

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Assessing Complementarities Among Farm Machineries Through Farmers' Investment Behaviors Under An External Capital Injection – Implications on Agricultural Mechanization and Tractorization In Sub-Saharan Africa

Hiroyuki Takeshima

International Food Policy Research Institute, <u>H.takeshima@cgiar.org</u>

Sheu Salau

International Food Policy Research Institute

Poster prepared for presentation at the Agricultural & Applied Economics Association's 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, Pennsylvania, July 24-26, 2011

Copyright 2011 by Hiroyuki Takeshima. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Assessing Complementarities Among Farm Machineries Through Farmers' Investment Behaviors Under An External Capital Injection – Implications on Agricultural Mechanization and Tractorization In Sub-Saharan Africa

INTERNATIONAL ROOD POLICY RESEARCH INSTITUTE

Key results by agro-ecological zones

Hiroyuki Takeshima¹, Sheu Salau¹

1. Background issue

Challenge in supporting sophisticated farm machineries (tractors) in developing countries like Nigeria

- · Scale of required financial support, public sector capacity
- Low level of current farm mechanization
- · Rare use of not only tractors but also draft animals
- Potentially high demand for hand tools (hoe, cutlass)

Literature indicating the role of less sophisticated farm tools

- Higher demand for intermediate tools (draft animals, processing) machines) or hand tools (Mrema et al, 2008)
- . General patterns of mechanization (Rijk, 1999):
- => necessary pre-conditions for the adoptions of tractors:
- · Adoptions of intermediate tools (draft animals, stationary operation)

Potentially complementary roles played by less sophisticated

- Access to draft animals or milling machines = process and
- transport large harvest from using tractors for land preparation • Individual farmers' ownership of hand tools = complement the use of draft animals or milling machines

Utility maximization under liquidity constraint and production

2. Descriptive statistics

		Farmers who owned these tools in 2005					
	All	Hand tools	Draft animal	Milling machine	Tractor / power tiller		
	42	42	42	40	46		
	29	23	9	26	25		
er advantion	59	57	40	50	67		

Age	42	42	42	40	46
Gender (% female)	29	23	9	26	25
% completed primary education	58	57	49	58	67
% completed secondary education	33	34	29	32	50
Household size	9	9	12	10	10
Household expenditure in 2005 (\$)	238	227	190	522	283
% rented in land in 2005	11	13	9	15	33
% received credit in 2005	12	12	13	10	13
% primary activity is cropping	55	68	73	47	88
% primary activity is non-farm activity	18	11	9	27	0

			All	Dry	Moist	Humid		
				savannah	savannah	forest		
Hand tools	59	13	18	19	20	14	17	21
Draft animal	11	4	9	17	6	1	2	9
Milling machine	4	3	7	5	11	6	7	2
Tractor / power tiller	1	0.3	1	1	1	1	1	1

1 13K	
Max	$E\{U[\pi]\}$
s.t.	$\pi = p \cdot f(x_k, x_i, \eta) - w_k x_k - w_i x_i$
	$w_k x_k + w_j x_j + \theta \le T$
Lagr	angian:
	$L = E \{U[p \cdot f(x_k, x_i, \varepsilon) - w_k x_k - w_i x_i]\} + \lambda (T - w_k x_k - w_i x_i - \theta)$
Dome	and for k (v *) satisfies

Demand for $k(x_k^*)$ satisfies $w_k/p \le \{E[U'(\pi)] \cdot E[\partial f/\partial x_k] + cov[U'(\pi), \partial f/\partial x_k]\}/\{E[U'(\pi)] + \lambda\} = \mu^k$

(*Inequality when liquidity constraint is binding) μ^k : willingness to pay for additional k (standardized by p)

ual framework		
In perfect market: $ \mu^k = \mu^j $ In imperfect market: $ \mu^k > \mu^j \text{ or } \mu^k < \mu^j $ External capital injection ΔT $\Rightarrow \lambda \downarrow $ $\Rightarrow \text{Farmer changes } x_k \text{ and } x_j $ until $\mu^k = \mu^j$	π	Profit
	p	Output price
	f	Production function
	x_j, x_k	Quantities of inputs j and k
	η	Production risk
	w_j, w_k	Prices of inputs j and k
	T	Total liquidity asset
	θ	Other cash requirements
	λ	Lagrange multiplier (liquidity constraint)

