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A Globally Flexible Model for Crop Yields Under Weather Risk 

 

Abstract 

The literature on climate change and crop yields now recognizes the need to allow for highly 

non-linear marginal effects.  This study combines these two areas of the literature by using 

Flexible Fourier Transforms (FFT’s) to ensure flexibility for both the time trend and the weather 

effects.  This study also illustrates how FFT’s can be combined with quantile regression (QR) to 

provide both robustness to outliers and information on the scale effects of time and weather 

variables. For U.S. county level data on corn, soybeans, and winter wheat, we estimate the 

relationship between yield and temperature and precipitation using a traditional parametric 

expected-yield estimator, our quantile-FFT regression evaluated at the median, and our QR-FFT 

regression that incorporates information on the tails of the distribution.  We find that quadratic 

terms are not sufficient for capturing nonlinearities in the relationship between yield and the 

explanatory variables. 

 

INTRODUCTION 

 Flexible functional forms are important tools for modeling crop yield distributions.  To evaluate 

crop insurance policies and to estimate the effects of climate change on crop yields, analysts 

must draw on data that is generated from complex, non-linear production functions and in most 

cases must correct that data for technical change.  The literature on estimation of unconditional 

crop yield distributions has established the need to flexibly control for deterministic time trends 

(Goodwin and Ker 1998).  The literature on climate change and crop yields recognizes the need 
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to allow for highly non-linear marginal effects (Schlenker and Roberts 2006).  This study 

combines these two areas of the literature by using Flexible Fourier Transforms (FFT’s) to 

ensure flexibility for both the time trend and the weather effects.  This study also illustrates how 

FFT’s can be combined with quantile regression (QR) to provide both robustness to outliers and 

information on the scale effects of time and weather variables. 

  A basic question in climate change research is: how will changes in weather distributions 

influence crop yields?  This question illustrates the need for flexible estimation methods that can 

capture the location and the scale effects of weather on crop yields.  The costs of climate change 

to agricultural production may be driven more by environmental risks such as drought and 

flooding than by changes in average temperature and precipitation, particularly if climate change 

increases the frequency and intensity of extreme events (IPCC 2007).  Such predictions have 

increased the need for estimates of higher-order moments of crop yield distributions conditional 

on weather (or climate) outcomes.  Obtaining information on more than just the central 

tendencies of crop yield distributions generally requires data that is drawn from multiple decades 

to include at least several “major” yield shocks, usually either droughts or floods.  Such data 

places a premium on estimation methods that are robust to potentially skewed distributions and 

misspecifications of functional form, particularly with respect to time trends that are used as a 

proxy for technical change.   

Flexible Fourier Transforms (FFT) – a semi-nonparametric method – allow for non-linear 

responses of yield to both weather variables and to time-trends.  FFTs provide a parsimonious 

representation of non-linear marginal effects and allow for much greater flexibility than higher-

order polynomial functions and are more easily applied to multivariate estimations than kernel 

regressions. The Fourier functional form is one of the few functional forms known to have 
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Sobolev flexibility, which means that the difference between an estimated function g(x,θ) and the 

true function f(x,θ) can be made arbitrarily small for any value of x as the sample size becomes 

large (Gallant 1987). 

However, the flexible properties of the FFT are asymptotic.  To reduce the burden on the 

applied FFT analysis in converging on the true function, this study uses the FFT in conjunction 

with quantile regressions (QR).  M-estimators – such as quantile regression – have been 

advocated in crop yield studies for both their robustness to outliers and their semi-parametric  

properties, i.e. their freedom from distributional assumptions (Harri et al. 2009, Finger 2010).  

The combined FFT-quantile estimator is semi-nonparametric, and is free of assumptions 

regarding the distribution of the regression error as well as the functional form of the yield 

relationship g(.).  The benefit of this approach over a nonparametic quantile (kernel) regression is 

that multiple explanatory variables can be easily included.  In the context of weather-related 

risks, quantile regressions have an additional benefit that has not been fully exploited. Namely, 

the approach’s ability to estimate quantiles in the tails of the crop yield distribution provides 

information on production risk that is largely absent from estimates of conditional mean yields.  

