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1.0 Introduction

Federal agricultural conservation programs, sudh@€onservation Reserve Program
(CRP) and the Environmental Quality ImprovementgPam (EQIP), have invested
billions of dollars to incentivize farmers to enbarenvironmental benefits. Funding for
major USDA conservation programs was approximea2élypillion dollars during the
period 2002-2007, and the portion allocated to wy#ands programs have increased
considerably starting in 2002 relative to landregtient programs (ERS 2009). The
effectiveness of federal cost-share programs depi@ngiart on whether payments
induce a positive change in farmer behavior. Ia ggaper, we use propensity score
matching methods to estimate the level of additipniom enroliment in federal cost-
share programs for six conservation practices.

Propensity score matching estimators were develbpdtbsenbaum and Rubin
(1983) and have been applied in various econorudiet. These estimators are used to
estimate the average treatment effect on the taf€T), serve to reduce the
dimension of the matching problem, and attemptitoieate or reduce the bias induced
by nonrandom program enrollment, which is a classlection problem in
nonexperimental studies. Assuming certain idemtgyassumptions are met, matching
estimators are appealing because they generatéectamuals in an intuitive manner,
remove outliers, and impose few specification aggions.

Matching methods have been used for program evafuet several contexts
pertaining to conservation. Andam et al. (2008) efcample, analyzed the effect of

protected areas in reducing deforestation rat€osta Rica and found that deforestation



rates in protected areas are 11% lower than irlaimnprotected areas. Matching
methods have been used to analyze policies aimediating future urban development
with adequate public facility ordinances (Bent@ke®2007) and reducing farmland loss
with purchase of development rights programs (lad hynch 2011). Ferraro et al.
(2007) analyzed the impact of the US Endangeredi&péct on species recovery rates
and found significant improvements in recoverysdiat only when the listing was
combined with significant government funding.

The previous studies focused primarily on programgolices that protect
against future environmental degradation. Convgré$etieral cost-share programs are
conservation programs that emphasize environmentancement through land
restoration and the adoption of conservation prastiStudies examining such programs
exist, but are limited in number. Using Natural &ege Inventory data, Lubowski et al.
(2008) estimate a land-use change model where €Rluded as an alternative, in
order to analyze the effect of CRP on land retirgime€hey find that approximately 90%
of land enrolled under CRP constitutes additioaatliretirement, implying that CRP
significantly increases the likelihood of land rethent. Lichtenberg and Smith-Ramirez
(2011) estimate the impact on land allocation obst-share program in Maryland using
a switching regression model. They find that cdstre funding induce farmers to adopt
conservation practices they would not have usedowitfunding; however, it also has
the unintended consequence of inducing slippage fiasture and vegetative cover

converted to cropland).



In this paper, we estimate the level of additiagdliom enroliment in federal
cost-share programs for six conservation practMésapply matching estimators to
qguantify additionality, estimated as the ATT, whaxuals the average increase in
conservation effort of enrolled farmers relativeheir counterfactual effort without
funding. Our study analyzes conservation adopti@henrollment decisions using data
from a farmer survey in Ohio. The survey includasrfer enrollment in major federal
conservation programs, such as CRP, EQIP, andtfidre conservation practice types
include conservation tillage, cover crops, hayfiedthhblishment, grid sampling, grass
waterways, and filter strips.

We develop a new methodological approach to decempiee ATT according to
the relative contributions of adopters and non-&elsp We define “adopters” as enrolled
farmers who would adopt the practice even in theeabe of cost-share funding, while
“non-adopters” are enrolled farmers who would ra@ the practice without funding.
Matching estimators are used to generate countadiscfrom the non-enrolled farmers
to estimate the likelihood that enrolled farmeis atlopters or non-adopters for each
practice type, in addition to the relative conttiba for each group to the overall ATT.

Our empirical analysis provides three main resHitst, the overall ATT for
enrollment in cost-share programs is positive aguifsccant for each of the six practice
types. That is, cost-share programs induce fartoargrease the average proportion of
conservation acreage adopted for all practicesor@8kche percent additionality, defined
as the percent increase in conservation acreag@vecto the total conservation acreage

adopted for enrolled farmers, varies dramaticadlijnleen practice types. Specifically,



the percent additionality is highest for filterigs (92.0%), hayfields (91.0%), and cover
crops (86.7%), while it is lowest for conservattdlage (18.0%). Finally, the new
methodological approach that we formulate to deasaATT into the relative
contributions of adopters and non-adopters alsviges valuable policy insights. For
instance, the ATT for adopters is not significantdll practice types, except filter strips,
suggesting that adopters are not significantly edpay the proportion of conservation
acreage. Furthermore, decomposition estimates stutigd the differences in % ATT
between practice types are mainly determined byréotion of enrolled farmers that are
adopters and non-adopters. Practice types thatdkarge fraction of non-adopters,
such as filters trips and hayfields, exhibit largalues for % ATT.

The paper is structured as follows. First, we usahe propensity score
matching method and assumptions. Then, we formthatdecomposition of the ATT
and derive the respective estimators for each caemdn the decomposition. Next, we
describe and summarize the data from our farmeegun Ohio. Thereafter, we provide
the estimation results for the ATT, % ATT, and caments of the decomposed ATT.

We conclude with policy implications for conseraatiprograms.

2.0 Decomposition of the Propensity Score Estimator
In this section, we formalize the ATT and discuss itlentification assumptions needed
for its estimation. Then, we develop the propenstyre matching estimator and derive

the decomposition of the ATT.



2.1 Propensity Score Matching Estimator

Define an indicator variable equal to one if farmarenrolled in a federal conservation

program to fund the adoption of conservation pcagij andD equals zero if a farmer

did not enroll in a program. Further, define thégmbial outcome variable¥ and 'Y, for
each farmer and practice. Let Y; be the proportion of farm acreage that farmer
adopts of practicp if they enrolled in a progranDgEl), and letY, be the proportion of
farm acreage they adopted of practigéthey do not enrollD=0), whereéD<Y, <land

0<Y, <1. We can only observe one of these two outcomebkas for any given
farmer.

The treatment effect of enrolling in a conservagioogram on practice is
defined as the additional conservation effort addfty a farmer as a result of program
enrollment relative to not being enrolled. For farinand practice, this is expressed as
the difference betweeM, andY, ast =Y, — ). Because we are interested in the average
effect of the program across all enrolled farmeses define the additionality for practice
p as the expected treatment effect for the enrgtedp of farmer®©=1. The ATT is

defined as:

ATT=EY-Y¥| == §M >3- Ex B] (1)

The application of matching estimators requires ighemtification assumptions to

be satisfied. The first assumption that justifies tise of matching estimators states that

the potential outcom&, must be independent of program enroliment conuttion the



set of observable covariat¥si.e., Y, [ D| X. The vector of observed covariads

should affect both the decision to enroll and theeptial outcomes. Rosenbaum and
Robin (1983) demonstrated that if such a conditasatisfied, then it holds as well

conditional on the propensity score, where the @nsfy score is defined as the

probability that a farmer enrolls givegP = P( D=1]| X). The conditional

independence assumption becon¥g§] D| P. The propensity scores can be estimated

using discrete choice models, typically a probilogit model.

