.21053* 
(0.12020) 

  -0.09240 
(0.11009) 

-0.61274** 
(0.2898) 

Lag of Oak / gum 
/ cypress share 

-0.98075** 
(0.16174) 

-0.27112** 
(0.12921) 

  -0.42279*** 
(0.11820) 

-0.62218** 
(0.2669) 

Lag of Daily 
average of HDD 
Index             

0.02308 
(0.02069) 

-0.04352** 
(0.01691) 

  0.03784** 
(0.01559) 

0.07203*** 
(0.0275) 

Lag of December 
SP12 index             

-0.12217*** 
(0.01598) 

0.07299*** 
(0.01452) 

  0.09953*** 
(0.01264) 

-0.01184 
(0.0166) 

Lag of Hurricane 
incidences 

-0.07438 
(0.07455) 

-0.10482* 
(0.05762) 

  -0.10775** 
(0.05278) 

-0.05528* 
(0.0410) 

Lag of Population 
density  

0.23195*** 
(0.01721) 

0.07813*** 
(0.01446) 

  0.05586*** 
(0.01328) 

0.110338*** 
(0.0234) 

Lag of 
Employment ratio        

-1.92807*** 
(0.16986) 

-0.65819*** 
(0.13936) 

  -0.30280*** 
(0.12803) 

0.144654*** 
(0.0303) 

Min. Tolerance 0.25742 0.25330 0.50269 0.59977 0.17788  

Max. VIF 3.88475 3.94791 1.98929 1.66732 5.62191  

Max. Con. Index 23.90997 62.04974 30.85670         27.73875 63.22879  

R-Square      0.6212 0.7664 0.7493 0.7946 0.8039 0.8129 

 
 
 
Moran 

 
Pos. 

9*          
6**          
4***         

16*         
11**          
6*** 

17*         
17**         
13***         

1*          
0**          
0***         

1*          
1**          
0*** 

0*          
0**          
0***         

 
Neg. 

1*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

5*          
4**          
2*** 

7*          
3**          
1*** 

16*         
12**          
8*** 

 
 
 
Geary 

 
Pos. 

8*          
7**          
2*** 

15*         
12**          
8***         

18*         
15**         
13*** 

2*          
1**          
0*** 

3*          
3**          
1*** 

1*          
0**          
0*** 

 
Neg. 

3*          
1**          
0*** 

1*          
0**          
0*** 

1*          
0**          
0*** 

2*          
2**          
2*** 

2*          
2**          
1*** 

9*          
6**          
2*** 

years 25 24 24 24 24 24 

 
 
 
DW 

 
Pos. 

48*         
38**         
30***         

          

 
Neg. 

0*          
0**          
0*** 

     

 
 
 
BG 

 
Pos. 

29*         
23**          
6*** 

1*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

1*          
0**          
0*** 

0*          
0**          
0*** 

 
Neg. 

0*          
0**          
0*** 

6*          
3**          
0*** 

14*         
6**          
1*** 

13*          
3**          
1*** 

13*          
5**          
2*** 

9*          
3**          
0*** 

Counties 67 67 67 67 67 67 

check up (2005) 𝟏 55.435587 34.470847 26.607207 24.106342 

21.126487 𝟑 
32.58941             

62.393279 𝟑 
25.07344             

49.413273 𝟑 

check up (2004) 𝟐 19.339284 10.315427 24.543754 36.756875            

78.479552 𝟑 
18.243575             

56.561765 𝟑 
49.969648             

84.666755 𝟑 

Notes: Single (*), double (**), and triple (***) denote significance at 0.10, 0.05, and 0.01 levels, respectively. 

 1: Each reported value is the sum of squared forecast errors when we forecast the wildfires of year 2005 using 1981-2004 data.  

 2: Each reported value is the sum of squared forecast errors when we forecast the wildfires of year 2004 using 1981-2003 data.  

 3: Those are got when we include the estimate of residuals in the forecast equation, like (1.65), (6.26) & (6.31). 



 

Table 10. Models to predict the logarithm of annual burned ratio in each county: 
Table (10.a) (10.b) (10.c) (10.d) (10.e) (10.f) 

 𝒚𝒕 = 𝒙𝒕−𝟏𝜷 𝒚𝒕
= 𝒙𝒕−𝟏𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕−𝟏
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕−𝟏
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕
= 𝒙𝒕−𝟏𝜷
+ 𝝆𝒔𝒘𝒔𝒚𝒕
+ 𝝆𝒕𝒚𝒕−𝟏 

𝒚𝒕 − 𝒙𝒕−𝟏𝜷
=  𝝆𝒔𝒘𝒔

+ 𝝆𝒕𝒘𝒕 (𝒚𝒕
− 𝒙𝒕−𝟏𝜷) 

Parameter Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

Estimate 
(Std. Error) 

𝛒𝐭  0.42077***    
(0.02455) 

0.66737*** 
(0.02532) 

0.55717*** 
(0.02125) 

0.38480***     
(0.02231) 

0.390448***   
(0.0147) 

𝛒𝐬  -0.12876*** 
(0.03255) 