This flexibility allows for the sort of conditional heteroskedasticity that is typically captured 

through Just-Pope production functions (Chen et al. 2004).     

The combination of FFTs and QRs is implemented for estimations of yield distributions 

for corn, soybeans, and wheat, in all U.S. counties where all three crops are grown and for which 

the National Agricultural Statistics Services reported data over 1975 to 2007.  We demonstrate 

graphically the estimated relationship between yield and temperature and precipitation using a 

traditional parametric expected-yield estimator, our quantile-FFT regression evaluated at the 
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median, and our quantile-FFT regression that incorporates information on the tails of the 

distribution.  

This paper is organized into four sections.  The first section presents a brief review of the 

literature on crop yield estimation method.  The second section frames analysis of crop yields in 

the context of the farmer’s maximization problem and presents the FFT and QR estimation 

methods.  The third section summarizes the data used in the analysis.  The fourth section presents 

the results of the model by graphically comparing the FFT-QR results to traditional parametric 

results. 

 

LITERATURE ON ESTIMATION OF CROP YIELD DISTRIBUTIONS 

A large literature exists on methods for estimating crop yield distributions. Examples include 

conditional (e.g.: Schlenker and Roberts 2006) and unconditional (e.g.: Harri et al. 2009) crop 

yield distributions when (county-level) crop yield data includes time-dependent technical change 

(Moss and Shonkwiler 1993), influential outliers (often due to drought or flooding), potentially 

non-normal yield distributions, and non-linear response to weather shocks. 

 Agronomic simulation models provide an alternative method to estimate the impacts of 

climate change on expected crop yields (Adams et al. 1990, Park and Sinclair 1995).  However, 

crop simulators may not adequately represent optimization at the farm level, which leads some 

analysts to prefer econometric models of conditional crop yields (Lobell et al. 2007, McCarl et. 

al. 2008, Huang and Khanna 2010).  Some of these studies also examine change in production 

risk by examining conditional variance of yield (Chen et al. 2004).  For the most part, these 

studies focus on specification of weather variables and rely on linear or quadratic time trends, 

There is evidence that crop yields may not be either difference-stationary or trend-stationary 
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(Pujala et al. 2010), although conditioning on weather variables may solve these problems (Chen 

et al. 2010). 

 Controlling for time trends is a more central topic in the estimation of unconditional crop 

yield distributions.  Potentially non-linear trends in technical adoption are difficult to estimate in 

the presence of non-normal distributions (Moss and Shonkwiler 1993).  Kernel-density 

estimation is a useful method for capturing non-linearities and may help reduce sensitivity to 

non-normality (Ker and Goodwin 2000, Ker and Coble 2003). 

 Skewness is a prevalent concern in crop yield distributions, although there are dramatic 

differences in skewness across regions and crops (Harri et al. 2009, Ramirez et al. 2010).  In 

general, skewed crop yield distributions generate outliers that make estimation of time trends 

sensitive to large yield shocks that occur toward the beginning or end of a data series.  Robust 

estimators, such as quantile regression, provide one means of controlling for these outliers 

(Finger 2010).  Skewness may also results from underlying skewness in weather variables even 

if the underlying conditional distribution is normal (Hennessey 2009), so conditioning on 

weather also provides a useful means of ensuring robustness in time trend estimation.    

 

OVERVIEW OF THE FARM MANAGEMENT AND ECONOMETRIC MODELS 

Farm Management Model 

The stochastic nature of yields and prices ensures that agricultural producers do not know at 

planting time what their realized revenue will be. Consequently, with the likelihood that farmers 

are not risk neutral, a wide body of literature addresses the effect of risk on agricultural producer 

decisions (Just, 1974; Love and Buccola, 1991; Pope and Just, 1991; Saha, Shumway, and 

Talpaz 1994; Coyle, 1999; Sckokai and Moro, 2006; Serra et al., 2006).  A critical component of 
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this literature is the impact of risk on producer’s acreage decisions (Just 1974, Chavas and Holt 

1990, Coyle 1992, Lin and Dismukes 2005; Arnade and Cooper, 2010).  Due to this link between 

production risk and adjustments on the extensive margin, models of conditional yield 

distributions that rely on observational data are best framed within the context of the literature on 

production decisions under risk, whether stemming from theoretical frameworks such as 

expected utility maximization, prospect theory, or other paradigms.   