The second assumption states that for all farmaracieristics, there is a
positive probability of either enrolling or not efing, 0<P(D=1|X) < 1. This

assumption is known as the common support condar@himplies that for each enrollee
there exists a match within the group of non-eetbfarmers with a similar set of
covariatesX.

Let H; denote the set of enrollees argithe set of non-enrollees. Each enrollee
and non-enrollee has a set of defining characiesjsX; and Xj , and propensity scores,
P and P, respectively, wherg1,...,l andj=1,...,J. The set#d; andH, only include
those farmers on the common support. Propensitgs@re obtained from a probit
model, such thaB = P(D =1| X ) andP, = P( D =1| X ) ! For propensity score

kernel matching, all non-enrolledsn Hy are used as matches, where the weights

! To assess the estimates of the propensity sceragd from a probit model using the covariatesve
use the propensity score covariate balancing tegtgsed by Dehejia and Wahba (1999).



W(i, ) are determined based on a kernel function, a battiparameter, and the

differences betweeR and P. For propensity score nearest-neighbor matchinly, the

m nearest non-enrollees are used as matches foeaadted farmer, wherem=1, and

distance is determined by the difference betwBeand P. Each of then nearest-

neighbor matches for enrolleeeceive an equal weight W(i, j) =—, while all other

3|k

non-enrollees in the sklky receive a weight of zero. For both matching proces, it

holds that > W (i, j) =1 for each farmer.

i0H,
The propensity score matching estimator generatesiaterfactual for each

enrolleel, \?c; , given by the weighted average

N =E¥IPD=1=> Wi)Y¥.

jOH,

WhereYOj is observed outcome for the non-enrojlé&@he matching estimator for the

ATT is the average of the counterfactuals for thieo$l enrollees irH;:

ATT=25(Y-%)=2% Y13 Y.

iOH, itH, | itH,

Using (3), the matching estimators f8f Y, | D=1 and E[Y, | D=1] are

*The expressior’é[Yoi | P, D= 1] denotes the empirical estimate Ei[YOi | P, D= 1]. Refer to
Smith and Todd (2005) for further clarification tis expression.

(2)

3)



¥ D=1=7 > Y @

iOH,
and

El%ID=0=7F Y W(i )y . ®

iOH, jTH,

2.2 Decomposing the ATT for Adopters and Non-Adopte

Define two types of farmers based on their potéotiécome in the absence of funding
Y,: non-adopters are characterized¥gy= 0, and adopters are characterized¥py O.

The ATT in equation (1) is decomposed into two péstdetermine the relative amount

of the ATT that is attributable to adopters and-adopters. Using conditional

probabilities and expectations based(grthe ATT can be decomposed into:

ATT=P(¥=0| D=0 § Yl Y=0,}- Exlo=0 B}

+P(Y°>O|D::I)EQE[YHPO’D:1‘EEXIPO,DE]} (6)

The first line of this equation represents theiparof the ATT that corresponds to non-

adopters. The terrE[\gl Y, =0, D:]] is the proportion of acreage that non-adopters

dedicate to the conservation practice with fundimigile E[YO |,=0, D= ]] is the

expected proportion they adopt without funding.e Tifference is the additional amount

adopted by enrolled non-adopters as a result efvieg funding. Note that

E[Y, 1} =0, D=]equals zero by definition.
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The second line in (6) is the portion of the AT B@sated with adopters. Once
again, the differenc&[Y,| %, >0, D=1~ H Y| ¥> 0, = ] equals the additional
amount adopted by adopters as a result of recefuimdjng. The ATT is the weighted

average of these two differences according to thbgbilities P(YO =0| D= ]) and
P(Y,>0| D=1). Given thatY, 20, it holds that:
P(Y,=0|D=10)+P(¥>0|D=1=1
We define the respective ATT for enrolled non-aéoptand adopters as

AT, =H Y| ¥=0,D=1- § ¥l =0 B}

and

ATT,=E Y| ¥Y>0, D=4- Y| ¥ 0 B ]

and the probability that an enrolled farmer is @ita non-adopter or an adopter as

P,=P(Y=0|D=1

and
P=P(%>0|D=1.

The decomposed ATT in (6) can be expressed as:

ATT= ROATT+ POAT]

(7)

(8)

(9)

(10)

(11)

(12)
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This clarifies that additionality for a conservatipractice depends not only on the gains
of each type of farmer, but also on the likelihdloat an enrolled farmer is either a non-

adopter or an adoptér.

3.0 Proposed Estimators for the Components of thedaomposition

Below we derive the estimators for each of the dgmused terms. We first discuss the

estimators for the probabilitild and P, followed by the discussion of the estimators

for ATT and ATT.

3.1 Estimators for the Probabilities of Non-Adoptand Adopters

We first derive the estimators fd and P, (refer to (10) and (11)). We define a binary
variable B, to explain how we use matching estimators to @ettie estimators for the
probabilities. SpecificallyB, equals one if a farmer would adopt a practice avith
funding, and zero otherwise, i.d3, =1 if Y, >0, and B, =0if Y, =0. The expectation

of B, can be expressed in terms of probability tais greater than zero:

E[B|D=1=P(B=1|D=3= M ¥>0|D=)

®Note, P, = P(% =0| D= ]) is the probability that an enrolled farmer is a{amtopter, which is
different from the probability that a non-adoptarals, which is given byP( D=1|Y, = 0) . The same

is true for P,.

(13)
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An estimate forE[ B, | D=1] is obtainable using a matching estimator; as stheh,
estimate forP (Y, >0| D= 1)is obtainable as well via a matching estimator. e
probabilities needed for the decomposition of tfiel Aare P(Y, >0| D=1 and
P(Y,=0| D=1). Given an estimate f&(Y, >0| D=1), we obtain an estimate for
P(Y,=0| D=1 using (7).

