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The Impact of Public and Private R&D on Farmers’ Production 
Decisions: 1960-2004 

 
 

Abstract: The objective of this paper is to examine the changing structure of agriculture in Midwestern 
US States over 1960-2004. Major factors causing change are relative output and input prices, public 
agricultural research and adoption of GM corn and soybean varieties. However, GM corn and soybean 
varieties only became available starting in 1996.  We choose an aggregate multi-output-multi-input 
variable profit-function framework and estimate the derived output supply and input demand functions. 
The output groups are: soybean, corn, wheat, and livestock, and the (variable) input groups are farm 
capital services, labor, energy, chemicals, and “other materials.” (Quasi-) fixed inputs are land, GM 
soybean and GM corn adoption rates, public agricultural research, and preseason weather. We show that a 
higher GM-soybean adoption rate (or displacement of non-GM varieties) has its primary impact on the 
demand for farm energy but biases input choices toward farm chemicals and labor but away from other 
inputs. The adoption of GM corn varieties has its primary effect on decreasing the demand for farm 
capital services and labor and biases input decisions toward farm chemicals, energy, and “other materials” 
but away from other inputs.  The shadow value of an increase in the GM-soybean and GM-corn adoption 
rates is positive, and for GM corn, the shadow value is much larger than the GM technology fee. Our 
results show that the structure of Midwestern agriculture changed as a result of the adoption of GM-corn 
and soybean varieties, and these impacts are expected to grow as later data become available.   

  



 
Agricultural research performed by both the private and public sectors has been shown by Huffman and 

Evenson (1989, 2006a), Huffman et al. (2002), and Yee et al. (2002) to significantly increase the supply 

of agricultural outputs, and reduce the demand for some of the inputs and/or increase total factor 

productivity. This is a preferred methodology relative to approximating technology with a time trend, as 

in Mundlak (2001) and some other studies. In the United States, the public sector undertakes basic 

research on which the private sector develops applied technologies. The most dramatic success of public 

agricultural research was the early development of hybrid corn varieties in the late 1920s and 1930s. 

These hybrids were reproduced and marketed by private seed companies (Griliches 1960, Huffman and 

Evenson 1993). During the ensuing seventy years, the private sector took control of developing inbred 

lines and producing and marketing commercial hybrid seed corn.  

Before 1950, soybean varieties were adapted to forage and hay but not seed production.  This 

changed over the next two decades. Now soybeans are grown by farmers for their production of beans, 

which are a source of oil and high protein meal. Over 1950-1980, new soybean varieties were largely 

developed in the public sector (Huffman and Evenson 1993), but since the 1980s, the private sector has 

increasingly taken control of developing  commercial soybean varieties and their marketing. For example, 

in 1994, the private sector accounted for 64 percent of soybean varietal development resources 

(Fernandez-Corneji 2004). Wheat is a third important crop in the Midwest—hard red spring and durum 

wheat in Minnesota and soft red winter wheat in the other states. Early wheat varieties for farmers were 

reproductions of imported seeds from Europe. Since the mid-1930s, new wheat varieties were developed 

by the public sector and marketed by private seed companies (Geigel and Huffman 1986). Improvements 

in breeding practices and livestock feeding systems for poultry, swine, dairy and beef cattle have also 

occurred over time (Huffman and Evenson 1993; Narrod and Fuglie 2000). For the most part, these 
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livestock and poultry improvements have been concentrated in the private sector (Huffman and Evenson 

2006a).  

In addition to enhanced genetic materials, farmers’ cultural and management practices for crop and 

livestock production have steadily changed. Starting in the 1970s, commercial herbicides became 

available for helping to control weeds in field crops. The use of herbicides reduced the need for field 

cultivation and hand weeding. Also, as a result of the mid-1970’s energy crisis new “reduce tillage 

practices” were developed that largely eliminated the use of energy- and machinery-intensive seedbed 

preparation involving large-horsepower tractors pulling large moldboard plows and heavy disks (Rahm 

and Huffman 1984). By the 1990s, no-till farming was widely adopted in the Midwest.  

The GM crop revolution started due to a large investment made by the private sector, especially 

Monsanto, and the first GM-field crop varieties became available to farmers in 1996 in the United States 

(Huffman forthcoming). Soybean, corn, and cotton varieties became available with genetically engineered 

herbicide tolerance (HT), and cotton and corn varieties became available that were engineered for insect 

resistance (IR) (Fernandez-Cornejo and McBride 2000, NRC 2010). Second generation GM traits of 

herbicide tolerance and insect resistance became available by 2000 for cotton, and for corn shortly 

thereafter. Third generation GM corn varieties became available to some farmers in 2010. These 

contained eight transgenes, three for above ground insect resistance, three for below ground insect 

resistance, and two for herbicide tolerance. These IR varieties provide a biological alternative to 

commercial chemical insect application, widely recognized for reducing the pesticide load on the 

environment and risks to human health (NRC 2010). HT soybean, corn, and cotton provide more effective 

weed control than with earlier herbicides. The key herbicide in this process is Roundup, which is 

environmentally and human health friendly relative to earlier herbicides used for weed control (NRC 

2010).  In contrast, GM-wheat varieties have not been released to US farmers. The primary reason is the 

negative image that GM wheat has in the export market (Taylor et al. 2003).   
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The objective of this paper is to examine the changing structure of agriculture in Midwestern US 

States over 1960-2004. Major factors causing change are relative output and input prices, public 

agricultural research and adoption of GM corn and soybean varieties. However, GM-corn and soybean 

varieties only because available starting in 1996.  The exact dates covered in the empirical analysis are 

constrained by data currently available. The eight Midwestern States chosen for this study account for 

more than 65 percent of the US harvested acreage in corn and soybeans, but no one state dominates 

production. On average each state accounts for only 8 percent of US production. We adopt an aggregate 

multi-output-multi-input restricted-expected profit function because we believe it provides the best 

framework for examining the impact of prices and new technologies on farmers’ production decisions. 

Our results show that the structure of Midwestern agriculture has been impacted by the adoption of GM-

corn and soybean varieties, and these impacts are expected to grow as later data become available. In 

addition, they show that public agricultural research has increased the supply of all major outputs 

produced by Midwestern farmers and demand for all major input groups so as to increase aggregate farm 

profit. The marginal real social rate of return on investment in public agricultural research in the 

Midwestern States over the study period is quite high and almost certainly larger than for alternative 

public investments.     

 The paper unfolds in the following sections.  

Changing Technology of Farm Production 

In the Midwest, corn, soybean, and wheat have been the dominant field crops since the 1960s. 

With the discovery of the first successful double cross corn hybrids in the 1930s, hybrid corn swept 

Midwestern States over the 1930s (Griliches 1960; Huffman and Evenson 1993, pp. 155-162). However, 

hybrid corn was not only a method by which hybrid seed corn varieties replaced open pollinated seed corn 

varieties, but it also provided a mechanism by which the principles of hybridization could be used to 

breed new, and in some cases, superior hybrid seed corn varieties that over time would replaced older 
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ones. In the 1960s, corn breeders moved to single-cross hybrids to obtain higher yielding corn varieties. 

GM corn varieties first became available to farmers in 1996. The first GM-corn varieties contained either 

herbicide tolerance or insect resistance, but in a few years, both traits were included in many of the hybrid 

corn varieties sold to farmers in the Midwest.  Since the 1930s, planting rates for hybrid seed corn 

increased by roughly a factor of four as complementary technologies, including better weed and insect 

control, have been developed.   

      Soybeans were first grown in the United States for hay and forage, but gradually, the demand for 

soybean oil and meal grew. Along with them grew the demand for soybeans. Early genetic improvement 

of soybeans occurred using superior imported varieties from Asia.  Later, a successful public soybean 

improvement program emerged in the United States. Private sector development of new soybean varieties 

became significant only since 1980, reflecting improved breeders’ rights with the Plant Variety Protection 

Act of 1970, and the ability of breeders to make steady yield improvements.  The soybean plant is 

extremely photoperiod sensitive. This day-length sensitivity means that any soybean variety performs 

well only within a relatively small geo-climatic area. Plant breeding has made it possible to expand the 

range of geo-climates in which soybeans yield relatively well, including into the Lake States.  Before 

1960, farmers purchased seed beans from other farmers or from private seed companies. In succeeding 

years, the farmer generally saved his own seed and planted it. This type of seed would eventually need to 

be replaced because genetic resistance to pests would break down. During the pre-GM era of the 1980s, 

the private sector made rapid progress in developing and selling seed beans to farmers (Huffman and 

Evenson 1993, pp. 162-167). By 1990, 70 percent of the seed beans planted annually were purchased 

commercially. 

        The soybean plant is not competitive against weed pressure, and in the 1960s farmers were using 

field cultivation and hand weeding to control weeds. Later, new herbicides were developed to help with 

weed control in soybeans. However, it was sometimes difficult to obtain good weed control with these 
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herbicides. The invention of GM-soybean varieties for herbicide tolerance was a major step forward in 

providing farmers with effective, low cost, and environmentally friendly weed control (NRC 2010).  

