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Abstract

Regarding the nature of yield data, there are two basic characteristics that needs to be accommodated while we
are about to model a yield distribution. The first one is the nonstationary nature of the yield distribution, which
causes the heteroscedasticity related problems. The second one is the left skewness of the yield distribution. A
common approach to this problem is based on a two-stage method in which the yields are detrended first and the
detrended yields are taken as observed data modeled by various parametric and nonparametric methods. Based on
a two-stage estimation structure, a mixed normal distribution seems to better capture the the secondary distribution
from catastrophic years than a Beta distribution. The implication to the risk management is the yield risk may be
underestimated under a Beta distribution. A mixed normal distribution under a time-varying structure, in which the
parameters are allowed to vary over time, tends to collapse to a single normal distribution. The time-varying
mixed normal model fit the realized yield data in one step that avoid the possible bias caused by sampling
variability. Also, the time-varying implies that the premium rates can be adjusted to represent the most recent

information and that lifts the efficiency of the insurance market.
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1. Introduction

A precise yield risk assessment depends on the accuracy of modeling the distribution. Regarding the
nature of yield data, there are two basic characteristics needed to be accommodated while we are
about to model a yield distribution. The first one is the nonstationary nature of the yield distribution.
This is primarily due to the technological progress and changing environmental conditions. That is,
the estimated residuals derived from a trend model are conditional on that model, and thus the
heteroscedasticity would arise and lead to misspecification to the data. The heteroscedasticity is

quite a concern to the selection of modeling approach (Goodwin and Ker, 2001).

The second one is the negative skewness of the yield distribution, which might be caused by
catastrophic events. Ker and Goodwin (2000) inferred to this issue and suggested that the
conditional yield may best be modeled as a mixture of two unknown distributions where the
secondary distribution from catastrophic years lives on the lower tail of the primary distribution
from non-catastrophic years and has less mass. That is because the realized yields are far less in

catastrophic years and catastrophic events are realized with less frequency.

There are lots of methods to modeling the characteristics of a yield distribution. The common
catalog to distinguish these methods is parametric, nonparametric. Most of those who adopt the
parametric methods encounter the model selection problem. Because the space of parametric models
is dense, the probability of assuming the correct parametric model is zero. Sufficiently rich data will
be needed to reduce the set of candidates to the point of economic invariance (Goodwin and Ker,
2001). Alternatively, nonparametric methods could mitigate the model selection problem, such as
Ker and Goodwin (2000), and Turvey and Zhao (1993) use nonparametric kernel method to avoid
the possible statistical inconsistency. However, nonparametric methods tend to be inefficient
relative to maximum likelihood methods when the assumed parametric model is correct. Based on
the aspect of view, there exist some other methods, which either combine the advantages of
parametric and nonparametric estimators or use extraneous yield data to improve the efficiency of

the nonparametric estimator.

Among the variety of estimation methods, a very common approach of “two-stage” estimation is
widely applied. In the first stage, the technique of eliminating the “trend” effect of yield data is very
crucial for establishing the correct distributional properties of the detrended data in the second stage.

It has been recognized that the resulting estimated residuals, representing the detrended yields, are



subject to the estimation uncertainty associated with sampling variability in the first stage estimates
of trend and thus may not necessarily provide an accurate representation of the actual yield

distribution (Zhu et al., 2010; Robinson, 1987).

Some conditional parameters methods are proposed to fit the realized data in one step and avoid
the possible bias in the two-stage estimation. For example, Zhu et al. (2010) proposed a flexible
parametric model, which simultaneously and coherently specifies the first four moments using
suitable polynomials of time. Goodwin et al. (2000) used a conditional heteroskedasticity model to
characterize the nonconstant variances of crop prices. The model parameters are then estimated

simultaneously by maximizing the resulting likelihood function.