We derive the estimators for the probabilities blame propensity score

matching. The propensity score matching estimatoegates a counterfactual for each

enrolleel, é{) given by the weighted average
By = > W(i )8, (14)
jTH,
where Eg is the B, for non-enrolleg, and é(‘) D[O,]] . Note thatl.%éJ is the estimate of the
probability that an enrolled farmer with propengitore P is an adopter, such that

B,=E[B|P,D=1]=HY>0|P, D=1 (15)

The matching estimator fdE[ B, | D=1] is then the average of the counterfactuals for

the set of enrollees irH;:

ElBID=1=TY §. (16)

iOH,

Consequently, given equation (13), the estimatorF’f()YO >0| D= ]) is:
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~ 1 .
P(Y,>0] D:J):I—Z B .
iOH,

The estimator foP(Y, =0| D=1 is obtained by substituting (17) into (7):

P(%=0|D=1)=1-13 B=-3 (1 B)

iTH, | itH,

3.2 Estimators for the ATT of Non-Adopters and Agwp

In this section, we derive the estimatorsAhT, for adopters andATT for non-adopter
that are defined in equations (8) and (9), respelgti Each ATT consists of the

difference of two conditional expectations. The @otptions are o¥;andY;, where each

expectation is conditioned on a valueYgénd D=1. We estimate each of the conditional

expectations separately, and then take their éififeg to obtain the estimators &l T
and ATT, . We first derive the estimators for the conditioeepectations oY}, then for
the conditional expectations &, and finally for each ATT. Notice that the estiorat
we derive are applicable to kernel or nearest-rimgmatching
The estimators foE[Y,| ¥, =0, D=1 and E[Y,| ;> 0, D=1 are given by:
> (1-)¥

Non- adopter B M y=0, Bj=""

> (1-8)

iOH,

and

(17)

(18)

(19)
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> BY,
Adopter. H Y| ¥Y>0, B=1 :iDHl—A_ . (20)
> By

itH,

These estimators are the weighted average valXeaxfross all enrollees weighted by
the estimated probability that an enrollee is eithaon-adopter] - B, or an adopter,

3;. Thus, the expectation of for non-adopters weighs enrollees that are m&edyiito
be non-adopters more heavily than those that a@rel'he opposite holds true for the

conditional expectation of; for adopters.

We now derive the estimators f&]Y,| %, =0, D=1 and E[Y,| ¥, >0, D=1,
which are the last two terms in equations (8) &)dThe set of non-enrolledd, can be
subdivided into two groups based on the observétbmes for each non-enroIIB&é:
those that are non-adopteB) =0, and those that are adoptd&5=1. The estimator

for the conditional expectation &f for non-adoptersE[\() |, =0, D= ]] , equals zero
by definition, so no estimator is required. Thameator for the conditional expectation
of Y, for adopters,E[\g |, >0, D= ﬂ , equals the weighted average\ﬁfvalues for the

set of non-enrollees that are adopters,
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2 2 W(i )BY
Adopter. H Y| Y>0, D=1 =140 , (21)

2, 2 W(ij)B

iTH, jTH,

Now that we have estimators for each of the coml#i expectations found in (8)
and (9), the estimators for the ATTs are easilyamiatd. The estimator for the ATT of

non-adopters is obtained by substituting (19) (8jo where recall that
E[Y0 |, =0, D= ]] = (, and the estimator for the ATT of adopters is oigtd by

substituting (20) and (21) into (9):

_ X[-B)Y
Non- Adopter ATT=" (22)

> (1-8)

iOH,
and

SEY || X T w(iiey

Adopter; ATT=| — |- 10, 1tH, . (23)
2B 2 2 W(i )8
i0H, itH, jH

4.0 Survey Background and Data Summary
For this study, we conducted a farmer survey irttsgestern Ohio within 25 counties in
and around the Great Miami River Watershed. Theystuea is dominated by

agricultural uses (83% of land area) particulaoiyrbw-crop production in corn,
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soybeans, and wheat. Typical livestock operatinokide swine, beef cattle, and dairy.
Our survey questionnaire was conducted in 200dirahe Ohio Division of the
National Agricultural Statistical Service (NASShd& sample of farmers was drawn
from the NASS master list of farmers and a randtratiBed sampling was used to
ensure a sufficient number of responses from laogemercial farms. The survey was
mailed to 2000 farmers with follow-up phone callbere were a total of 768 survey
respondents. However, useable responses variedhbiige type depending on whether
the farmer completed the survey information forrepiactice type. The survey contains
guestions on farmer socioeconomic characteridacs) management and operation, and
land quality characteristics.

The survey also includes information on the acrealygpted for the following
six conservation practices in 2009: conservatilkege, cover crops, hayfields (or
grassland establishment), grid sampling, grassrwaies, and filter stripsConservation
tillage leaves crop residue on fields to reducéesoision and runoff. Cover crops
provide soil cover on cropland when the soil wootlderwise be bare. Hayfields and
grassland establishment retire cropland to a teésssive state to provide habitat and
other conservation benefits. Grid sampling imprawesefficiency of nutrient
application rates to maximize crop yields, whildueing excess fertilizer that
potentially would runoff or leach into surroundimgter bodies. Grass waterways are
located in the natural drainage areas within crughk® reduce soil erosion and gully
formation. Filter strips are typically planted ggadong stream banks to capture

sediment, nutrients, and pesticides from runofbbethey enter surrounding water
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bodies. We categorize these six practices intogreaps. First, practices for
environmentally sensitive areas, filter strips gnalss waterways, are almost exclusively
used along stream banks or in natural drainages arespectively. Second, field
practices include conservation tillage, cover cydag/fields, and grid sampling, and
they are often adopted as a practice for a sigmfiportion of the cropland.

For each practice type, the survey asks whethdatheer received cost-share
funding from enroliment in any of the federal cawséion programs. The federal
programs included explicitly in the survey are EQURP, Conservation Reserve
Enhancement Program (CREP), and Conservation $e&udagram (CSP), The Great
Miami River Watershed has a regional water quataging program (WQTP)

(Newburn and Woodward, forthcoming). The WQTP weduded in the survey because
it similarly provides cost-share funding for conssion practices. An “other” option

was included in the survey to capture any otheerf@dr state conservation programs
not already listed above, such as wetland and Igrads programs.

In Table 1, we report farmer decisions on cons@mgiractice adoption and
program enrollment for the six practices. Farmeaigiens are categorized into three
groups: no adoption, adoption without funding, addption with funding. For example,
conservation tillage has 104 (18%) farmers whonditladopt this practice, 385 (67%)
farmers who adopted without funding, and 88 (158finkers who received cost-share
support for this practice. The total number of ide@bservations for conservation

tillage is 577.
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TABLE 1

Farmer Adoption and Enroliment by Conservation ftaclype

Adoption  Adoption

Practice Type No. without with Total
P Adoption Funding Funding
Conservation Tillage 104 (18) 385 (67) 88 (15) 577 (100)
Cover Crops 522 (85) 68 (11) 24 (4) 614 (100)
Hayfields 529 (88) 54 (9) 20 (3) 603 (100)
Grid Sampling 331 (61) 159 (29) 55 (10) 545 (100)
Grass Waterways 251 (47) 138 (26) 146 (27) 535 (100)
Filter Strips 404 (73) 56 (10) 93 (17) 553 (100)

All numbers are also represented as percentagbmlie parentheses. There were a total of 768gurv
respondents; however, the number of useable olismrsavaries by practice type due to missing
information, such as farmer characteristics andagz adopted.