       Wheat is a crop that has been grown in the United States since 1611. Early improvements were 

from imported varieties, and by 1900, public sector wheat improvement programs were underway. In 

Minnesota, hard red spring (and durum) wheat are grown, but in other Midwestern States, soft red wheat 

varieties are dominant. Wheat improvement in the United States remains a public sector activity with the 

private sector engaged in seed reproduction, certification and sale to farmers. Although GM wheat for 

herbicide tolerance was developed by the early 2000s, it has not been released to farmers for planting 

because there is a major concern about potential poor reception to it in the international wheat market 

(Wilson et al. 2003; Taylor et al. 2003). On this score, the main difference between wheat and corn is that 

corn is grown primarily for livestock feed, but wheat is grown primarily for food. Soybean is grown 

primarily for oil and meal, but soybean oil loses it genetically modified ingredients in the oil refining 

process and soybean meal is fed to livestock. 

        Through the 1950s, livestock production was an important part of almost every Midwestern farm’s 

production. A large number of farms were diversified: growing corn, small grains, and hay, and raising 

cattle and hogs. In the 1950s collecting dairy bull semen and artificially inseminating (AI) dairy cows 

became a method for genetic improvement of dairy cows. As the demand for low-fat milk grew in the 

1980s, dairy farmers turned to the Holstein breed, which produces large volumes of low-fat milk. AI was 

possible because of the highly domesticated nature of dairy cows and technical advances in freezing and 

storing bull semen. It was four to five decades later before the widespread application of poultry and 

swine artificial insemination, and even today only a modest share of US beef cows are artificially 

inseminated. The genetic improvement of farm animals has been slow relative to crops like corn, because 

livestock improvement has low genetic potential and breeding has been largely under the control of 
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farmers and not scientists. However, cross-breeding, combined with rigorous selection and testing, has 

been an effective way for farmers to make some improvements in swine and beef cattle. 

       The organization of livestock production is relatively free of constraints due to seasonal and spatial 

attributes, but its specialization is driven by available technology and the ratio of the wage-rate to rental-

rate-on-capital (Huffman and Evenson 2001). Production has been organized in sequential phases or split 

phases across farms in order to reduce disease problems. Advances in animal health products, animal 

feeding, housing and equipment, and management have made it possible to accelerate growing and 

finishing phases of livestock and poultry by concentrating animals and birds into confined animal and 

poultry production systems. This approach has greatly increased animal densities and populations, and 

consequently a brought a dramatic reduction in the number of farms producing hogs, dairy, swine, poultry 

and beef. Huffman and Evenson (2001) show that specialization of livestock production on farms in the 

United States progressed very slowly over 1950-1958, then a little more rapidly over 1958-1964, and then 

somewhat more rapidly until 1969 before leveling off through the mid-1980s. They show that relatively 

little change in crop specialization of farms occurred before 1964, but it increased rapidly over 1964-

1974, and then flattened out to the mid-80s. Growing specialization of farms has continued since then. 

They also show that average farm size increased relatively rapidly over 1950-1974, then flattened out 

through the mid-1980s before increasing at a modest rate in the 1990s.  

What is the US experience with GM crops? In 1995, no acreage of US crops was planted to biotech 

crop varieties, and in 1996 the rate of adoption was low, being higher for Bt cotton and HT soybeans than 

for HT-corn or cotton or Bt-corn (figure 1). Some areas were ripe for a new type of insect control due to 

building tolerance to existing insecticides (Zilberman 2004). Bt-cotton was adopted in some areas of the 

South, but not in other areas where insect problems, including tolerance to chemical insecticides, were 

less severe.  The HT-cotton adoption rate surpassed Bt-cotton adoption by 1998, reflecting the fact that 
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weeds are a persistent problem in cotton, and HT-cotton has experienced higher adoption rates than Bt-

cotton through 2007. New GM-technology fears in 1999 slowed GM crop adoption in 2000. 

Although the adoption rate for HT-soybean varieties was initially lower than for Bt-cotton, HT- 

soybean varieties have experienced very rapid adoption rates over 1997-2007, except for a brief setback in 

2000. The adoption rate in 2007 was about 90 percent of planted acres.  HT- and IR-corn varieties have 

been adopted more slowly by US farmers, but by 2007 the adoption rate for HT- and IR-corn varieties  

reached 50 percent (figure 1). In 1996, biotech crop-variety adoption rates were 17 percent for cotton, 7 

percent for soybeans and 4 percent for corn.  Nevertheless, in 2007, these shares had increased to 87 

percent for cotton, 91 percent for soybeans and 73 percent for corn.  

In the Midwest, farmers’ adoption of GM-crop varieties is affected by anticipated pest pressure and 

crop rotation (see ERS 2008; Runge and Ryan 2003). For example, of the eight Midwestern States in this 

study, Indiana, Missouri, and Iowa farmers were the leaders in HT-soybean varietal adoption by 2000—

covering roughly 60 percent of planted soybean acreage (see figure 2).1  By 2007, GM-soybean adoption 

rates converged across these states to roughly 90 percent.  

GM-corn adoption rates for IR, HT and combined IR and HT traits over 1996-2007 are displayed 

in figure 3. They show that Minnesota, Iowa, and Missouri have been the leaders in adoption of GM-corn 

varieties. Ohio and Indiana farmers have lagged far behind. However, figure 3 does show a decline in 

GM-corn adoption rates in the Midwestern States over 1999-2001. By 2007, more than 70 percent of the 

corn acres in Minnesota, Iowa and Missouri were planted to GM varieties. 

                                                 
1 The data from 2000-2007 are taken directly from ERS (2008). We extended the data for Ht soybeans and for GM corn 
containing HT, IR, or stacked HT and IR, by state from 2000 to 1996, assuming the pattern for each state going back in time 
was similar to the pattern for the US data, including a zero adoption rate for all traits in 1995. Because of seeming 
inconsistencies in the disaggregated GM trait adoption data for corn over 1996-1999, we did not extend data backward for HT 
and IR corn separately.   
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Of all the states that had adopted biotech varieties as of 2007, 60 percent of the value of biotech 

corn production is attributed to Iowa, Illinois, Minnesota, and Nebraska, and 54 percent of the value of 

biotech soybean production is attributed to Iowa, Illinois, Minnesota, and Indiana.  

The Model of Aggregate Production 

      The contributions of technology, conventional and non-conventional, to production can be 

examined using production/transformation function or profit function frameworks. With the production 

function approach, output is regressed on inputs and approximations for productivity. However, with 

competitive behavior and a well-behaved production (or transformation) function, a one-to-one 

relationship exists between the production (or transformation) function and its dual, the profit function 

(Nadiri 1982; Chambers 1988). The dual approach yields a set of optimal derived output supply and input 

demand functions where output and input prices and one or more indicators for technology determine the 

quantity of inputs demanded and outputs supplied.  In this environment, prices of outputs and variable 

inputs are exogenous variables in the dual approach. In contrast, if the production function is fitted 

directly, the inputs and outputs are all choices, so the endogenous regressor problem is likely to be severe.  

       Hence, the profit-function approach dramatically reduces concerns about endogenous regressors, 

but it is challenging to successfully estimate the derived output supply functions. The central problem is 

that some of the own-price elasticities may be negative rather than positive. Why is this? With state 

agricultural productivity having a strong positive trend, the quantity supplied of major crops is increasing 

at the same time that the relative price is largely unchanged or declining. In figure 4, which covers 1960-

2004, there is roughly no trend in the plot of the relative price of corn against the quantity of corn 

produced in Iowa. In figure 5, which also covers the same period, there is a slightly positive trend 

between price and quantity. The challenge is to find a good proxy for technical or productivity change to 

shift the supply curve rightward or outward fast enough that we can identify a positive sloped supply 

curve. 
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           Huffman and Evenson (1989), Shumway et al. (1988) and Bairam (1998) have found it fruitful 

to examine the structure of agricultural production in state aggregate data starting from a flexible 

aggregate multi-output and multi-input restricted profit function. Consider a multi-output multi-input 

production and define yi , i = 0,1,…, n+m, to be the outputs and variable inputs.  Of these, let  be the 

numeraire commodity (one output) and yi   > 0, i = 1, …, n, be n other outputs. This leaves m variable 

inputs where yi  < 0, i = n+1, …, n+m.  Furthermore, define zk to be (quasi-) fixed inputs or environmental 

factors, and let there be K of them, or zk  ≥ 0, k = 1, …, K. These are the type of factors that are either not 

under the control of firm operators, are under the control of firm operators but require some time and 

adjustment costs, or are only partially under the control of firm operators. Hence, the associated 

transformation (or production) function is F(y0, y1,…, yn, yn+1,…. yn+m; z1,…, zK) = 0. Under competition 

in the input and output markets and well-behaved technology, the associated normalized-restricted-

expected-profit function is then π = F( p1,…, pn, pn+1,…. pn+m; z1,…, zK) where P0 is the price of y0, and pi 

= Pi/P0, where Pi is the nominal price of yi, i = 1,…,n+m.2  

To see that the normalized-restricted-profit-function is a flexible for investigating production 

technology (Nadiri 1982, p. 450-456), apply Hotelling’s lemma to the restricted profit function. By taking 

first derivatives of the profit function with respect to prices of outputs and variable inputs, a set of output 

supply and input demand functions are derived. Moreover, the first derivatives of the profit function with 

respect to the quantity of (quasi-) fixed factors is equivalent to the first derivative of the production 