Production lags and the volatility of agricultural markets suggest that price and yield 

uncertainty may affect the producer’s planting decisions.  For example, Just (1974) estimated 

agricultural supply equations and showed that revenue variances can have a significant impact on 

producer’s acreage decisions. Since then, expected utility models have been used to measure the 

impact of price risk on acreage decisions.  Implicit in our analysis of yields is that farmers chose 

acreage and other inputs (e.g., fertilizer) to maximize a concave von Neumann Morgenstern 

utility function over wealth or some other measure of income. In such a case, yields will be a 

function of the farmer’s input choices, soil and other agronomic characteristics of the land, and 

stochastic weather variables, all transformed by technology into yields. Taking first order 

conditions of expected utility function, input levels can be expressed as function of input and 

output prices. Hence, yields should be a function of prices, proxies for technology, land 

characteristics, and weather variables, which we denote as Y = f(x).  In the following analysis we 

directly control for the ratio of input and output prices as well as weather variables.  We proxy 

for technical change with a flexible function of time.  For land characteristics, we rely upon 

regional fixed effects.   

 

Globally Flexible Model for Yields 
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Expanding parameter space, or semi-nonparametric (SNP), methods, are halfway between 

parametric and nonparametric inference procedures.  An advantage of SNP over nonparametric 

methods is that they allow the researcher to reduce the potential for misspecification bias 

associated with parametric techniques, while at the same time accounting for explanatory 

variables more easily than nonparametric methods.   

 The Fourier functional form we use for the SNP is the only functional form known to have 

Sobolev flexibility, which means that the difference between the model  YSNP(x,θ) and the true 

function f(x) can be made arbitrarily small for any value of x as the sample size becomes large 

(Gallant, 1987). The Fourier flexible functional form, which attaches linear and quadratic terms to 

the Fourier terms to help decrease the number of terms needed to model nonperiodic functions, is 

specified as (Gallant, 1982) 
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, k is the dimension of θ, A (the length) and J 

(the order) are positive integers, and kα are vectors of positive and negative integers that form 

indices in the conditioning variables, after shifting and scaling of x by s(x).    The function s(x) 

prevents periodicity in the model (Gallant, 1982; Mitchell and Onvural,1996).    

 As parametric function Y = f(x) is nested in Equation (1), validity of the parametric 

specification can simply be assessed by statistically testing whether or not the parameters u0α = 

υjα = wjα = 0,  j, α.   If a variable has only three unique values, then only the v or w 

transformation may be performed. With two values, none of the transformations can be 



9 

 

performed.  A formal criterion for choosing A and J is not well established.  Chalfant and Gallant 

(1985) suggest a rule of thumb that the dimension of θ = N2/3, but this may be high.  Asymptotic 

theory calls for θ = N1/4, but Fenton and Gallant (1996)  note that θ  = N1/2 is likely to be more 

representative of actual practice. Appending an additive error term, Equation (1) can be 

estimated via least squares approaches and quantile approach. 

 Taken individually, Fourier coefficients do not have an economic interpretation, and 

there is little point reporting them, especially if the number of parameters is large. To give the 

Fourier regression results an economic interpretation, they must be re-expressed in terms of the 

base (i.e., untransformed) variables x. One possible way to add economic content is to generate 

graphs of the relationship between acres and the explanatory values numerically.  Another way is 

to evaluate ∂ SNP
itY (x,θ) /∂x and use this expression to form elasticities. 

 

Quantile Estimation  

The condtional mean of the yield function, equation 1, is a natural starting point.  However, our 

interest extends beyond the condtional mean for two reasons.  First, if the condtional distribution 

of YSNP(x,θ)  is not symmetric, then robustness of coefficient estimates to outliers becomes a 

concern.  Second, given the assumption of risk averse producers, there is an interest in higher 

order moments of the conditional distribution. 