The same feature among the estimation models is that an appropriate postulated distribution is
needed to capture the characteristics of the data. Beta distribution is the common postulated
distribution for yield data. Nelson and Preckel (1989), Hennessy et al. (1997), and Borges and
Thurman (1994) found sufficient evidence of skewness and / or kurtosis in their yield data and use
the Beta distribution instead of Normal distribution. However, the Beta distribution cannot
accommodate one of the main possible distributional structures (Goodwin and Ker, 2001).
Therefore, a mixed normal distribution may be considered as another candidate for capturing the

skewness and kurtosis of yield data.

In this study, I would first compare the specifications of Beta distribution and a mixed normal
distribution model based on the same detrended yields. Additionally, a time-varying model will be
adopted to allow the conditional parameters to vary over time. The specifications based on different
models and postulated distributions will then be examined. Finally, a simulation practice for

insurance premium rates will be used to assess the influences on pricing an insurance contract.

2. A conventional Two-Stage Estimation

The first stage of conventional two-stage estimation is to detrend the time series of yield. Based on
various assumptions to a trend model, there are lots of methods for the detrending purpose. A
quadratic trend model would be applied as the basic assumption to process the first stage. A
comprehensive survey of other possible detrending methods is not in the scope of this study. The

main purpose is to process two-stage estimation as the benchmark for the the time-varying model.

Consider the following trend model:



Yi=m (X + &

where Y is the observed crop yield in year t, (t=1, ...... , T), m(X;) denotes the regression function
E(Y: | X; =x), X represents linear or nonlinear time indexes representing trend, and &, represents
residuals that are assumed to be independently distributed with mean zero. The regression function
m(X;) can be estimated nonparametrically using kernel methods or smoothing spline methods.
Alternatively, if we assume a parametric functional form for m(Xy) , then the regression coefficients
can be obtained by using ordinary least squares (OLS). In either case, the residuals are obtained as
& =Y.- m(X).

I adopt the corn yield data of Kossuth county from year 1926 to 2009. The empirical data are
county-level yields applied from National Agricultural Statistics Services (NASS). Comparing the R
square in the trend models, the R square, 0.9126, in the cubic trend model does not significantly

increase. The significance of the coefficients in the quadratic trend model also suggests the

quadratic trend stands for a better specification of the realized data (See Table 1).

Yi=a+bt+cti+ & o, (1)
g ~N (0, 6%)

E(Y)=mX;=t)=a+bt+ct®,

Y ~N (E (Yy), 6%

Figures 1 to 4 demonstrate the possible temporal heteroscedasticity, and the regression of the
square error on time also verifies the significant temporal pattern of residuals (See Table 2). In order
to specify the temporal heteroscedasticity effect, a rescaled form of the deviations from a trend-
based equation is applied (Miranda and Glauber, 1997; Atwood et al., 2003):

T=Too (1+5)
Yt
Yoo refers to the predicted yield in the last year. The residual of year t is scaled to Yy9 by dividing

it correspondent predicted yield in year t and hence to obtain the detrended yield, ¥;. We are looking

forward to preserving as much information as possible other than the trend effect in this detrending



process. So that, in the second stage an appropriate distribution would be applied to the specification

for detrended yields.

Figure 5-1 demonstrates that the detrended data are more negatively skewed than the data applied
under normal distribution. Q-Q plots (Figure 5-2, 5-3) based on residuals, &;, and the detrended
data, Y}, also verify the skewness. These examinations suggest that the distribution selections other
than normal distribution, which could well specify the skewness of data set, may be an executable
candidate for the detrended data. Those candidate selections may include Beta, Mixture
distributions, or Kernel (non-parametric). In this study, I adopt a mixed-normal distribution in order

to capture the potential cluster with less frequency.