(transformation) function.3  Hence, one obtains a set of derived aggregate agricultural output supply and 

                                                 
2 Normalized profit functions with fixed or quasi-fixed factors are called normalized restricted profit functions (Nadiri 
1982, p. 453). The expected profit function incorporates expected prices of the yis, rather than actual prices. We ignore 
issues of risk and environmental quality.   
3 Consider the closely related short-run profit functions,  πS = F(p1,…, pn, pn+1,…. pn+m; z1,…, zK) - pzz where z = 
(z1,…, zK) and  pz =  (pz1,…, pzK) where pzi = Pzi/P0 is the normalized price of zi. Then, the optimal rate of use of z is 
defined by the envelope condition  ∂F( )/∂z = pz and  z* = ζ(p1,…, pn, pn+1,…. pn+m,  pz1,…, pzK). The normalized long-
run profit function then becomes πL=  G(p1,.., pn, pn+1,.. pn+m,  pz1,.., pzK).  However, if zk is actually fixed, has 
significant adjustment costs or  is only partially under the control of firms then  the actual rate of use of zk might be 
quite different from the optimal rate of use, or  ∂F( )/∂z ≠ pz (Nadiri 1982).   
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variable input demand functions and a set of shadow-value functions for the quasi-fixed factors. If the 

shadow value and opportunity cost of these (quasi-) fixed factors are not equal, then the production plan is 

not at a long-run equilibrium (Nadiri 1982).   

Three common flexible-form profit functions are the trans-log (Diewert 1974), normalized 

quadratic (Lau 1976), and generalized Leontief (Diewert 1971). Among these functional forms, Chambers 

et al. (2008) have shown that the normalized quadratic revenue function, which is a special case of the 

profit function, performs best in simulation experiments. In empirical studies, the normalized-quadratic- 

restricted-expected-profit function has the nice feature that dependent variables are the quantity of outputs 

supplied and (variable) inputs demanded.  In contrast, for the translog profit function, the associated 

dependent variables are profit shares. However, profit can be negative, positive or zero, which makes 

these shares very noisy.  Shumway (1983), Shumway et al. (1988), and Huffman and Evenson (1989) 

have successfully employed the normalized-restricted-profit function and its associated output supply and 

input demand functions to examine the structure of aggregate farm production at the state level.   

The exact algebraic form of the normalized-quadratic-restricted-expected-profit function for this 

study is:  

    0
1 1 1 1 1 1 1 1

1 1 .
2 2

n m K n m n m K K n m K

i i k k ij i j kl k l ik i k
i k i j k l i k

p z p p z zπ α α β α β ϕ
+ + + +

= = = = = = = =

= + + + + +∑ ∑ ∑∑ ∑∑ ∑∑ p z                          (1) 

The profit function (1) is linearly homogeneous in expected output and input prices and also has a 

Hessian matrix of constants, so that the local convexity in prices implies global convexity (Lau 

1976). It has K quasi-fixed and environmental factors.   

Derived Input Demand and Output Supply Functions.  Given (1), the derived expected output 

supply and input demand equations follow directly from Hotelling’s lemma:    
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Equations (2) and (2′) are linear functions of the unknown parameters of the profit function; αi’s, 

αij’s, φik’s,  βk’s and βkl’s.  

 Given (1), the slopes of (2) are second derivatives of the profit function, and cross-equation 

symmetric conditions are imposed, i.e., , i ≠  j, i, j = 1,…,n+m. Also, this set of 

restrictions extends to the equation for the numeraire output (2′). Since we do not claim to be 

testing production theory, we have imposed homogeneity of degree 1 and symmetry of cross-price 

effects on (2) and (2’). These restrictions reduce the number of unknown parameters in the model, 

which reduces the burden placed on the data when the model is estimated.   

Given (2) and (2′), responsiveness of output and input decisions to a price change is 

summarized in the following elasticities:  
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4 Including lagged values for the (m+n) dependent variables in each of the output supply and input demand equations 
is purely ad hoc. 
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Own-price elasticities of outputs supplied and inputs demanded are expected to be positive and 

negative, respectively.  Moreover, inputs i and j are designated “substitutes” when ηij  > 0 and  

“complements” when ηij  < 0, and outputs i and j are designated “substitutes” if ηij  < 0 and as 

complements if ηij  > 0. Consistent with a well-behaved transformation function, we expect a 

majority of the input-input cross-price elasticities to be positive, and a majority of the output-

output cross-price elasticities to be negative. 

The Shadow-Value Equations. Also, from Hotelling’s lemma, the shadow-value equations (Nadiri 

1982) for the quasi-fixed and environmental factors associated with the normalized-quadratic-

restricted-expected-profit function are 

  
1 1

K n m

k k kl l
l ik

ik iz p
z
πλ β β φ

+

= =

∂
= = + +
∂ ∑ ∑ , k = 1,…, K.                                                                       (4) 

 
Given estimates for βk, βkl and фik and values for zl and pi, the shadow-value equations are in 

principle estimable. If the marginal cost of zl is available, then the shadow price (λk) and the 

marginal cost of zl can be compared. If they are not significantly different, then zl can be 

interpreted as being at a long-run “equilibrium” rate of use (Nadiri 1982). 

Bias Effects on Production of zl.  A change in the zk can twist the transformation function, and in 

doing so, changes the optimal quantities of outputs and inputs in a relative sense.  Antle (1984) 

suggests one measure of bias caused by a change in zk, and Huffman and Evenson (1989) 

generalized it to multiple output technology. Denote total revenue over (n + 1) optimal outputs as 

                                                                                      (5)                         * * *
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1
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and total cost over m optimal inputs as  
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Then, the optimal revenue share for the ith output is denoted by 
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and the optimal cost share for the ith variable input is denoted by 

  
*

* 0.c i i
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 The so-called “bias effect” on optimal revenue (cost) shares for  due to a marginal 

change in zk is defined for outputs and inputs.  The algebraic expression for the bias in optimal 

revenue shares (except for the numeraire good) is defined as: 
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and using (9) and the fact that revenue shares sum to 1 (= R R R
w s cs s s s+ + + ), the algebraic 

expression for the bias in the numeraire output (wheat) is obtained: 
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The bias for the ith input’s optimal cost share due to a marginal change in zk is defined as:  
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For both outputs and inputs, Bik > 0 (Bik < 0) denotes a “favorable” (“unfavorable”) effect of zk on 

yi*, which means that when zk increases, the revenue (or cost) share increases (decreases). The bias 

effect is neutral if Bik = 0. 

The Data and Empirical Definitions of Variables 
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This study attempts to identify the impact on agricultural production in eight Midwestern States of 

replacing non-GM corn and soybean varieties with GM varieties. The eight states what is 

sometimes referred to as the Corn Belt States and Lake States. These are important states for the 

production of corn and soybeans in the United States, but no one state dominates the production of 

these crops. In addition to corn and soybeans, we also include wheat production because it is a 

small-grain crop that is grown in Midwestern States, but it is a non-GM crop because no GM-

wheat varieties have been released for sale to farmers.5 Livestock is of secondary interest to this 

study, so we aggregate livestock and livestock products produced into one output category. 

However, we acknowledge that livestock production has undergone major structural change in the 

Midwest since 1960 with rapid consolidation of swine, egg, and beef finishing into large confined 

operations (Huffman and Evenson 2006).  

Hence, our output categories are: corn (for grain), soybeans, wheat, and livestock (and 

livestock products). Harvested corn for silage and other feed grains are assumed to be consumed 

by livestock within the state where they are produced, and therefore, are not considered directly in 

the analysis.6  

To construct output measures for corn, soybean, and wheat, we start with data on bushels 

of corn, soybean and wheat harvested by state and year from USDA-NASS files, and create 

Tornquist index numbers of these quantities. The composite livestock output index includes the 

quantities of livestock and livestock products sold, and additions to inventory (and quantities 

consumed directly by the household) on a calendar year basis, as derived by Eldon Ball at ERS 

using methods described in Ball (1999, 2002). See also Ball et al. (2010) 

                                                 
5 Wheat is included as an output because it is the most important small grain produced in the Midwestern States, and 
because no GM wheat has been released for planting. Hence, wheat production provides an interesting contrast to corn 
and soybeans where GM crop varieties first became available in 1996 and considerable progress has been made with 
the development of new GM varieties and traits (Fernandez-Cornejo 2008, Huffman 2009, NRC 2010).   
6 In early experimentation, we had a single crop aggregate, but that model did not perform well.  
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Variable farm inputs are grouped into five categories to provide a number of inter-

relationships that can be examined econometrically, but that are not too large to cause estimation 

to fail. To reduce the job of data construction, we build upon the large investment made by ERS in 

measuring farm inputs at the state level over 1960-2004 (Ball et al. 2010). The input categories are 

farm capital services, including farm durable equipment and buildings (but excluding land) and 

breeding livestock, labor (self-employed, unpaid family and hired), energy (petroleum fuels, 

natural gas, and electricity), chemicals (commercial fertilizer and chemical pesticides) and other 

materials (includes primarily purchased livestock and livestock feed and seed, machine hire and 

contract labor). The quantities of these inputs are expressed in index numbers. 