 Both of these concerns can be addressed through the use of quantile regression (Koenker 

2005).  For each quantile of interest, the conditional quantile of yields is estimated.  This returns 

a set of parameter estimates specific to that quantile.    
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DATA 

U.S. county-level data from the National Agricultural Statistics Service (NASS) of the USDA 

covering 1975 to 2007 were obtained for corn for grain, soybeans, and winter wheat. Note that 

before the mid-1970s, NASS did not have all continental U.S. States included in its coverage of 

county level data. These are placed in balanced data sets containing all counties for which NASS 

has reported planted acres in these crops in every year over the study period. Our strict 

requirement of no missing data means that some marginal counties – counties with too few 

planted acres to permit publishing of data without consequences for confidentiality – are left out 

the analysis.  

 Yields in each year are planted-acre yield, total production divided by planted acreage.  

This accounts for fluctuations in the total number of harvested acres.  Since planted acreage for 

corn includes both silage and grain production, total planted acreage is corrected by subtracting 

out acreage that is harvested for silage. 

 Weather data is obtained from Oregon State’s PRISM (Parameter-elevation Regressions 

on Independent Slopes Model) climate mapping system (PRISM 2009).  Taking into account the 

interaction of topography and meterological processes, the PRISM data is a gridded interpolation 

of weather station data and includes monthly values of total precipitation, average daily 

maximum temperature and average daily minimum temperature.  For this study, PRISM grid 

cells were averaged for temperature values and summed for precipitation values over all cells 

that fell with agricultural land within each county.  Monthly values were averaged or summed 

into bimonthly values within the spring crop growing season.  Minimum temperature and 

precipation during the winter are the combination of January, February, March and the previous 

year’s December values. 
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The effect of input and input prices are proxied by the ratio of the effective output price pi 

to a fertilizer price w, thus imposing homogeneity of degree zero in input and output prices and 

contributing to parsimony in the explanatory variables. For the input price, we use the April 

ammonia price from the ERS fertilizer data, as April is reasonably close to planting dates for soy 

and corn.  The output prices are the NASS cash price per bushel for the planting decision month 

for each crop, where this month is the same as that defined by the Risk Management Agency of 

the USDA for the pricing of various crop insurance products.  The output price is truncated at the 

commodity loan rate, where the loan rate for each year is defined by Title I of the U.S. Farm Act 

covering that year.    This truncation approach is an approximation to a more theoretically correct 

approach that would use futures prices in a framework of a truncated distribution.  However, 

such an approach would require a series of prior year prices in order to calculate the conditional 

expectations.  As we do not have futures prices prior to 1975, such an approach would result in a 

loss of degrees of freedom.  As the correlation between cash prices and futures prices is quite 

high for storage commodities and as annual fertilizer use has changed little over our study 

period, the ratio as constructed should be sufficient for this paper where the focus is on weather 

shocks that should not be correlated with prices at planting time.  

 

RESULTS 

We begin by evaluating the FFT model estimated by OLS.  The combined FFT quantile 

regression model is discussed below.  The FFT model includes quadratic terms for all weather 

variables and time trends, which means that the traditional parametric yield model including 

these quadratic terms is nested within the FFT.  As noted above, this allows the FFT to be tested 

by examining the joint significant of the coefficients on the Fourier terms.  For the corn, soybean 
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and wheat models, the F-test values comparing the FFT model to the nested parametric model 

without the FFT terms  are 40.07, 36.20 and 46.91, respectively, all of which are statistically 

significant at any reasonable (measurable) level of significance.  Hence, the parametric models 

are rejected. F-tests comparing the FFT model with a parametric model including quadratic terms 

are also rejected at reasonable (measurable) level of significance.   