From Table 1, we observe that there exists largalvidity across practices in the
percentage of farmers not adopting a practice. Wewehe percentage adopting with
funding does not exhibit as much variation. Conatow tillage is the most adopted
practice and has the largest number of farmerstampyithout funding. Conversely,
filter strips, cover crops, and hayfields are #st adopted overall and the least adopted
without funding. However, unlike cover crops angftelds, filter strips has the second
largest number of farmers adopting with fundingd@ampling and grass waterways
have roughly the same number of farmers adoptitigont funding, however, grass
waterways has the largest number of farmers adpptith funding.

For our empirical analysis, the treatment groupafgiven practice type is
comprised of farmers who enrolled in any cost-sipaogram for this practice. The

control group is comprised of farmers who did naotod in any program. Table 2
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summarizes farmer enroliment in the conservatiat-sbare programs. CRP was the
dominant funding source for enrolled farmers whopadd grass waterways and
hayfields. However, there was not a single domifamding source for enrolled farmers
who adopted conservation tillage, filter stripsy@ocrops, or grid samplifgEnrollment
in the Great Miami WQTP represents only a smaditfom of overall enrollment in
Table 2. The CSP program rules are known to allost-share funding for both new and
existing conservation practices. As such, CSP funalg be directed towards subsidizing
conservation effort that is not additional. As Bustness check, in the results section we
estimate additionality for all programs, all progrexcluding CSP, and only CSP to
test whether there are significant differences betwCSP and other programs on the
additionality estimates.

TABLE 2

Farmers Enrolled in Cost-Share Programs by ConsenvBractice

Practice Type EQIP CSP CRP CREP WQTP OTHER
Conservation Tillage 16 36 25 1 5 11
Cover Crops 6 3 2 0 6 4
Hayfields 1 1 14 2 0 1
Grid Sampling 13 21 3 1 2 6
Grass Waterways 10 15 89 6 3 15
Filter Strips 8 15 48 18 1 8

* Some farmers reported receiving funding from nthe: one program for the same practice. For
example, a farmer could receive EQIP funding ffitter strip on one field, and CRP funding for &eft
strip on another field.
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Table 3 summarizes the average proportion of aergatative to the total
acreage of the property, a farmer adopts in a ceasen practice. Summarized values
are provided for enrolled and non-enrolled farmasswell as across all of these farmers.
The set of non-enrolled farmers includes both fasmého adopted a practice without
funding and farmers who did not adopt the pradfi@ble 1). Thus, for practices where
the number of farmers who did not adopt is large,average proportion for non-
enrolled farmers is weighed heavily by zero valles.example, the average proportion
of hayfield acreage for non-enrolled farmers is6f8a014) due to the large number of
farmers that did not adopt the practice. The awepgportions for environmentally
sensitive practices are small as well. The reasdmait filter strips and grass waterways,
by design, are solely focused along stream ban&sranatural drainage areas rather
than across the entire field, and thus, repressntadler proportion of total farm
acreage. Overall, the average proportions for e&eddarmers were largest for
conservation tillage and grid sampling, followedHayfields and cover crops. For
environmentally sensitive practices, the averagp@itions for enrolled farmers were

roughly the same.

® Farmers that reported a proportion of adoptedemvasion acreage greater than 1 for field practives
greater than 0.15 for environmentally sensitiveciicas were dropped because they were considered
inaccurate survey responses
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TABLE 3

Average Proportion of Conservation Adoption on Fé&weneage by Practice Type

Non-
Practice Type Enrolled Enrolled All
Farmers Farmers Farmers
Conservation Tillage 0.520 0.747 0.554
Cover Crops 0.020 0.239 0.029
Hayfields 0.014 0.265 0.022
Grid Sampling 0.194 0.718 0.247
Grass Waterways 0.006 0.016 0.009
Filter Strips 0.001 0.011 0.002

Prior to estimating the ATT, the covariates X taeg included in the first-stage
estimation of the propensity scores must be detexrthiThe covariates X should consist
of those variables that are believed to affect bloghoutcomes and enrollment decisions
(Smith and Todd, 2005). Propensity scores are agtisnusing a probit model, where the
dependent variable is the enroliment variddl& he propensity scores were assessed for
all practices. Table 4 provides the definition of each of theariates used in the
estimation, as well as the summary statistics. Bee@ach practice has a different
number of total observations, we only provide #suits for grid sampling. The average

values on the covariates do not vary significab#yween practice types.

® Refer to section 2.1 for information on the testdito assess the propensity scores.
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TABLE 4

Summary Statistics on Explanatory Variables fod@ampling

Variable Definition Mean Std. Dev
Farm =1 if farm revenue exceeded $250,000 in 2009 0.278.447
Revenue
Farm =1 if farm will be operated by family within the 0.877 0.329
Horizon next 5 years
Age age 56.736 11.583
Experience years of farming experience 31914 B®.91
Education =1 if education exceeds high school 0.43D.496
Soil tvpe =1 if dominant soil texture is clay 0.754  0.431

yp =1 if dominant soil texture is loam or sandy 0.2460.431
=1 i 0f - 0, i
1 If'O/o 10% of household income comes fr 0.209 0.407
farming
Household =1 if 10%_- 50% of household income comes 0328 0.470
Income from farming

=1 if more than 50% of household income co

. 0.462  0.499
from farming
Acres roportion of farm acreage rented in 2009 0.425 69.3
Rented brop 9 ’ '
Acr(_es in proportion of farm acreage devoted to grain 0.805 0.281
Grain crops in 2009
proportion of farm acreage with slope 0%-2% 0.559 .380
Slope proportion of farm acreage with slope 2%-6% 0.384 .362

proportion of farm acreage greater than 6% slope)58 0.138
Farm Size  natural log of total farm acreage opdrat009 5.769 1.073
=1 if a river or stream borders or runs through 0583 0.493
the property
Livestock =1 if managed livestock in 2009 0.486 00.5

Streams

The estimated probit coefficients for grid samplarg provided in Table 5. The
variables that are significant at the 99% leveletecation, acres in grain, and high

slope.
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TABLE 5

Estimated Coefficients from Probit Model to CompBtepensity Scores for Cost-Share

Enrollment in Grid Sampling

Estimated

Variable Coeff. Std. Error
Farm Revenue 0.182 0.230
Farm Horizon 0.714* 0.385
Age 0.009 0.011
Experience -0.009 0.010
Education 0.580*** 0.170
Soil Type: Not Clay 0.121 0.189
Medium Income 0.255 0.259
High Income 0.113 0.278
Acres Rented -0.124 0.274
Acres in Grain 1.844*** 0.712
Medium Slope 0.370 0.235
High Slope 1.526*** 0.560
Farm Size 0.200 0.142
Streams -0.160 0.169
Livestock 0.053 0.179
Constant -5.660*** 1.184
Log Likelihood -151.404

Note: Statistical significance: 99% (***), 95% (**)90%(*). Estimates of the propensity scores were
assessed using the test proposed by Deheija andbB&dh999). All practices passed the test. For grid
sampling, both age and experience were needeceipritbit specification to past the test. For alient
practices, only age was needed and experienceatasatuded.