Six factors are chosen as (quasi-) fixed in our empirical research. First, consider farmland. 

The amount of land used in farm production by any farmer in a state and year is clearly a choice, 

but when we move to agriculture at the state level, opportunities for increasing acreage in any 

given year and state are quite limited. In the Midwest, farmland is slowly being converted to 

permanent nonfarm uses—housing and shopping mall development, location of manufacturing 

sites and general expansion of cities, and roads and highways. Also, some of the highly erodible 

farmland is under contract for the Conservation Reserve Program (CRP). A landowner can break 

his or her CRP contract and bring this land into production, but this triggers a sizable penalty and 

has seldom occurred. Moreover, any additional land that might be brought into crop production is 

likely to be inferior quality to existing cropland. For these reasons, we believe the best choice is to 

treat farmland as quasi-fixed. Our measure of farmland is the one available in the state accounts of 

ERS, which is an index of constant quality units (Ball et al. 2010).  We assume that in each state 
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and year, farmland is allocated to corn, soybean, wheat, and livestock production and to CRP 

land.7  Later, we will to do some testing of the endogeneity of land.    

Second, consider indicators for GM-corn and soybean adoption. An important issue for 

this study is how to represent the effects of farmers planting GM-corn and soybean varieties on 

farm production. One important feature of this problem is that when farmers plant GM hybrid-

corn varieties, they are replacing non-GM-seed corn with GM-seed corn on a kernel-per-kernel 

basis.8 Likewise, when farmers plant GM-soybean varieties, they are replacing non-GM-soybean 

seed for GM soybean seed on a bean-for-bean basis.  Hence, the adoption of GM-hybrid seed corn 

(GM-soybean seed) is approximately an equal displacement of non-GM hybrid seed corn (soybean 

seed). However, the USDA-NASS does not collect expenditure data from farmers on the GM vs 

non-GM nature of farm seed purchases, but they do collect data on crop- and trait-specific GM-

adoption rates. 

When farmers plant GM-soybean varieties, the bean plants are resistant to a target 

herbicide that roughly kills every plant in the bean field that is not genetically engineered to be 

herbicide tolerant (HT), e.g., Roundup Ready plants survive the application of the herbicide 

Roundup.  Planting GM-soybean varieties allows farmers to replace the use of more expensive, 

less effective and more toxic herbicides and hand-weeding. It also gives farmers great weed 

control while at the same time providing a sizable window for effective application of the 

herbicide for which soybean plants have tolerance (Fenandez-Cornejo 2008).  HT corn has many 

of the same advantages, although corn is more competitive against weeds than soybeans, and the 

herbicide Atrazine can be used on non-GM corn to control broadleaf weeds. However, Atrazine 

                                                 
7 Here, we ignore the CRP payments. They are not central to this study. 
8 Note. The price is obviously higher for GM than non-GM hybrids. 
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use has contaminated ground water in the Midwest, and consumption of this polluted water is 

associated with birth defects, some forms of cancer and other health problems (Wikipedia 2011). 

Insect resistant (IR) corn with the Bt gene is resistant to the European corn borer and 

somewhat resistant to the corn earworm and stock worm. Bacillus thuringiensis (Bt) is a bacteria 

that occurs naturally in the soil and with genetic engineering, Bt corn is transformed into a 

powerhouse producing insecticide to protect itself.  Early Bt-corn varieties provided resistance 

primarily to the European corn borer and were somewhat protective against the corn earworm, the 

southwestern corn borer and to a lesser extent the cornstalk borer (Fernandez-Cornejo and 

McBride 2002). Later, Bt-corn varieties also carried resistance to the corn rootworms, which are a 

pest that reduces and weakens the root structure of the corn plants.   

Several advantages exist for Bt corn varieties. First, the level of toxin expressed can be 

very high, thus delivering a lethal dosage to target insects. Second, the corn plant produces the 

toxin throughout its life and the toxin is expressed relatively uniformly throughout all plant parts. 

Hence, Bt provides season-long protection against target insects, but has no significant effect on 

other insects.9 Third, the toxin expression can be modulated by using tissue-specific promoters, 

and GM resistance replaces the use of synthetic pesticides in an attempt to kill target insects.  

Fourth, the Bt toxin expressed in the corn plants is not toxic to humans or animals. Although the 

European corn borer is not a persistent major pest in most areas of the Midwest, it is a continual 

concern of all Midwestern corn farmers. New evidence shows that farmers planting non-GM corn 

hybrids are major beneficiaries from other farmers planting Bt-corn hybrids because area-wide 

moth counts have been steadily declining as the Bt-corn adoption rate in an area increases 

(Hutchinson et al. 2010). 
                                                 
9 Bt produces spores that form the crystal protein insecticide δ-endotoxins. The protein toxin is active against species 
of the order Lepidoptera, Diptera, Coleoptera, Hymenoptra and nematodes. When these insects ingest toxin laden 
crystals, chemicals in their digestive track activate the toxin. It inserts into the insect’s gut cell-membrane and 
dissolves it and eventually causes death of the insect (Wikipedia). 
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Clearly, GM-corn and soybean varieties provide new production opportunities for 

Midwestern farmers, and planting GM crop varieties may raise expected farm profits. The 

question is how to represent these effects in our production framework. Sexton and Zilberman 

(2011) have undertaken an international study of the impact of GM crop varieties on crop 

production in 25 countries over 1990-2008. They view GM-crop varieties as damage control 

technology, making it possible for plants to yield closer to their maximum potential. In the 

empirical work, they pooled data across crops (corn, soybean, cotton, and canola) and included 

year, country and crop fixed effects and fitted an aggregate production function, regressing total 

grain (bean, cotton) production against total land area allocated to a given crop and the area of that 

crop planted to GM crop varieties. They then interpret the estimated coefficient on GM crop 

acreage as the net (yield) benefit to planting GM crop varieties, and this coefficient is positive and 

statistically significant. However, they do not worry much about the endogeneity of total or GM 

crop acreage and ignore the fact that other inputs also affect production.  

Building on USDA-NASS data, one indicator of the extent of GM crop usage is the GM- 

seed adoption rate (or non-GM seed displacement rate) for corn and soybean by state. Over 1996-

2004, the GM adoption rate for soybean is only for HT-soybean seed and for hybrid corn is for 

HT, Bt, or HT+Bt hybrid corn varieties. The GM adoption rate has major appeal; it has a lower 

bound at zero and an upper value of 100 percent. NASS provides data for these GM adoption rates 

for Midwestern States starting in 2000. However, GM-corn and soybean varieties were first 

planted in 1996, but NASS only provides data on the adoption rate for GM varieties at the national 

level over 1996-1999. We use a graphing procedure, constraining the 1995 GM adoption rate at 

zero and the 2000 GM adoption rate to be equal to NASS’s state- and crop-specific estimates, but 
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also including information about the trend in the crop’s adoption rate over 2000-2004 (see figures 

2 and 3).10  

Moving forward, crop-specific GM adoption rates are the result of a combination of factors 

including seed availability or supply by the private seed industry, prices of GM- and non-GM 

seed, and local pest pressure. Moreover, each year the seed industry presents farmers with a 

revised set of available varieties, adding some new ones with enhanced performance attributes and 

deleting others that have become obsolete due to later R&D advances, erosion of pest resistance 

or/and poor sales. Hence, the GM adoption decision by any one farmer is complex, and then the 

adoption rate at the state level is an average rate over all farmers’ decisions on the target crop 

planted. Hence, crop-specific GM adoption rates are a combination of factors weighing on both 

the supply and demand for seed. Later, we will examine the endogeneity of GM crop adoption 

rates.   

Third, consider an indicator for knowledge stocks created by public agricultural research 

that might impact farm production at the state level. Huffman and Evenson (2006a), Huffman 

(2010), and others have shown that public agricultural research capital is a major factor explaining 

agricultural productivity at the state level. Also, Huffman and Evenson (1989) have shown that 

public agricultural research capital also affected outputs supplied and inputs demanded for cash 

grain farmers in state aggregate data. Based on these findings, we expect the stock of public 

agricultural research to affect production decisions of farmers in Midwestern States in this study.  