In the second stage, the parameters of a two-component mixture normal distribution based on the
detrended yield would be estimated by maximum likelihood estimation. The log-likelihood function

is given by,

LLF (A, i, w2, 61, 02| ¥, t=1,2, ..., T)

=Xiz1log{ A

b

2
1 eXp ((Yt u ) )
\/chr%

W-E (Yt)

where, ¥, =Yy (1 + 2t ) = Yoo (1 +—L) = Y;Tth . Let 22— 2., and the detrended yield, ¥; ,
t

t

can be represented as the ratio of predicted yield in year T (=2009) to the predicted yield in year t
times the realized yield, Y; . Therefore, the pseudo log-likelihood function of the parameters based

on the original data Y; is LLF (A, W, W, 61, 62| Y¢,t=1,2, ...... , T)

(fth pl) ({’th uz)2
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3. Time-Varying Mixed Normal Distribution Model

The basic assumption of the time varying model is that the parameters of the distribution follow a

specific temporal pattern, such that the whole temporal changes of the yield distribution can be



captured by the time-varying parameters. The time-varying model accounts for parameter
uncertainty by maximizing the time-varying likelihood function, which is to estimate time-trend

parameters and the distributional parameters in one step.

Zhu et al. (2010) use an exponential form to estimate the variation of the parameters in terms of a
trend model to the Beta distribution. The exponential functional form ensures that the Beta shape,
scale, and location parameters are positive at every observation. Thus, the log-likelihood of the
time-varying Beta distribution model is identical to that of the constant Beta distribution model. The
results suggest that the time-varying Beta model could better specify the yield data than a
conventional two-stage Beta distribution model; particularly, in the specification to the trend of

yield.

In this study, I accept the idea to allow the means and variances varying over time in a mixed
normal distribution model. Because the increasing yield and the heteroscedasicitty of the error
terms, we can anticipate the means and variances have significant trend over time and thus we set up

the means and variances as :
H1 = exp (atb*t);

H2 = exp(c+d*t);

o= exp (e+f*t);

G2 = exp (g+h*t);
A=1+(0-1)/(1+exp (W))

The temporal pattern for means and variances of the density functions may be better specified by
a quadratic trend model. However, the quadratic trend does not obviously raise the log-likelihood
value. Hence, I simply set up a linear trend model to the means and variances. The lambda is
bounded between 0 to 1 in order to estimate the possible secondary distribution from catastrophic
years on the lower tail of the primary distribution. We should note that the optimality is not global
for this non-linear log-likelihood function. It is restricted to a local, but reasonable location, which

allows us to specify the realized yield.



The time-varying model not only addresses the dynamic characteristics of yield distributions, but
also provides a more flexible specification of the heteroscedasticity and higher order moments (e.g.
skewness and kurtosis). Ideally, the time-varying model could well specify the trend and
heteroscedasticity due to the avoidance of possible bias from the estimation uncertainty in the two-

stage estimation.

4. Specification Tests and Model Performance

4.1 The Vuong Test

Vuong’s non-nested specification test (Vuong, 1989) is a likelihood-based test for model selection.

The Vuong’s test statistic is given by :
= Il_l/2 LRn( én , én) / Wn

where n is the number of observations in the sample, LRa( n, On) = the difference between the
maximum log-likelihood values of the competing models. W, is defined as :

f(yt |Xt 0)) _ (1/

F(Ye X 0) 2
9(Ye | Xt 0) )

=sqrt{1/n ¥{_,(log =1109 5 v 5)

Because of the Vuong statistic’s sensitivity to the number of estimated coefficients in each model,
the test will be corrected for the model dimensionality (Clarke, 2007). A correction suggested by
Vuong (1989) corresponds to Schwarz’s (1978) Bayesian information criteria. The adjusted statistic

becomes
LRn( Bn, G) = LRa( Bn, Gn) — [ () In(n) - (3) In(n)],

where p and q are the number of estimated coefficients in the competing models. The test statistic

is asymptotically normally distributed, and the actual test is therefore

1 £ 18)
H LRn(gn Hn)—)E[l (y|9)]



As specified, if v > ¢, where ¢ is Normal (0, 1) critical value for some significant level, we reject
null that the models are the same in favor of the model (f (Y |0n)). Alternatively, if v < -c, we would

reject the null in favor of the alternative model ( g(Y |Gn)).
4.2 The Goodness of Fit