5.0 Estimation Results of Additionality and the Deomposed Effects
In this section we provide the estimation resuftsadditionality and the decomposed

components of the ATT for the six conservation ficas’ Table 6 provides the

" We tested for significant differences in % ATT givall programs except CSP and only CSP for
conservation tillage, grid sampling, grass watesyayd filter strips. We did not test this diffecerfor
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estimates for the overall ATT, % ATT, and each congnt of the decomposed ATT for
all practices. The estimation is performed usirgppnsity score matching with the
Epanechnikov kernel algorithm, where the commorpstpequirement is enforced and
the kernel bandwidth is 0.52° The standard errors and 95% confidence inter@is (

were generated using a bootstrap procedure basé®@® simulations?

TABLE 6
Average Treatment Effect on the Treated and Decsegh&ffects for Non-Adopters and

Adopters using Propensity Score Kernel Matching

Conservation Tillage EstimateStd. Error 95% Bootsrapped Cl

ATT 0.1348 0.0321  0.0756 0.2006
% ATT 18.0 3.8 10.7 25.4
P, 0.1242 0.0206  0.0883 0.1684
P, 0.8758 0.0206  0.8316 0.9117
ATT, 0.6976 0.0364  0.6374 0.7783
ATT, 0.0549 0.0320  -0.0041 0.1170

Matched enrolled farmers = 87, Matched non-enrdiechers = 489

cover crops and hayfields because enrollment nusriheZSP are too small (refer to Table 2). We found
that % ATT for these four practices is higher wikensidering only CSP enrollees than for all proggam
except CSP. However, the differences were notstitzlly different from zero. As such, additionglit
estimates in this section are for all programduitiog CSP.

& We impose the common support trimming option &&using 2% trimming. Refer to Leuven and
Sianesi (2003).

® Matching quality was assessed using a two-sarrgist to check for significant differences in caate
means across matched groups. All covariates weaaded successfully for all practices. Refer to
Caliendo and Kopeinig (2008) for information on ttevariate balancing test.

1% The bootstrapping procedure used 1,000 randomsdiram the data set of farmers, with replacement
and using the same number of farmers in each dgaal ¢o the number in the original data set. Th# 95
bootstrapped CI consists of thé"nd 975 largest parameter estimates.



Cover Crops

Estimate Std. Error

95% Bootsrapped CI

ATT
% ATT

Pn
Pa
ATT,
ATT,

0.2072  0.0423
86.7 7.7
0.8639  0.0370
0.1361  0.0370
0.2392  0.0408
0.0038  0.0939

0.1343 0.2971
66.6 95.4
0.7745 0.9250
0.0750 0.2255
0.1691 0.3260
-0.2048 0.1637

Matched enrolled farmers = 24, Matched non-enrdiechers = 590

Hayfields Estimate Std. Error  95% Bootsrapped ClI
ATT 0.2033  0.0626 0.0613 0.3163
% ATT 91.0 8.4 67.7 96.3
Py 0.8914  0.0344 0.7997 0.9347
Pa 0.1086  0.0344 0.0653 0.2003
ATT, 0.2182 0.0617 0.0847 0.3336
ATT, 0.0814  0.1083 -0.1902 0.2482

Matched enrolled farmers = 18, Matched non-enrdienhers = 583

Grid Sampling Estimate Std. Error  95% Bootsrapped CI
ATT 0.4788  0.0557 0.3352 0.5535

% ATT 65.8 5.7 50.7 72.1
Py 0.5775 0.0478 0.4564 0.6492
Pa 0.4225 0.0478 0.3508 0.5436
ATT, 0.7229  0.0441 0.6263 0.8019
ATT, 0.1451  0.0706 -0.0263 0.2472

Matched enrolled farmers = 54, Matched non-enrdiechers = 490
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Grass Waterways  EstimateStd. Error

95% Bootsrapped CI

ATT 0.0097
% ATT 61.6
P, 0.5652
P. 0.4348
ATT, 0.0158
ATT, 0.0018

0.0018
7.4

0.0412
0.0412
0.0016
0.0027

0.0059
44.8

0.4939
0.3507
0.0130
-0.0041

0.0131
73.3

0.6493
0.5061
0.0192
0.0071

Matched enrolled farmers = 144, Matched non-enddibemers = 389

Filter Strips Estimate Std. Error 95% Bootsrapped ClI
ATT 0.0098 0.0019 0.0065 0.0139

% ATT 92.0 3.5 83.7 96.9
Py 0.8373  0.0346 0.7579 0.8900
Pa 0.1627  0.0346 0.1100 0.2421
ATT, 0.0107  0.0019 0.0073 0.0149
ATT, 0.0050 0.0030 0.00009 0.0117

Matched enrolled farmers = 92, Matched non-enrdiechers = 460

The overall ATT in Table 6 is estimated based amatign (3). The % ATT in Table 6 is

the ratio of the overall ATT in equation (3) aEc[\gl D:]] in equation (4)

% ATT =

Note that the overall ATT is equal @[, | D=1~ E[ ¥ | D=1, which therefore has an

upper bound oE[\gl D:]] . The % ATT can be interpreted as the percentagease

in the proportion of conservation acreage normélizgthe total proportion of

ATT

e[| D=

[100
]

(24)
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conservation acreage adopted, conditional on eneoit. The % ATT is thus equal to

the percent additionality. The formulation of th& ARdecomposition is given by

equation (12). The estimated average probabilfdeand P, that for the set of enrolled
farmers that are adopters or non-adopters arelatddubased on equations (17) and (18)
, respectively. Meanwhile, the valuésl T, and ATT, for non-adopters and adopters are

calculated using equations (22) and (23), respelgtiv

The overall ATT is positive and statistically sigrant for all six practices
(Table 6). Specifically, the bootstrapped 95% aderfice intervals do not contain zero
for any of the six practice types. This suggesas ¢éimroliment in cost-share programs
achieves a significantly positive level of additdity for each practice type. The ATT
values are higher for the field practice types ttherse of environmentally sensitive
practices. The reason is that filter strips andgmaterways, by design, are solely
focused along stream banks and in natural draiaegges rather than across the entire
field, and thus, represent a smaller proportiotot#l farm acreage. Remember that the
proportion of conservation acreage adopted by Earéhrmers is less than 0.02 for both
filter strips and grass waterways (Table 3).