Alternative measures of the stock of public agricultural research are possible. However, 

Huffman and Evenson (1989, 2006a), Huffman (2010) and others have had considerable success 

using a stock of public agricultural research created from public agricultural research undertaken 

                                                 
10 Moreover, our graphing procedure produces estimates of  GM adoption rates that are similar to those for GM corn 
in Iowa, Minnesota, and Ohio that are reported by Alston et al. (2010, pp. 252). They took the NASSA data on 
adoption rates by state in 2000 and worked backward using rough proprietary data on state-specific adoption rates. 
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by the USDA and Land-Grant System in the various states to explain state agricultural 

productivity. Public agricultural research is widely approximated by real expenditures on research 

by the USDA-ARS and ERS, and by the state agricultural experiment stations (SAESs), and 

veterinary medicine colleges (VMCs) that have an agricultural productivity focus (see for details  

Huffman 2010). Critical data for this effort are reported by the USDA’s Current Research 

Information System (CRIS).  The public agricultural research stock for each state is then derived 

by first allowing a two-year gestation period of no impacts followed by 31 years of first rising, 

then constant and finally declining weights, ending at  zero. The timing weight pattern is 

approximated by a trapezoid (figure 4) and applied to annual real agricultural research 

expenditures by state to obtain research stocks. The resulting stock of public agricultural research 

is interpreted as a proxy for the “true” public agricultural research stock. This variable is 

constructed so that current production problems facing farmers do not affect the current stock of 

public agricultural research, which reduces endogenous regressor problems.11 

 We do not choose timing weights by Alston et al. (2010) because they apply an 

implausible methodology that ignores important advances in the construction of public agricultural 

research stocks by others over the past four decades. For example, (a) they assume public SAES 

research and Extension are perfect substitutes and have the same lag pattern in affecting 

productivity, which is a dubious assumption and distorts the structure of the weights. Since the 

mid-1970s, the standard has been to separate research and extension.  (b) They use a gross 

measure of public agricultural research expenditures to construct research stock variables, even 

though a considerable amount of public agricultural research is on commodities and research 

problem areas that have no impact on agricultural productivity,  e.g., research on recreation, rural 

                                                 
11 See Khanna et al. (1994) for a discussion of the public- good perspective of public agricultural research and public 
provision of this good.  
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and community development, food science and  human nutrition, family studies, and other types 

of post-harvest research. Huffman and Evenson have netted out these non-productivity oriented 

research expenditures (see Huffman 2010).  (c) They treat the research by the USDA as being 

undertaken only by the Agricultural Research Services (ARS) and ignore all of the research of the 

Economic Research Service (ERS). Moreover, they treat the research of ARS as if it were 

undertaken in Washington, DC, and then spilling over to all 48 states, even though the USDA had 

moved its research facilities to state locations to be close to local production problems by the late 

1930s. Data reported in the CRIS Inventory of Agricultural Research contradict their assumption. 

In our study, we exclude public agricultural extension as a quasi-fixed factor because data are not 

available over the latter years of the study period. 

 Farmers are assumed to know preseason precipitations when they make production plans 

and modify these plans accordingly, but of course, they do not know the actually weather that will 

be realized over an upcoming growing and harvesting season . For example, if the spring is 

unusually wet, farmers may shift some of their intended corn planting to soybeans, which are 

planted later in the spring. In Midwestern States, “preseason” precipitation is defined as falling 

over October through March before spring planting. Preseason precipitation for each state and year 

is measured in inches of water equivalent over October to the end of March before each growing 

season, and then expressed relative to the 30-year average precipitation over October to March for 

each state.  

Minnesota, Wisconsin and Michigan lie north of the Corn Belt States and have a 

significantly shorter growing season. Dairying and wheat production are also more prevalent there, 

and dairying is quite labor intensive relative to other livestock production. Also, the northern half 

of these states consists of poor quality land for commercial farming (Huffman and Evenson 2006, 
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p. 271; USDA 1957, p. 535-552). Hence, we allow for some differences in the technology of 

farming for Lake States relative to Corn Belt States.  

 For expected prices of outputs and variable inputs, we use expected prices at planning or 

planting time. Implementing this procedure is complicated by the fact that some crop and livestock 

production plans are made at different times of the year, and that production cycles differ in 

length.  The production of milk from dairy cows and eggs from hens is roughly a continuous 

process. However, the production cycle for meat and poultry varies roughly from three months 

with broilers, five months for swine, to two years from the birth of beef calves to the date of 

slaughter of the fattened steers and heifers.12 To economize on work to obtain an expected 

livestock output price index, we chose to use the index of prices received by farmers for livestock 

and livestock products that is available in the state agricultural production accounts of ERS. 

Moreover, this livestock output price index has the major advantage of matching the livestock 

output quantity index of ERS, which we are also using (Ball et al. 2010).  

 For (variable) inputs, we also assume that expected prices at planning time are reflected in 

actual prices paid by farmers (or their opportunity cost in a few cases). We note that farmers 

frequently contract for materials before planting time. Price indexes for our (variable) input groups 

are reported in the state agricultural accounts of ERS and match up with our input quantity indexes 

(Ball et al. 2010).  

 Corn, soybean and wheat outputs are defined narrowly, and this opens up new possibilities 

for an approximation to farmers’ expected prices for these outputs at planning time.13  For 

                                                 
12 Although futures’ market prices exist for some livestock and livestock products, they do not exist for all, and it 
would be difficult to construct a meaningful weighted price index with a mixture of futures’ and actual prices 
received. We do recognize that our particular choice of a livestock price index may contain measurement error. 
13  In an earlier step, we experimented with using the actual crop price data reported in the state accounts of ERS (Ball 
et al. 2010), which represents prices received by farmers in a given calendar year, including adjusting upward for 
actual farm program payments received.  At this stage, we were using a single composite crop indicator and used 
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example, Huffman and Evenson (1989) successfully used commodity-specific futures market 

prices adjusted for state-specific basis to examine state aggregate farm production decisions on 

feed grains, wheat, and soybeans of cash grain farms.  

 Here, we follow Huffman and Evenson (1989) and use commodity-specific futures market 

prices at planning/planting time for the harvest date, adjusted for the state-specific basis for corn, 

soybean, and wheat. Average closing futures market prices in the planning month for the harvest 

date are the average of the Thursday closing prices in the planning month for the harvest month 

futures contract. The planning month is April for corn, soybean, and spring wheat, but August of 

the previous year for winter wheat. The best match of available data for harvest-month futures 

contracts is December for corn, November for soybeans, and July for spring and winter wheat. The 

state-specific basis reflects largely transportation (but also storage) costs associated with getting 

the grain/beans from farms to a river terminal market. The basis is 25 percent to 35 percent higher 

for soybean than corn, and the basis trends upward over time due to rising transportation costs. 

 All quantity and price indexes for inputs and outputs are expressed relative to the 

corresponding quantity and price index for Alabama in 1996 (Ball et al. 2010).  

The Econometric Model 

To obtain the empirical specification of the equations (2) and (2′), we define wheat as the 

numeraire commodity (y0) and the expected price of wheat becomes the numeraire price (P0). 

Table 1 contains a list of the key variables, and symbolic definitions and sample means and 

standard deviations for these variables.   

 In the econometric model, we add a zero mean random disturbance term to the nine output 

supply and input demand equations, or µilt ,i = specific supply or demand equation, l = state, t = 

                                                                                                                                                                
ERS’s price index from the state agricultural accounts. When we fitted this production system, we obtained poor 
results.   
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year. The variable d1 takes a value of 1 if a state is a Lake State (Minnesota, Wisconsin or 

Michigan) and 0 otherwise and is included in the empirical specification of output supply and 

variable input demand equations.   

 We include a linear time trend and first-order autocorrelation to control for likely time- 

series process issues. The time trend controls for omitted variables that are correlated with time, 

e.g., change over time in the organizational structure of livestock production in Midwestern  

optimal farm size, and share of corn harvested that is sold for out-of-state uses, such as for exports. 

It also ensures that the means of all series are not trended.  In annual aggregate time series data, 

we can expect some spillover of shocks (µit) from one period to the next (Enders 2010; Greene 

2003). Hence, we allow for first-order autocorrelation by reparameterizing the nine output supply 

and input demand equations as follows:  

  Yit = Xitδi + φd1it + γ t +µit, i = 1, ...9; t = 1, …45.                                                      (12)                             
 
Given that output supply and input demand equations contain cross-equation restrictions, all 

equations must receive the same auto-regressive transformation in the final estimation (Barten 

1969). Hence, define µit = ρ µit-1 + εit where εit is uniformly distributed with a zero mean, variance 

σi
2 (allowing for heteroscedasticity across equations), and is uncorrelated over time.  

To obtain an estimate of ρ we first fitted equation (12) without regard to cross-equation 

restrictions. We then collected the residuals from all nine equations together and use them to 

estimate one single value for ρ, which is 0.620 with a t-value of 115. Under plausible assumptions, 

there is a 99.9 percent probability that the random confidence interval (0.48 ≤  ρ ≤ 0.76) covers the 

true parameter. Moreover, this confidence interval does not include and, in fact, is far away from 

one, so a unit root of the production system with trend is highly unlikely.   

Using ρ̂ =  0.620,  equation (12) is then transformed into a nine-equation model that is 

expressed as pseudo first-differences: 
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 Yit – ρ̂ Yit-1 = (Xit – ρ̂ Xit-1)δi + (d1it + ρ̂ d1it)φ + εit*.                                                   (13)                               
 
The production system (13) is then estimated in a straight forward way as a quasi-differenced- 

seemingly-unrelated (SUR) regression model with cross-equation restrictions imposed (Greene 

2008, Zellner 1962, Barten 1969). 