0.13843*** 
(0.03079) 

0.41311*** 
(0.02538) 

0.40470*** 
(0.02854) 

0.544464*** 
(0.0275) 

Intercept -1.53705*** 
(0.23075) 

-1.40730*** 
(0.22886) 

-1.22664*** 
(0.14033) 

-0.36759*** 
(0.13111) 

0.01957 
(0.22040) 

-6.22138*** 
(1.6033) 

Lag of forestland 
ratio 

-4.29716*** 
(0.22458) 

-2.66444*** 
(0.23215) 

  -1.84148*** 
(0.22336) 

-4.1018*** 
(0.3649) 

Lag of Private 
owned share of 
forestland       

0.39762* 
(0.19206) 

0.06160 
(0.17913) 

  -0.00346 
(0.16959) 

0.160963 
(0.3180) 

Lag of Longleaf / 
slash pine & 
loblolly / shortleaf 
pine share 

0.28850 
(0.31128) 

0.41987 
(0.29313) 

  0.80195*** 
(0.27662) 

0.615741 
(0.5182) 

Lag of Oak / pine 
& oak / hickory 
share 

-3.16144*** 
(0.30752) 

-1.61871*** 
(0.29600) 

  -0.90658** 
(0.28132) 

-1.67927** 
(0.6608) 

Lag of Oak / gum 
/ cypress share 

0.24948 
(0.33361) 

0.29661 
(0.31104) 

  0.18815 
(0.29463) 

0.933587* 
(0.5416) 

Lag of Daily 
average of HDD 
Index             

0.09964** 
(0.04268) 

-0.02231 
(0.04100) 

  0.13311*** 
(0.03872) 

0.100721 
(0.0747) 

Lag of December 
SP12 index             

-0.27623*** 
(0.03297) 

-0.11429*** 
(0.03397) 

  0.03003 
(0.03099) 

-0.13497*** 
(0.0446) 

Lag of Hurricane 
incidences 

-0.29529* 
(0.15376) 

-0.23385* 
(0.14048) 

  -0.26058* 
(0.13290) 

-0.09709 
(0.1318) 

Lag of Population 
density  

0.34905*** 
(0.03549) 

0.20520*** 
(0.03405) 

  0.17438*** 
(0.03231) 

0.247498*** 
(0.0469) 

Lag of 
Employment ratio        

-2.96901*** 
(0.35037) 

-1.78497*** 
(0.33022) 

  -1.33106*** 
(0.31353) 

0.333219*** 
(0.0689) 

Min. Tolerance 0.25742 0.20630 0.61406 0.72632 0.19983  

Max. VIF 3.88475 4.84737 1.62851 1.37680 5.00420  

Max. Con. Index 23.90997 28.23983 9.66561 8.77367         28.40827  

R-Square      0.5123 0.5872 0.5386 0.6155 0.6299 0.6437 

 
 
 
Moran 

 
Pos. 

10*          
7**          
4*** 

7*          
5**          
5*** 

14*         
13**         
11***         

1*          
0**          
0*** 

1*          
0**          
0*** 

0*          
0**          
0***         

 
Neg. 

1*          
0**          
0*** 

1*          
0**          
0*** 

0*          
0**          
0*** 

11*          
5**          
1*** 

5*          
4**          
1*** 

16*         
15**          
8*** 

 
 
 
Geary 

 
Pos. 

18*         
15**          
7*** 

9*          
6**          
5*** 

14*         
12**          
9*** 

1*          
1**          
0*** 

2*          
1**          
0*** 

1*          
1**          
0***         

 
Neg. 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

3*          
2**          
0*** 

2*          
2**          
0*** 

5*          
2**          
1*** 

years  24 24 24 24 24 

 
 
 
DW 

 
Pos. 

22*         
13**          
7***         

          

 
Neg. 

2*          
0**          
0*** 

     

 
 
 
BG 

 
Pos. 

8*          
6**          
0*** 

1*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

0*          
0**          
0*** 

 
Neg. 

2*          
0**          
0*** 

11*          
7**          
2*** 

19*         
14**          
5*** 

24*         
14**          
7*** 

13*         
11**          
5*** 

19*         
12**          
6*** 

Counties 67 67 67 67 67 67 

check up (2005) 𝟏 154.82813 126.88859 112.15762 99.252767             

98.331199 𝟑 
118.61563             

407.15129 𝟑 
104.3755             

370.90999 𝟑 

check up (2004) 𝟐 113.54965 89.515101 131.81784 166.81928            

275.96375 𝟑 
105.23999             

277.73453 𝟑 
167.04101             

266.77623 𝟑 

Notes: Single (*), double (**), and triple (***) denote significance at 0.10, 0.05, and 0.01 levels, respectively. 

 1: Each reported value is the sum of squared forecast errors when we forecast the wildfires of year 2005 using 1981-2004 data.  

 2: Each reported value is the sum of squared forecast errors when we forecast the wildfires of year 2004 using 1981-2003 data.  

 3: Those are got when we include the estimate of residuals in the forecast equation. 