To compare the level of additionality between pcactypes, we use the % ATT

in equation (24) that normalizes the overall ATTthg upper bound on the proportion
of conservation acreage adopted by enrolled far,n@[r!r{L | D:]] . The largest % ATT

is found for filter strips, hayfields, and coveops with 92.0%, 91.0%, and 86.7%,

respectively (Table 5). Moderate percent additibyatas found for grid sampling and
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grass waterways with % ATT at 65.8% and 61.6%. €nsation tillage had the lowest

percent additionality at only 18.0%. In sum, thig@gests that while cost-share funding
from enrollment in conservation programs achiepesitive ATT for all practice types,
certain practice types achieve higher percent ixbaility than others.

To test whether the % ATT values are statisticdifferent across practice types,
we construct bootstrapped confidence intervalfefdifference in % ATT for all pair-
wise combinations of practice types (Table 7). &ample, the difference in % ATT
between cover crops relative to conservation &lhgs a 95% bootstrapped confidence
interval spanning lower and upper bounds of 4810 @&l.3%, respectively. This
indicates that cover crops have a significanthhbrg% ATT than conservation tillage.
Meanwhile, the difference in % ATT between coveps and hayfields is not
statistically significant from zero because thetbtrapped confidence interval spans
from -23.1% to 24.4%. When comparing the two emwmnentally sensitive practices,
filter strips has a statistically larger % ATT thgrass waterways.

We performed robustness checks on the estimatée &TT, % ATT, and the
decomposed effects using propensity score matehitngthe nearest-neighbor
algorithm based on four neighbors (m=4), with reptaent. The results are provided in
Table A.1 in the Appendix A.1. The nearest-neighddgorithm results in larger standard

errors, i.e., wider bootstrapped confidence intispvthan the kernel algorithm. This

causes theATT, for filter strips to not be statistically differefiom zero. The algorithm

also leads to a negativeT T, for hayfields, however, it is not statisticallyffdirent from

zero. Nonetheless, this reduces the value of tAed%for hayfields considerably, from
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91% to 83%. Other than these differences, paramestanates for all practices are quite
similar across the two algorithms. We generatedaebthe bootstrapped confidence
intervals of the difference in % ATT for all pairse combinations, as in Table 7, using
the nearest-neighbor algorithm. The statisticatificance of the differences in % ATT
remained the same based on the alternative matalgngthm. Consequently, the
similarity in the parameter estimates and the cffiees in % ATT demonstrate the

robustness of the results to different matchingtlgms.

TABLE 7

Bootstrapped 95% Confidence Intervals for Pair-vidgféerences in % ATT using Propensity

Score Kernel Matching (Row minus Column)

Conservation Cover Grid Grass

T|||age Crops Hayflelds Sampllng Waterways F|Iter St”ps

Conservatiory
Tillage

Cover Crops| [48.7, 81.3]

Hayfields | [48.5, 82.0] [-23.1,24.4]

Grid
Sampling | 1304 56.8] [-404,-3.8] [-41.2-1.6]
Grass
Waterways | (224 5771 [46.0 -1.8] [-46.7-1.7] [16.3,20.7]

Filter Strips | [62.6, 82.5] [-25.4, 8.1] [-26.1,8.2] [17.4 42.7] [15.6,48.7]
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The components of the decomposed ATT help to exples relative

contributions of non-adopters and adopters to tlegadl ATT, which, in turn, explains

the differences in % ATT between practice typesl@# highlights thalATT, is less

than ATT for all practice types as expected. Interestingly,L. is positive but not

statistically different from zero for all practigesxcept for filter strips. This implies that

adopters are not significantly expanding the proporof conservation acreage. Hence,

practices for which a large fraction of enrolledhii@rs are adopters (i.€f, is large)
typically have a lower % ATT. Consider conservatiilage whereATT is 0.70, while
ATT is only 0.07. The fraction of enrolled farmers éonservation tillage that are

adopters,P, =0.87, is much larger than that of non-adoptefs=0.13. Consequently,

because a large fraction of enrolled farmers aoptads, the overall ATT is small
relative to the total amount of conservation cogerand thus, the % ATT is relatively

low for conservation tillage.

Practices wherd?, is considerably larger thai, have higher % ATT values.
When comparing the environmentally sensitive pcactypes, the fraction of enrolled
farmers that are non-adopters for filter strip£js= 0.84, while for grass waterways
P, =0.57 (Table 6). As such, the % ATT is larger for fikestrips (92.0%) than for
grass waterways (61.6%). Similar results are famhdn comparing field practices.
Cover crops and hayfields have lardgrvalues than grid sampling and conservation

tillage. As such, the % ATT values for cover crapsl hayfields, 86.7%, and 91.0%,
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respectively, exceed that of grid sampling and eoration tillage, 65.8% and 18.0%,

respectively. The % ATT for conservation tillageansiderably smaller than for the

other five practices because it has the smalldsevar P.. Notice that the % ATT
depends as well on the relative magnitudé®dfl, to ATT . The closer to one is the
ratio of ATT, to ATT, the smaller is the effect df, and P, on the % ATT.
Nonetheless, since the ratio A T, to ATT ranges from 0.08 for conservation tillage
to 0.47 for filter strips, the probabilitidd and P, affect considerably the % ATT.

The heterogeneity if2 and P, and consequently in % ATT, across practices

may presumably be related to differences in theapeinet benefits provided by each
conservation practice. This follows from the asstiompthat higher onsite benefits of a
practice should increase the likelihood that a &arie an adopter even without cost-
share payment. Conservation tillage, for exampiayides a modest or negligible

reduction in yields to most farmers without requiysignificantly greater expenditures.
This provides positive private net benefits andiitssn a largeP, for conservation

tillage. Filter strips, cover crops, and hayfields,the other hand, reduce the amount of
land in production without providing onsite bengfisuch as an increase in yield or
nutrient retention. As a consequence, private aeéfits are expected to be negative,

and the majority of enrolled farmers would not adapch practices without financial
support (i.e., largd’,). Grass waterways and grid sampling also impogempnity

costs on the farmer, but they provide greater ermhefits than filter strips, cover

crops, and hayfields. Grass waterways reduce tloeianof working land, but retain
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nutrients that would otherwise be depleted, whild gampling requires significant
investments in management and technological reesubtit is expected to considerably
increase farmer yields. These practices are thpsoted to have a larger proportion of
enrolled adopters than filter strips, cover cr@ys] hayfields.

If we compare the two environmentally sensitivecicas, filter strips and grass
waterways, which provide the same offsite benéifiés, a reduction in nutrient runoff
into streams), we see that filter strips has assitzdlly greater % ATT than grass
waterways. Presumably, this is due to the factdhads waterways provide larger
private net benefits than filter strips due to th@iger onsite benefits. This leads to a
larger fraction of enrolled adopters for grass waég's than for filters strips, and a
reduction in the % ATT of grass waterways. Our ltsson % ATT thus coincide with
what we would expect to observe based on privatbergefits: larger additionality (i.e.,
% ATT) for practices with lower private net bengfiand lower additionality for
practices with larger private net benefits.