The Empirical Results 

The estimated coefficients and t- or z-values for the non-numeraire equations are reported 

in table 2, and for the numeraire (wheat) supply equation are reported in table 3. The set of 

estimated coefficients  displayed in tables 2 and 3 provide new evidence of the structure of farm 

production in Midwestern States over 1960-2004. There are 344 observations per equation and 

nine equations, or 3,096 total observations, and a total of 135 different coefficients being 

estimated after imposing cross-equation restrictions. A quick check of table 2 shows that the 

estimated αii’s are positive as expected, except for livestock where the coefficient is not 

significantly different from zero. All of these estimated coefficients with positive signs are 

significantly different from zero at the 5 percent level.   

Turning to variable d1 in the non-numeraire equations, the supply of corn and soybeans is 

significantly less and of livestock and wheat (with the latter coefficient being 1.642) is 

significantly greater in the Lake States than in the Corn Belt States, other things equal. Also, the 

quantity of labor and “other materials” demanded are substantially larger and of farm capital and 

energy are slightly larger in the Lake States than the Corn Belt States. These results are also 

consistent with the lake states engaging in more labor-intensive agriculture, especially dairy, and 

in wheat production. The quantity of farm chemicals is significantly lower in the Lake States than 

Corn Belt States, largely reflecting the fact that livestock manure is a more important source of 
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soil nutrients than commercial fertilizer there. In addition, the system of equations has significant 

trend effects, except for farm energy and chemical inputs and soybean output.14 

Estimates of Supply and Demand Elasticities. The responsiveness of farms to (expected) prices of 

outputs and inputs is an important part of behavior and reveals new information about the structure 

of production. The own-price and cross-price elasticities for the four outputs and five (variable) 

inputs are obtained by evaluating equation (3) using estimated coefficients from table 2 and 3 and 

sample mean value of the associated quantities and prices (table 1) and are reported in table 4. All 

own-price elasticities are negative for inputs and positive for outputs, except for livestock. The 

negative own-price effect for livestock can be rationalized by thinking of the farmers responding 

to an increase in livestock prices by marketing animals at lighter weights or building breeding-

stock inventories, i.e., our model does not capture the dynamics of the livestock production very 

well. Among the outputs, the own-price elasticity of supply for wheat is largest, 0.81, for corn is 

moderate, 0.32, and for soybeans is smallest, 0.13. Hence, the elasticity of supply of major crops 

produced in Midwestern States is substantial. Among inputs, the own-price elasticity of demand 

for farm chemicals is largest, -0.69, and followed by farm energy, -0.37 and “other materials,         

-0.28. The other (variable) inputs have somewhat smaller own-price elasticities; -0.09 for farm 

capital services and -0.04 for farm labor.  

The cross-price elasticities for (variable) inputs provide insights on which pairs are 

substitutes and which are complements (table 4). Farm capital services and farm labor, energy and 

chemicals are substitutes, and capital services and “other materials” are complements. Farm labor 

is a strong substitute for “other materials” and weak substitute for farm capital services and energy 

but a complement with farm chemicals. Farm energy is a substitute for farm chemicals, capital 

services, and labor but a complement for “other materials.” Farm chemicals are a substitute for 

                                                 
14 At the sample mean of the data, the estimated coefficient of trend in the numeraire or wheat equation is -0.020. 
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farm energy, “other materials,” and capital services but a complement with farm labor. “Other 

materials” are a substitute for farm chemicals and labor but a complement for farm energy and 

“other materials.”  

We expect an increase in the price of an input to generally reduce the supply of outputs, 

but not all supply effects need to be negative. An increase in the price of farm capital services 

(labor) reduces the supply of corn and soybeans but increases the supply of wheat and livestock 

(table 4). An increase in the price of farm energy reduces the supply of wheat, corn, soybean, and 

livestock. An increase in the price of “other materials” reduces the supply of wheat, corn, soybean 

and livestock but increases the supply of wheat. Hence, 14 of 20 input-price effects on outputs 

supplied are negative.   

An interesting feature of our model of production is that we have estimates of the cross-

price supply elasticities. An increase in the price of soybeans decreases the supply of corn and 

wheat, suggesting trade-offs among crop outputs along the transformation frontier. However, this 

increase in price of soybeans also increases the supply of livestock.  An increase in the expected 

price of corn decreases the supply of wheat but increases the supply of soybeans and livestock.  

The impact of the price of corn on the supply of livestock can be rationalized as follows: a higher 

expected price of corn leading farmers to sell-off feeder livestock earlier or reduce livestock herd 

sizes. An increase in the price of wheat reduces the supply of soybean, corn, and livestock. 

Consistent with these cross-price effects representing trade-offs, 7 of the 12 output cross-price 

elasticities are negative. The other outcomes suggest some type of complementariness. Turing to 

the impact of output prices on input demand, an increase in expected output prices increases the 

quantity demanded for almost all of the inputs; 14 of 20 elasticities of input demand with respect 

to output prices, which is as expected. 
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We also examined the performance of a closely related product system. We tried 

instrumenting land and GM-soybean and GM-corn adoption rates by using the one-year lagged 

value of each of these variables and then re-estimating.15 If the estimated coefficients with the 

instrumented variable are similar to those in the original results, this may be interpreted as 

supporting exogeneity.  If they change significantly, this is evidence against exogeneity (Greene 

2003). When we instrumented with the one-year lagged land variable and GM-soybean and corn 

adoption rates, the estimated coefficients were similar. The main difference is that the own-price 

elasticity of supply of wheat is a little larger when we use these one-year lagged variables. This is 

expected because much of the wheat grown in the Midwest is winter wheat.  Tests reported in the 

next section of the paper also support the simpler production system; not using lagged values of 

fixed factors.16    

Impacts of zl on Quantities Supplied and Demanded. Tables 2 and 3 show that an increase in 

available land increases the supply of all outputs and demand for all inputs. An increase in the 

adoption rate for GM-soybean varieties significantly reduces the demand for farm energy and 

increases the supply of soybeans but other effects are small. An increase in the GM-corn adoption 

rate significantly reduces the demand for farm capital services and labor (at 10% level) but 

reduces the supply of wheat. Other effects are small and statistically weaker. An increase in public 

agricultural research increases the supply of all outputs and the demand for all inputs. Larger 

preseason precipitation reduces the supply of corn and increased the demand for farm capital 

services, but other effects are relatively weak.  

Shadow-Values of zl. Estimates of the shadow-value of (quasi-) fixed factors are obtained using 

equations (4), estimates of coefficients from tables 2 and 3 and sample mean values of the 

                                                 
15 These are plausible but not perfect instruments. We don’t have a long list of potential instruments, and any set can 
be questioned.  
16 These additional results are available from the authors upon request. 
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variables from table 1, which results in a state average value. They show that the shadow-value of 

a unit of farmland is $1.67 per dollar of land services (in 1996 prices). This number is 

substantially larger than one, and supports our hypothesis that land is a quasi-fixed and not a 

variable input. It also suggests that the conversion of farmland to nonfarm uses has been at a 

significant cost to the agriculture sector in the Midwest.  

An increase in the adoption rate for GM-soybean varieties (and displacement of non-GM 

soybean varieties) by one percentage point has a shadow-value of about $32 million (in 1996 

prices) per year per state. This is an estimate of the benefits from switching from non-GM soybean 

to GM-soybean varieties. When we convert this to average value per acre of harvested soybeans 

over 1996-2004, we obtain a value of $5.70 dollars (1996 prices) per acre. This shadow-value is 

roughly equal to the herbicide-tolerant technology fee (in 1996 prices) on HT seed soybeans in 

effect over 1996-2004. However, our measure of profit does not account for the benefit to farmers 

from GM soybeans due to ease of use of the technology, wide window of effective application, 

and low level of management skill requirement (Fernandez-Cornejo 2008). Moreover, over the 

GM-technology period, the acres of soybeans harvested in the Midwest region grew relative to 

corn acreage harvested—from 11 percent fewer soybean acres than corn in 1996 to only 2 percent 

less in 2004 (USDA-NASS). 

The shadow-value of the GM-corn variety adoption rate is substantially larger than for the  

GM-soybean adoption rate. The shadow-value of increasing the GM-corn variety adoption  rate by 

one percentage point is $270 million (1996 prices) per year per state or roughly an average of 

$47.40 per acre. This value is much larger than the GM-technology fee on GM-hybrid seed corn 

over 1996-2004 of roughly $10-12 per acre (for two traits) and is consistent with the fact that the 

frequency of use of GM-corn varieties has risen rapidly over 2004-2007 (figure 3).   We conclude 

that treating the GM soybean and corn adoption rates as quasi-fixed is a reasonable approximation 
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to reality, given their shadow-value seems to be different from the technology fee on GM seeds 

and that the GM-corn and soybean adoption rates have not peaked in 2004.  

The shadow-value of a unit ($1 million) increase in public agricultural research capital is 

$207 million per year (in 1996 prices or $126 million in 1984 prices). These benefits are 

distributed over a 35-year period as in figure 6 and imply a 72 percent marginal real internal rate 

of return. This rate of return falls with the 75-25 percentile range on the real rates of return to 

public agricultural research reported by Huffman and Evenson (2006, p. 294-295).17 Hence, public 

funds invested in agricultural research in the Midwest have provided a large rate of return; one that 

is very large relative to alternative public sector investments in these states. 

The shadow-value of one inch of preseason precipitation is also positive—roughly $49 

million per year per state (in 1996 prices). 