Ownership of i = affects relationship between μ^k and μ^k

Key factors - Shape of production possibility frontier with respect to *i* and *k*

- Common inputs used for j and k

Owning i (more x_i) increases x_i , when there is ΔT if

(j) is under-
eturn from

Owning j (more x_j) decrea	Owning j (more x_j) decreases x^k when there is ΔT if						
	Explanation	Possible example					
High $\partial f/\partial x_j$ Small $ cov[U', \partial f/\partial x_j] $	 Scale of economy from j Depreciation of j j is risk decreasing 	Many farmers bring their harvests for milling for fee => additional milling machine (j) provides additional return Owning milling machine mitigates the price risk for unprocessed crops					
Low $\partial f/\partial x_k$ Large $cov[U', \partial f/\partial x_k]$	 - k and j are substitutes - Investment into k is risky, requires learning, resources for risk mitigation 	Owning milling machine (j) requires electricity, cash for operation / maintenance. Allocating them for milling machine >> Less such resources left for tractor (k) => Return is lower / riskier from tractor					

4. Empirical results and policy implications

First difference panel using data from 2005 and 2006	
GMM => farmers' self-selection into project participation	on

Empirical specification

	Endogen	ous due to self-select	ion $(\Delta F_{it}) \Longrightarrow GMM$	
$h_p d_p m_p t_i$	= 1 if a farmer i i	invested in 2006 into	hand tools (machete / c draft animal (ox-plow / milling machine (m _i) tractor / tractor-plow /	work bull) (d _i)
H_i, D_i, M_i T_i	= 1 if a farmer i owned in 2005		hand tools (machete / c draft animal (ox-plow / milling machine (m _i) tractor / tractor-plow /	work bull) (d)
ΔF_i	= 1 if joined the l	Fadama II project in 2006	(prior to the investment)	
Excl	uded IVs			
A E *H		Eligibility to Eadama II	* owned hand tools in 200	5 or not

ΔP_i = 1 if joined the i	radama ii project in 2006 (prior to the investment)
Excluded IVs	
$\Delta E_i^*H_i$	Eligibility to Fadama II * owned hand tools in 2005 or not
$\Delta E_i^*O_i$	Eligibility to Fadama II * owned draft animal in 2005 or not
$\Delta E_i^*M_i$	Eligibility to Fadama II * owned milling machine in 2005 or not
$\Delta E_i *T_i$	Eligibility to Fadama II * owned tractors / tractor-plow / power tiller in 2005 or not
$\Delta E_i^*Root crop_i$	Eligibility to Fadama II * grew rootcrops in 2005 or not
$\Delta E_i^* Vegetable_i$	Eligibility to Fadama II * grew vegetables in 2005 or not
$\Delta E_i^* Household\ expenditure_i$	Eligibility to Fadama II * total household expenditure in 2005
$\Delta E_i^*Dependency\ ratio_i$	Eligibility to Fadama II * dependency ratio

Estimation results (all agro-ecological zones combined with dummy for agro-ecological zones)

					Logit
	Hand tools	Draft	Milling	Tractor /	Tractor /
		animals	machine	power tiller	power tiller
Fadama II participation (yes =1)	.509***	.076	.041	.001	
Fadama*H	535***	052	033*	.011	.011*
Fadama*D	000	.200***	035*	012	.004
Fadama*M	136**	084***	.082*	006	
Fadama*T	108	105	047*	.100***	.004*
Fadama*Root crop	.157***	043**	.108***	.012	
Fadama*Vegetable	.204***	.168***	014	.014*	
Eligible (yes = 1)	135**	072**	023	.003	
Eligible*rented in land in 2005	.052**	011	.016	006	
Eligible*age	.000	.001	.001*	.000	
Eligible*gender	114***	039*	.018	.005	
Eligible*household size	005***	000	.000	.000	
Eligible*primary education	.018	.001	.005	.002	
Eligible*secondary education	032	.013	002	.003	
Eligible*dry savannah	100**	.115***	046***	004	
Eligible*moist savannah	.043	.061***	026	.006	
Eligible*storage space	.140	016	022**	.000	
Eligible*credit	052	.035	.033*	.006	
Eligible*state 3	.077**	.021	.055***	.015**	
Eligible*state 4	056	.012	049**	008	
Eligible*state 5	.184***	112***	.024**	001	
Eligible*state 6	.130***	053*	.013***	001	
Eligible*state 7	044	026	.085***	014**	
Eligible*state 8	074	008	053***	.019***	
Eligible*state 12	033	016	.022	008	
Intercept	.124***	.007**	.011***	.000	
p-value (overall fit)	.000	.000	.000	.000	
p-value (weak identification)	.001	.001	.000	.000	
p-value (overidentification)	.300	.803	.796	.821	
Observation	2822	2822	2822	2822	2822
***: 1% **: 5%	*: 10%				