It should be acknowledged that if there exist ueolsd covariates that influence
both enrollment and the potential outcomes, theretimated ATT may be biased (Guo
and Fraser 2010). Rosenbaum (2002) developed adchttht determines the extent to
which a matching estimator is sensitive to unobsgiselection bias by altering the
estimated odds (i.e., propensity scores) of proggarollment and quantifying how
much these alterations affect the estimated ATS$tudly that is not sensitive to
unobserved bias would find that the ATT is robosthanges in the propensity scores

(Guo and Fraser 2010). Results from the sensitaniglysis are provided in Appendix
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A.5. Overall, results suggest that ATT estimatesafbpractices, except for conservation

tillage, show moderate to high levels of robustrieasnobserved bias.

6.0 Conclusions

Federal cost-share funding for the adoption of eoretion practices on working lands
have increased considerably starting in 2002. Ti@ency of cost-share programs
depends in part on the degree to which they proathtitional conservation effort. In
this paper, we use propensity score matching tomatt the level of additionality from
enrollment in federal cost-share programs for sixservation practices. Our results
indicate that the enroliment achieves positive sigdificant levels of additionality for
each of the six practice types. That being sa®l pétrcent additionality varies
dramatically between practice types. Specificalg, percent additionality is highest for
filter strips (92.0%), hayfields (91.0%), and coeeops (86.7%), while it is lowest for
conservation tillage (18.0%).

Valuable policy insights are provided by the newthmdological approach that
decomposes ATT into the relative contributionsddaters and non-adopters. Both
types of farmers can provide additionality as lasgeach adopts more conservation
acreage than they would have in the absence of gatyWe found, however, that the
ATT for adopters is not statistically significat fall practice types, except filter strips,
suggesting that adopters are not contributingecettpansion of conservation acreage.
Furthermore, decomposition estimates suggesthkalitfferences in % ATT between

practice types are mainly determined by the fractibenrolled farmers that are adopters



34

and non-adopters. Practice types that have a feagion of non-adopters, such as
filters trips and hayfields, exhibit larger valides % ATT. This methodological
approach to decompose ATT is broadly applicableofogram evaluation in other
contexts where program participants can be categpbinto two distinct groups.

The practice of offering payment incentives to farsnor landowners to improve
environmental stewardship is growing in popularfigr example, emerging markets for
ecosystem services are being developed that adfgnents to landowners to improve
carbon sequestration and water quality via lantbraBon and the adoption of
agricultural BMPs. In such programs, additionaiétya major concern because it is a
principal measurement of program effectivenessnv@snove towards a greater
implementation of incentive-based programs to asldemvironmental concerns,
analysis of existing programs is crucial to detaing whether such programs lead to
increased conservation effort. In this paper, wayamatching estimators to measure
additionality for federal incentive-based prograaswell as develop a methodology
that decomposes additionality into the relativetabations of adopters and non-
adopters. This provides greater insight into tHeatfof incentive-based programs on

different types of program participants and quasithe gains achieved by each.

Appendix
In this appendix, we present the results for prepggiscore matching with the nearest-
neighbor algorithm and provide validation of théraators we propose for each

component of the decomposition. First, we provigeresults for propensity score
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matching with the nearest-neighbor algorithm. Tivemvalidate the estimators for the

conditional expectation of;, equations (19) and (20), and follow with the dation for

the estimators of the conditional expectationfpfequation (21). Finally, we provide

validations for the estimators of the respectivelTAdr non-adopters and adopters,
equations (22) and (23), respectively. The estinsdtw the probabilities, given by (17)
and (18), are used in the validation process. @kedection discusses the sensitivity

analysis.

A.1 Propensity Score Nearest-Neighbor Matching Resu

In this section, we provide the results for the A¥A ATT, and the decomposed effects
based on propensity score nearest-neighbor matdRegylts were discussed in section

5. Table A.1 below provides the results.
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TABLE A.1

Average Treatment Effect on the Treated and Decsegh&ffects for Non-Adopters and

Adopters using Propensity Score Nearest-Neighbdchitag (m=4) with Replacement

Conservation Tillage Estimate Std. Error 95% Bootsrapped CI

ATT 0.1489 0.0459 0.0491 0.2261
% ATT 19.9 5.8 6.4 28.9

Pn 0.1293 0.0383 0.0540 0.2033

Pa 0.8707 0.0383 0.7967 0.9460

ATT, 0.7035 0.0756 0.5496 0.8492

ATT, 0.0666 0.0422 -0.0243 0.1358

Matched enrolled farmers = 87, Matched non-enrdiechers = 226

Cover Crops Estimate Std. Error 95% Bootsrapped CI
ATT 0.1972 0.0458 0.1162 0.3003

% ATT 82.5 11.1 57.8 98.9
Py 0.8438 0.0741 0.6905 0.9762
Pa 0.1563 0.0741 0.0238 0.3095
ATT, 0.2293 0.0441 0.1684 0.3391
ATT, 0.0239 0.1679 -0.3748 0.3279

Matched enrolled farmers = 24, Matched non-enrdiechers = 76

Hayfields Estimate Std. Error 95% Bootsrapped CI
ATT 0.1861 0.0686 0.0434 0.3127
% ATT 83.4 18.6 31.9 100.0
Pn 0.8750 0.0821 0.6786 1.0000
Pa 0.1250 0.0821 0.0000 0.3214
ATT, 0.2209 0.0656 0.0797 0.3446
ATT, -0.0575 0.2410 -0.5976 0.4619

Matched enrolled farmers = 18, Matched non-enrdbechers = 64




Grid Sampling Estimate Std. Error 95% Bootsrapped CI
ATT 0.4846 0.0747 0.2732 0.5633

% ATT 66.6 9.1 40.7 74.8
Py 0.5926 0.0752 0.3750 0.6568
Pa 0.4074 0.0752 0.3432 0.6250
ATT, 0.7207 0.0678 0.5267 0.7883
ATT, 0.1412 0.1525 -0.2893 0.3132

Matched enrolled farmers = 54, Matched non-enrdiechers = 144

Grass Waterways  Estimate Std. Error

95% Bootsrapped CI

ATT 0.0100
% ATT 63.6

Pn 0.5677

Pa 0.4323

ATT, 0.0159

ATT, 0.0023

0.0021
10.2

0.0558
0.0558
0.0019
0.0037

0.0051
37.8

0.4650
0.3243
0.0125
-0.0068

0.0136
77.1

0.6757
0.5350
0.0200
0.0082

Matched enrolled farmers = 144, Matched non-enddbemers = 246

Filter Strips Estimate Std. Error 95% Bootsrapped CI
ATT 0.0099 0.0019 0.0062 0.0140