Bias Effects of Quasi-Fixed Factors. When zl changes, it might cause neutral effects on inputs 

demanded and outputs supply, but more likely is a non-neutral or biased effect. The estimates of 

the bias effects (impact on optimal cost or revenue shares) of (quasi-) fixed factors are obtained by 

evaluating equations (9), (10) and, (11) using estimated coefficients from tables 2 and 3 and 

sample mean values of the variables from table 1. The magnitude of bias effects is in general small 

for inputs but larger in some cases for outputs (see table 5). Additional land biases optimal cost 

shares toward farm energy, “other materials,” chemicals and capital services but against farm 

labor. Additional land also biases optimal revenue shares strongly toward wheat and modestly 

toward soybeans but against livestock and corn.   

Increasing the GM-soybean varieties adoption rate biases optimal input shares toward farm 

chemicals as expected, and toward farm labor but against farm capital services, energy and “other 

                                                 
17 This analysis assumes that a marginal increase in public agricultural research capital leaves soybean, corn, wheat 
and livestock output prices and farm capital service, labor, energy, chemical and “other material” input prices 
unchanged. 
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materials.” It also biases optimal revenue shares toward wheat and livestock and away from corn 

but has no effect on the optimal revenue share for soybeans. The adoption of GM-corn varieties 

biases optimal input cost shares toward “other materials,” farm energy, and chemicals but against 

farm capital services and labor. Surprisingly, it also biases optimal revenue shares toward wheat 

and away from corn, soybean, and livestock.  

An increase in public agricultural-research-capital biases input shares strongly toward farm 

chemicals and “other materials,” which are major purchased inputs of Midwestern farmers, but 

against farm labor, capital services, and energy. It also biases optimal revenue shares strongly 

toward wheat and moderately toward corn but against soybean and livestock.   

Overall, it is seems surprising that the adoption of GM-soybean (corn) varieties has not 

biased optimal revenue shares toward soybean (corn) output. However, on the input side, the bias 

effects are more in line with expectations. An increase in the GM-soybean variety adoption rate 

biases optimal input cost shares toward agricultural chemicals. However, the adoption of GM-corn 

strongly biases optimal input cost shares toward farm chemicals and “other materials.” The 

increase in the share for farm chemicals may be a reflection of farmers spending more on 

additional fertilizer and Roundup with GM-corn varieties than is saved from application of less 

insecticide when planting Bt-corn varieties.   

Conclusions  

This paper provides new empirical evidence about the structure of agriculture production in the 

US Midwest over 1960-2004, a region known for its productive rain-fed farmland and production 

of corn, soybeans, and livestock and, to a lesser extent, wheat. The new estimates of supply 

elasticities for wheat, corn and soybeans vary in size but overall show farmers to be quite 

responsive to expected output price changes. On the input side, farmers are shown to be quite 

responsive to the prices of farm chemicals, energy, and “other materials,” but the price elasticities 
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of demand for farm capital services and labor are shown to be somewhat smaller.  A majority of 

input-price cross elasticities are positive, but not all. For example, farm capital services and “other 

materials” are complementary with labor.   Among cross-price elasticities for outputs, a majority 

are negative. 

 Adjustments in (quasi-) fixed factors are shown to shift the output supply and input 

demand functions and to bias the composition of outputs produced and variable inputs used.  A 

higher GM-soybean adoption rate (or displacement of non-GM varieties) reduces significantly the 

demand for farm energy and biases optimal input cost shares toward farm chemicals. A higher 

adoption rates for GM corn significantly reduces the demand for farm capital services and labor 

and biases optimal input cost shares toward farm chemicals. Hence, both GM-soybean and corn 

variety adoption bias optimal input-cost shares toward farm chemicals and the measure is small 

but of exactly the same size. 

 Investments in public agricultural research are shown to increase the supply of farm 

outputs and demand for farm inputs in the Midwest, and hence, to have many effects on the 

structure of farm production. In particular, an increase in the stock of public agricultural research 

increases significantly the supply of soybeans, corn, wheat and livestock and demand for farm 

capital services, labor, energy, chemicals and “other materials.” An increase in public agricultural 

research also biases optimal input costs share toward farm chemicals and “other materials” but 

away for farm labor, capital, and energy. Moreover, these changes occur in such a way that 

aggregate farm profit increases and the real rate of return from marginal investments in public 

agricultural research in the Midwest over the study period is quite large, at 72 percent. 

 We have eight years of data on GM corn and soybean variety adoption by Midwestern 

farmers. As data for later years becomes available and GM corn and soybean adoption rates move 

closer, new research will examine the impacts on farmers’ production decisions.   
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          Figure 1. Percent Adoption of GM Corn, Cotton and Soybean  
                Varieties in the United States, by Trait Type, 1996-2010  

     
                 Note: Data for each crop category include varieties with both HT and Bt(stacked 

 

                 traits.  
               Source: USDA 2010 
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Figure 2 

                                                                                    

Ht Soybean Adoption Rates: 
U.S. and Eight Midwestern States, 1996-2007

0

20

40

60

80

100

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

IL
IN
IA
MI
MN
MO
OH
WI
U.S.
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Figure 3 

Combined Bt and Ht Corn Adoption Rates: 
U.S. and Eight Midwestern States, 1996-2007

0

10

20

30

40

50

60

70

80

90

100

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

IL
IN
IA
MI
MN
MO
OH
WI
U.S.

 
 

 Source: ERS (2008) for 2000-2007; our estimates for 1996-1999.       
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   Table 1. Variable Names and Summary Statistics for US Agriculture in Eight    
               Midwestern States, 1960-2004 

Variables  Mean St.Dev
Quantities1 

Wheat Output (y0) 0.18 0.14
Soybean Output (ys) 1.11 0.90
Corn Output (yc) 2.05 1.63
Livestock Output (yv)  3.15 1.54
Capital Services (yk) -1.54 0.55
Labor (yh) -3.89 1.59
Energy (ye) -0.29 0.10
Ag Chemicals (ya) -0.68 0.39
Other Materials (ym) -2.51 1.13

 
Prices2 

Wheat Output (P0) numeraire
Soybean Output (ps) 1.09 0.24
Corn Output (pc) 0.95 0.16
Livestock Output (pv) 1.28 0.39
Capital Services (pk) 1.03 0.44
Labor (ph) 0.81 0.54
Energy (pe) 1.25 0.39
Farm Chemicals (pa) 1.14 0.30
Other Materials (pm) 1.53 0.38

 
Profit (Π) 
    Revenue (ΠR) 7.369
    Cost (ΠC) 9.715
 
Quasi-Fixed Factors 

Land (zl)3 0.87 0.24
GM Soybean Adoption Rate (zs) 0.11 0.24
GM Corn Adoption Rate (zc) 0.04 0.11
Public Ag Research (zr)4 30.05 10.71
Preseason Precipitation (zp)5 0.00 2.49
Lake States, d1 = 1 if Lake State and 
      0 otherwise                          0.38 

1Value $1,000,000,000 in 1996 prices of Alabama 
2 Expected wheat price in nominal relative to Alabama wheat 
price in 1996. 
3Value $1,000,000,000 in 1996 prices in Alabama 
4$1,000,000 in 1996 prices of Alabama 
5Deviation from 30-year norms or means by state 

 



Table 2.  Estimation of a System of Output Supply and Input Demand Equations with Cross-Equation Symmetry Restrictions (SUR 
Model with Cross-Equation Restrictions and a Single First-Order Autoregressive Process): Eight Midwestern States, 1960-2004 
(absolute value asymptotic t-or z-values in parentheses; N = 43x8 = 344 observations per equation)1 

              Output Supply Equations                                       Input Demand Equations 

Variables                                              Soybean       Corn Livestock   Capital Labor Energy 
Farm 

Chemical 
Other 

Materials 
Normalized Prices:         
     Soybean (ps)                                      0.129     -0.289 0.163             -0.060 -0.066 -0.001  0.072  -0.011 
                                                               (1.90)     (3.35)     (2.88)             (1.40) (1.58) (0.09) (2.24) (0.20) 
     Corn (pc)                                          -0.289      0.692      0.493             -0.206  -0.100 -0.049  -0.199  -0.157 
                                                               (3.35)     (3.88)     (5.09)              (2.98) (1.26) (3.24) (3.96) (1.67) 

Livestock (pv)                                    0.163      0.493     -0.072               0.064  0.111 -0.015  -0.055  -0.335 
                                                           (2.88)     (5.09)     (0.67)              (1.40) (1.81) (1.53) (1.73) (4.78) 
Capital (pk)                                       -0.060     -0.206      0.064               0.147  -0.004 -0.017  -0.052  0.069 
                                                           (1.40)     (2.98)     (1.40)              (2.63) (0.14)  (1.26) (1.61) (1.50) 
Labor (ph)                                         -0.067     -0.100      0.111             -0.004  0.179 -0.014  0.028  -0.099 
                                                           (1.58)     (1.26)     (1.81)             (0.14) (3.36) (2.17) (1.24) (2.08) 
Energy (pe)                                      - 0.001     -0.049     -0.015             -0.017  -0.014  0.086  -0.021  0.024 
                                                           (0.09)     (3.24)     (1.53)            (1.26) (2.17) (8.34) (2.30) (2.35) 
Farm Chemical (pa)                          0.072     -0.199     -0.055             -0.052  0.028  -0.021  0.411  -0.134 
                                                           (2.24)     (3.96)     (1.73)            (1.61) (1.24) (2.30) (11.58) (4.05) 
Other Materials (pm)                        -0.011     -0.159     -0.335              0.069  -0.099  0.024  -0.134  0.457 
                                                           (0.20)     (1.67)     (4.78)           (1.50) (2.08) (2.35) (4.05) (6.03) 