 The FFT and parametric models can be compared graphically as a function of the 

explanatory variables.  Figure 1 shows the predicted yields from each model as a function of  

time, evaluating all other variables at their sample averages.  The first column of results 

compares the parametric and FFT models.  For corn the two models are quite different.  The 

quadratic time trend shows consistently declining gains in corn yields over time.  In contrast, the 

FFT model shows declining gains in yields in the late 1980’s followed by increasing gains since 

2000.  The differences in expected yields between the two models is greatest in the 1990’s.  For 

soybeans, the differences in trend lines are much less pronounced and both a nearly linear.  For 

winter wheat, the trend line in the parametric model is almost perfectly linear, whereas the trend 

line in the FFT model exhibits considerable periodicity and large declines between 2004 and 

2007.  The FFT model for wheat could be sensitive to both the nature of the sample and the 

terminal year of the sample.  Since the sample includes only counties that grow corn, soybean 

and wheat, this does not represent the majority of wheat acreage.  (The sample primarily 

represents growers of soft red winter wheat.)  This sample is likely particular sensitive to the 

inclusion of 2007 as the final year of the sample since both corn and soybean prices had almost 

doubled whereas winter wheat harvested in 2007 had preceded any major increase in the price of 

wheat. 
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 We extend the FFT model into estimation of quantile regression by estimating the 0.1, 

0.5 (median) and 0.9 conditional quantiles.  To provide a general sense of the sensitivity of yield 

to key variables, table 1 shows the elasticity of yield with respect to each variable.  The 

maximum temperature in July and August has a negative impact on the yields of all three crops 

and has the largest magnitude of any elasticity with respect to the weather variables.  Given the 

highly non-linear nature of the model, these elasticities clearly are not constant, as exemplified 

by the negative elasticity on the wheat time trend. 

Figure 2 compares the time trends within each of these quantiles with the conditional 

mean time trend discussed above.  For all three crops the conditional mean lies slightly below the 

conditional median, suggesting that, even after conditioning on weather, there may be some 

slight negative skew to the crop yield distribution although the difference is usually quite small 

and unlikely to be statistically significant.  The 0.9 quantile for all three crops is generally 

increasing at a faster absolute rate than the 0.1 quantile, indicative of increase yield variance over 

time. 

 To illustrate the potential of the FFT model to capture non-linear responses of yield to 

weather variables, we examine the response of corn and soybean yields to average daily 

maximum temperatures.  Given the high elasticity on maximum temperature in July and August, 

we examine that variable first.  Higher maximum temperature are initially beneficial for both 

corn and soybeans.  For corn, past an average daily maximum temperature of about 78 degrees  

yields decline at a roughly constant rate for all quantiles.  There does not appear to be an increase 

in yield variance in response to temperature for corn, but there may be an initial increase in 

variance for soybeans. 
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 The right hand side of figure 2 compares the effects of temperatures across different 

times of the growing season for the conditional median.  The positive effects of water 

temperature are more pronounced in corn in the earlier months.  Most significantly, this model 

shows that the marginal benefit of heat accumulation is not constant throughout the growing 

season, a result which contrasts with the assumptions embedded in most yield models that make 

use of growing degree days to specify the cumulative exposure of a crop to heat over the course 

of the growing season. 

 

CONCLUSION       

 The implementation of FFTs within a quantile regression framework provides a flexible 

way of examining the conditional distribution of crop yields.  This study has illustrated the 

feasibility of combining these two techniques, which provides a bridge between efforts to 

robustly model unconditional crop yields and efforts to model the effects of weather on crop 

yields using traditional parametric models.  Future research will use this model to examine the 

implications of model specification on federal crop insurance premiums and other commodity 

support calculations. 
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Figure 1: Time Trend Estimates
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Figure 2: Average Maximum Daily Temperature Effects
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Table 1: Elasticities of Crop Yields in Median FFT Regressions 
 
Variable Corn Soybeans Wheat 
trend    0.492 0.106 -1.298 
P_"crop"_N -0.188 -0.245 -0.214 
pcpMarApr -0.030 0.006 -0.052 
pcpMayJun 0.034 0.014 -0.036 
pcpJulAug 0.066 0.172 0.037 
pcpSepOct 0.007 -0.027 0.015 
tmaxMayJun 0.186 0.213 0.390 
tmaxJulAug -3.097 -1.681 -0.847 
tmaxSepOct 0.234 -0.100 0.134 
tminWint -0.033 0.017 -0.039 
tminMarAug 0.009 0.020 -0.039 
tminMayJun 0.110 0.083 -0.532 
tminJulAug 0.152 0.070 0.574 
tminSepOct -0.104 0.086 -0.163 
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