	Hand tools	Draft	Milling	Tractor /
		animals	machine	power tille
Dry-savannah				
Fadama*H	640***	007	032	002
Fadama*D	070	.181	018	005
Fadama*M	050	120**	.015	.013
Fadama*T	.025	191	019	.200***
Moist-savannah				
Fadama*H	504***	150***	.091	.025*
Fadama*D	.413**	.218**	.041	015
Fadama*M	245	124*	045	009

Humid-forest				
Fadama*H	520***	004	.024	.003
Fadama*D	117	.252***	074	053
Fadama*M	.088	002	.201***	.014
Fadama*T	.024	013	044	.047

- 019

- 133

- 078

-024

Summary of findings

Fadama*T

Rare events

- Ownership of less sophisticated farm machineries => no positive effect on the investment into more sophisticated machineries
- · Farmers tend to continue investing in the same type of farm machineries
- Though we cannot say much about the mechanization patterns, we may
- Farm mechanization may evolve along 1) hand tools => 2) draft animal => 3) stationary operation => 4) motive operation but **not at the** individual farmer level

Implications of preliminary results

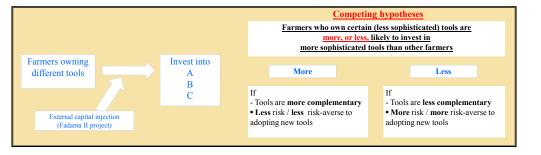
- Farmers prefer to invest in specific farm machineries
- Their aversion to risk for investing in other complementary farm machineries may be greater than the potential benefits
- Targeting of farmers is more important when supporting adoptions of particular farm machineries
- · Program like Fadama II may be more appropriate as farmers have ranges of farm machineries to choose from
- Nigerian government's continued focus on tractorization makes some Supporting adoptions of supposedly complementary machineries do not encourage
- adoptions of tractors Although supporting less sophisticated complementary machineries is more
- feasible, direct support for tractor adoptions should remain substantial

Binswanger, H. and Pingali, P. (1988). Technological priorities for farming in Sub-Saharan Africa. The World Bank Observer 3(1), 81-98.

Mrema G, Baker D, and Kahan D. (2008). Agricultural mechanization in sub-Saharan Africa: time for a new look FAO Rome Nkonya, E. et al. (2008). From the ground up: Impacts of a pro-poor community-driven development project

in Nigeria. IFPRI Discussion Paper 00756. Washington, DC. Pingali, P. (2007). Agricultural mechanization: Adoption patterns and economic impact. Handbook of

Agricultural Economics 3, 2779-2805


Rijk AG. 1999. Agricultural mechanization strategy. Plant Production Engineering: 536-553. Available at http://www.unapcaem.org/publication/CIGR_APCAEM_Website.pdf.

Takeshima H and F Vamauchi 2010 Market and climatic risks and farmers' investment in productive assets under Second Fadama Development Project in Nigeria. IFPRI Discussion Paper 01033.

Michael Tomz, Gary King, and Langche Zeng. 1999. RELOGIT: Rare Events Logistic Regression, Version 1.1 Cambridge, MA: Harvard University, October 1, http://gking.harvard.edu.

Gary King and Langche Zeng. 1999a. "Logistic Regression in Rare Events Data," Department of Government Harvard University, http://GKing.Harvard.Edu.

Gary King and Langche Zeng. 1999b. "Estimating Absolute, Relative, and Attributable Risks in Case-Control Studies." Department of Government, Harvard University, available from http://GKing.Harvard.Edu. Wooldridge JM. 2002. Econometric Analysis of Cross Section and Panel Data.: MIT Press.