% ATT 93.4 5.6 76.7 98.2
Pn 0.8478 0.0472 0.7321 0.9128
Pa 0.1522 0.0472 0.0872 0.2679
ATT, 0.0110 0.0020 0.0072 0.0150
ATT, 0.0040 0.0050 -0.0040 0.0165

Matched enrolled farmers = 92, Matched non-enrdbechers = 202
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A.2 Validation of the Estimators for the Conditibixpectation of Y for Non-Adopters

and Adopters

To demonstrate the validity of the proposed estmsafor the conditional expectations

of Y, we rely on the following decomposition &Y, | D=1]:

E[Y|D=1=P(¥=0|D=3J0F Y|Y= 0,1 |

25
+P(Y,>0|D=1)H Y|¥>0,D=} (29)
When we substitute the estimators (17), (18), (489, (20) into (25), we should obtain
the matching estimator f&[\gl D:]] given by (4). Substituting these estimators into
(25), we obtain:
A P XS A , PN
SMEREES (Ut N o ] e I
itH, z (1_ B(')) oH z B
iOH, i0H,
which, after canceling terms and noting trﬁt(l— é(',) + Z I%O =1, yields:
iOH, itH,
E[Y,| D= ]]——Z\{ (27)

|DHl

Thus, our proposed estimators for each of the dposed terms yield the standard

matching estimator foE[\gl D:]] given by (4).
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A.3 Validation of the Estimators for the Conditibixpectation of ¥ for Non-Adopters

and Adopters
The matching estimator de[\g | D=:I] is given by equation (5). Substituting equation

(2) into (5), we obtain

E[YolD:]]:%ZZW( )Y (28)

iOH, jH

Noting that Y" W (i, j)¥ = " W(i )(1- B )¥ +_§ Wi ) B Y and

jfH, JtHo

> w(i, j)(l— B )\Q =0, we have that

jOH,

2 W)Y =2 W(i )BY . (29)

j0Hq Mo

Substituting equation (29) into (28), the standaatching estimator can now be

expressed as

E[%I1D=0=T% ¥ W(i ) BY . (30)

iOH, jH

To demonstrate the validity of the proposed estinsafior the conditional expectations

of Y, we rely on the decomposition &Y, | D=1 given by

E[%,ID=]=P(¥>0/D=3 B Y|y> 0B | (31)
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where E[Y; | ¥ =0, D= ] = Gand drops out of the formulation. When we subsithe
estimators (17) and (21) into (31), we should abthe matching estimator for

E[YO | D=]] given by (30). Substituting these estimators {8tb), we obtain

A [z sweiee] |
creio=g Ly 81 s sugay. o
I 5 i; .gw(i, J')Bé I & T,

where ég is given by equation (14). Thus, our proposedvestrs for each of the

decomposed terms yield the standard matching estirfea E[YO | D:]] given by (30).

A.4 Validation of the Estimators for the ATTs of Mé\dopters and Adopters

To demonstrate the validity of the proposed estinsafior the ATT, we begin with the
decomposition of the ATT given by (12). When wediibte in the estimators, (17),
(18), (22), and (23) into (12), we should obtaie thatching estimator for the ATT

given by (3). Substituting the estimators into (3¢ obtain:

N PEN] P )
R [ e
iOH, i; (1_ B(I))
1 (33)
YBY || > > w(i i)Y
+|:lz é(,)j| iDH; | iOH jTH,
I G, ; Bl ; ; w(i j) B

which can be rewritten as:
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(34)
> 2 W(i ) BYs
1o g | it T,
- I_Z Bo -
=y swii)s
iOH; jCH,
The first term in equation (34) equals the matclasgmator forE[\gl D:]] given by
(26), and the second term equals the matching atimfor E[YO | D:]] given by (32).
Thus, equation (34) yields:
A - 1 R
ATT=HY| D=1~ H Y| D=1=72 ¥-23 ¥, (35)

iCH, | itH,

which equals the standard matching estimator ®XRT given by equation (3).

A.5 Sensitivity Analysis

Rosenbaum (2002) developed several methods fandestnsitivity to hidden bias. We
use the Wilxocon singed rank statistic based oneséaeighbor propensity score
matching using only matched pairs (m=1). Using #pproach, we determine the upper
bounds on the significance level (critical p-values the ATT given different values of

. If ATT remains significant for values df greater than 1.75, we can then conclude
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that estimates are at least moderately robusttengial hidden bias' In other words,
the higher the value df under which ATT remains significantly different fnozero, the
more conclusive is the evidence that there exigiss#tive effect of program enrollment
on farmer adoption decisions. Note that the tessdmt determine whether or not
hidden bias exists, but rather, how sensitive gtienate would be to hidden bidssuch
an unobserved confounder existed (Rosenbaum 2002).

In Table 10 we provide the results of the sensytighalysis for all practices. The
first column provides th& values and the second column (sig+) provides the
corresponding upper bound on the p-value for th& Allhe results suggest that
robustness to hidden bias varies considerably a¢hesdifferent practices. For
conservation tillage, the results suggest that ilimobserved covariate caused the odds
ratio to differ by a factor of around 1.3, then th&T would no longer be significant at
the 95% confidence level. For filter strips, howewke ATT remains significant up to a
factor of 12, implying that the additionality esate for filter strips is quite robust to
unobserved biad: values for the remaining practices range from add2 to 4.2,
which suggests that all practices, except for caagion tillage, show moderate to high
levels of robustness to unobserved bias. This esghat we can conclude with greater
confidence that for most practices, program enrefitvhas a statistically significant
effect on conservation effort. This suggests thddén bias alone cannot explain the

association between enrollment and conservatiamnteff

M studies by DiPrete and Gangl (2004), Andam €28I08), Ferraro et al. (2007), and Liu and Lynch
(2011) considell values greater than around 1.75 (for a 95% confidéevel) imply the ATT estimates
are at least moderately robust to hidden bias.
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Conservation Tillage Cover Crops Hayfields Grid Sarmpling
r sig+ r sig+ r sig+ r sig+
1 0.003 1 0.001 1.8 0.004 2.2 0.004
1.05 0.006 1.2 0.002 2.2 0.008 2.4 0.007
11 0.009 14 0.006 2.6 0.013 2.6 0.011
1.15 0.015 1.6 0.012 3 0.02d 2.8 0.018
1.2 0.022 1.8 0.020 3.4 0.02§ 3 0.026
1.25 0.032 2 0.030 3.8 0.036 3.2 0.036
1.3 0.045 2.2 0.043 4.2 0.044 3.4 0.048
1.35 0.060 2.4 0.058 4.6 0.052 3.6 0.062
Grass Waterways Filter Strips \
r sig+ r sig+
2 0.000 6 0.002
2.2 0.001 7 0.005
2.4 0.002 8 0.010
2.6 0.005 9 0.017
2.8 0.012 10 0.025
3 0.024 11 0.036
3.2 0.044 12 0.048
3.4 0.071 13 0.061
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