Fixed Factors:         
Land (zl)                                             1.786     2.783 2.447             -1.400  -2.543  -0.301  -0.669  -2.728 
                                                         (10.53)    (6.38)     (7.60)          (13.52) (9.30)      (15.85) (10.50) (12.40) 
GM Soybean Adoption (zs)               0.061    -0.107     0.235              0.126  0.459  0.062  0.050   0.119 
                                                           (0.24)    (0.17)     (0.50)            (0.81) (1.24) (2.18) (0.51) (0.37) 
GM Corn Adoption (zc)                   -0.128    -0.037 -0.377            0.870  1.280 0.047  0.140   0.060 
                                                           (0.27)    (0.03)     (0.42)           (2.96) (1.67)       (0.87) (0.77) (0.10) 
Public Research (zr)                          0.042     0.137      0.123            -0.024  -0.024       -0.005  -0.021  -0.069 
                                                           (6.56)    (8.36)   (10.19)           (6.22) (2.32)       (6.95) (8.57) (8.32) 
Preseason Precipitation (zp)            -0.002    -0.023     -0.002            -0.005        -0.010        0.001  0.002  -0.003 
                                                           (0.37)    (1.82)     (0.23)           (1.64) (1.31)       (1.00) (0.98) (0.52) 

Dummy(d1) – Lake States                   -0.635    -0.759      0.787            -0.150  -1.073 -0.040  0.129  -0.509 
                                                           (8.06)    (3.75)     (5.28)           (3.11) (8.48)       (4.50) (4.34) (4.98) 

Time (t)                                                  0.004    -0.037     -0.089             0.015  0.090  0.000  -0.003   0.040 
                                                           (1.67)    (2.46)     (8.05)           (4.06) (9.57) (0.46) (1.48) (5.27) 

Intercept                                               -0.643   -1.297     -0.368             0.018  -0.969        -0.040  0.196  0.443 
                                                           (8.74)    (7.04)     (2.84)           (0.37) (8.38) (4.50) (6.57) (4.66) 

________________________________________________________________________________________________________________________________________



           Table 3.  Estimate of the Numeraire (Wheat Output) Equation with Cross-Equation 
            Restrictions (to coefficients in Table 2) 
 

Variable Coefficient t-value Variable Coefficient t-value 
zl -1.650 2.06 .5(ph)2 0.179 3.36 
zr -0.036 2.54 phpe -0.014 2.17 
zs -0.556 0.42 phpa 0.028 1.24 
zc 1.430 0.52 phpm -0.009 2.08 
zp -0.001 1.43 .5(pe)2 0.086 8.34 
d1 -0.885 5.09 pepa -0.021 2.30 
t 0.032 2.98 pepm 0.024 2.35 

.5(ps)2 0.129 1.90 .5(pa)2 0.411 11.58 
pspc -0.289 3.35 papm -0.134 4.05 
pspv 0.163 2.88 .5(pm)2 0.460 6.03 
pspk -0.060 1.40 .5(zl)2 2.582 1.09 
psph -0.066 1.58 zlzr 0.080 1.84 
pspe 0.001 0.09 zlzs 0.174 0.15 
pspa

 -0.072 2.24 zlzc -3.078 1.21 
pspm

 -0.011 0.20 zlzp -0.010 0.73 
.5(pc)2

 0.692 3.88 zld1 2.012 5.14 
pcpv 0.493 5.09 zl t -0.013 0.39 
pcpk -0.206 2.98 .5(zr)2 0.0003 0.21 
pcph -0.100 1.26 zrzs 0.011 0.29 
pcpe

 -0.049 3.24 zrzc 0.072 1.96 
pcpa -0.199 3.96 zrzp 0.0004 0.62 
Pcpm -0.159 1.67 zrd1 0.009 0.36 

.5(pv)2
 -0.072 0.67 zrt -0.001 0.94 

pvpk
 0.064 1.40 .5(zs)2 -3.680 1.79 

pvph 0.110 1.81 zszc 3.482 1.17 
pvpe -0.015 1.53 zszp -0.446 1.21 
pvpa -0.055 1.73 zsd1 -0.376 0.62 
pvpm -0.335 4.78 zst 0.070 0.82 

.5(pk)2 0.147 2.63 .5(zc)2 0.469 0.08 
pkph -0.004 0.14 zczp 1.065 1.28 
pkpe -0.017 1.26 zcd1 0.757 0.44 
pkpa -0.052 1.61 zct -0.182 1.01 
pkpm 0.069 1.50 .5(zp)2 -0.001 2.00 

   zpd1 0.010 1.15 
   zpt 0.0002 0.38 
   .5t2 -0.0004 1.31 
   td1 0.023 1.19 
   Intercept 0.499 3.07 



Table 4.  Output Supply and Input Demand Elasticities: Eight Midwestern States, 1960-20041 

                   Elasticity w.r.t. prices of: 

 Quantity Capital Labor Energy 
Farm 

Chemical 
Other 

Materials Soybean Corn 
 

Wheat 
 

Livestock 
Inputs          

Capital -0.089 0.002 0.014 0.039 -0.069 0.043 0.128 -0.007 -0.053 
 (2.63) (0.14) (1.26) (1.61) (1.50) (1.40) (2.89)  (1.40) 
          
Labor 0.001 -0.037 0.004 -0.008 0.039 0.019 0.025 -0.006 -0.036 
 (0.14) (3.36) (2.17) (1.24) (2.08) (1.58) (1.26)  (1.81) 
          
Energy 0.062 0.039 -0.371 0.084 -0.125 0.003 0.161 0.082 0.065 
 (1.26) (2.17) (8.37) (2.30) (2.35) (0.93) (3.25)  (1.53) 
          
Farm Chemical 0.080 -0.034 0.039 -0.694 0.302 -0.117 0.281 0.040 0.103 
 (1.61) (1.24) (2.30) (11.58) (4.05) (2.24) (3.96)  (1.73) 
          
Other Materials    -0.028 0.032 -0.012 0.061 -0.277  0.005 0.060 -0.010 0.170 

 (1.51) (2.08) (2.35) (4.05) (6.03) (0.20) (1.67)  (4.78) 
Outputs          

Soybean -0.056 -0.048 -0.001 0.074 -0.015 0.128 -0.248 -0.021 0.188 
 (1.40) (1.58) (0.09) (2.24) (1.20) (1.90) (2.92)  (2.88) 
          
Corn -0.103 -0.039 -0.030 -0.111 -0.118 -0.154 0.321 -0.073 0.307 
 (2.98) (1.26) (3.25) (3.96) (1.67) (3.35) (2.90)  (5.09) 
          
Wheat 0.060 0.104 -0.164 -0.140 0.219 0.114 -0.792 0.810 -0.861 
          
Livestock 0.021 0.028 -0.006 -0.020 -0.162 0.057 0.149 -0.039 -0.029 
 (1.40) (1.81) (1.53) (1.73) (4.78) (2.88) (5.09)  (0.67) 
          

1 Elasticities are obtained by evaluating equation (3) at the sample mean value of the variables from Table 1 and using coefficient estimates  
taken from Tables 2 and 3. The reported t- or z-values in parentheses (absolute value), conditional on sample mean values of prices and quantities,  
yield for non-numeraire outcomes the same values as for the estimated coefficient. Given the extremely complex numeraire (wheat) supply equation,  
no  t- or z-value is reported for the price elasticities associated with the wheat supply equation. 
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Table 5. Estimates of Bias Effects in Production Decisions w.r.t. Quasi-Fixed Factors: 
 Eight Midwestern States, 1960-20041 

                              Quasi-Fixed Factors 

Production Decisions   Land 

GM-         
Soybean 
Adoption 

Rate 

GM-Corn 
Adoption  

Rate 
Public Ag 
Research  

Factor-Cost or 
Revenue Shares 

Inputs        
Capital  0.003 -0.004 -0.036 -0.080         0.163 
Labor  -0.221 0.005 -0.010 -0.372         0.324 
Energy  0.116 -0.001 0.007 -0.036         0.037 
Farm Chemical  0.071 0.003 0.003 0.365         0.080 
Other Materials  0.155 -0.002 0.022 0.267         0.395 

Outputs        
Soybean     0.166     0.000     -0.019     -0.440         0.164 
Corn    -0.055    -0.005     -0.008      0.427         0.264 
Livestock     -0.557     0.001     -0.019     -0.401         0.547 
Wheat  11.898     0.028      0.648      7.269         0.024 
        

1 Evaluation of equation (9), (10) and (11) is at sample mean values of the variables from Table 1 and  
using estimated coefficients from Tables 2 and 3.  
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