The goodness of fit for the competing models is evaluated based on Akaike Information Criterion
(AIC), AICC, and the Bayesian Information Criterion of Schwarz (BIC). The idea of AIC (Akaike
Information Criterion) is to maximize the “goodness of fit” minus “complexity.” The expression of
AIC is -2L (6) +2K; the BIC is -2L (8) +KlIn(n) where L(8) is the log-likelihood of the model
evaluated at the MLE, n is the number of observations in the sample and K is the number of
parameters in the model. AICC is AIC with a second order correction for small sample sizes, which
is AIC+2K (K+1) / (n-K-1). AICC converges to AIC as n gets large. The smallest AIC, AICC, or
BIC gives the best model.

5. Empirical Results

In the first part of this study, I compare the specifications of Beta, mixed normal and normal
distributions in the conventional two-stage model. In the second part, I test and compare the
performance of a mixed normal in the conventional two-stage model and in the time-varying model.
The data applied are the corn yield data of Kossuth County, lowa from 1926 to 1990. It is widely

recognized that yield data have characteristics of the nonstationary nature, so does the data I apply.
5.1 Two- Stage Estimation

The initial analyses of the two-stage model are presented in figure 1 to 5. Figure 1 to 4 demonstrates
a significant trend and the heteroscedasticity of the error term, which is estimated from the assuming
temporal process (equation 1) . Figure 5-1demonstrates that the detrended yields represent negative
skewness. Q-Q plots based on the residuals and predicted yields (from equ. 1) also suggest that both
the residuals and predicated yields are more negatively skewed than what would be implied by the
normal distribution. This implies that a distribution selection other than normal distribution, such as

Beta or mixed normal might be under the consideration.



5.1.1 MLE - Beta vs. Mixture Normal

From previous specification tests, we have strong evidence to prove that the normality of the
detrended yield is not supported. The questions we are going to ask next are -- which distribution
candidate would better capture the left-tailed events, and what is the implication on the insurance

premium rate?

Before examining the performances of more flexible distribution assumptions of Beta and mixed
normal, we would like to identify the parameters of individual distribution. Unfortunately, some
regularity conditions do not hold with the mixed normal model, i.e., constrained mixing parameter
(M) could cause some parameters cannot be identified when it lie on the boundary (at 0 or 1). That is,
a standard nested hypothesis test statistic, such as likelihood ratio, no longer follows its asymptotic
null distribution (chi-squared). Therefore, we need a non-nested test for determining the number of
components. This is equivalently to test a null hypothesis that mixing parameter is 0 (or 1), or

statistical difference between mixed normal and normal distribution.

Vuong test is applied to test the significance of the mixing parameter of the mixed normal. The
statistic of 1.454 enables us to distinguish the mixed normal is statistically better ( under 10% level
of significance ) than normal distribution. That implies the alternative component with a smaller
mean and variance can be significantly identified. Moreover, we can also identify the less frequent
low-mean and low-variance regime from the difference between the log-likelihood values, AIC,
AICC, and BIC of the mixed normal, normal, and Beta distribution. Most of those criteria suggest

that the mixed normal distribution may have better specification on the detrended data.

As would be expected from Figure 1, the premium rate based on mixed normal distribution is
higher than that based on Beta and normal distribution. This reflects the thicker left tail of the mixed
normal distribution. Also, this implies that the risk estimation with a Beta distribution and a normal
distribution may underestimate the premium rate. The implication of the underestimation might
need more consideration since the extreme events occur in catastrophic years tend to cause larger

and larger loss.

The simulated premium rate is base on a guarantee of 75 percent of the expected annual yields

with a predetermined price of 5 dollars. An insurance premium rate in this simulation practice is



given by expected loss over total liability. The expected loss is defined as the fair premium of the

insurance contract and takes the form as
E(Loss) = E[(AY® - Y) | (YSAY®)]P =E[(AY®- Y)]P,

where the contract offers a guarantee of A (A € (0,1)), which is a portion of the expected yield (Y°) .
The expected loss states that if Y< AY®, the insurer will pay (A\Y® — Y)*P as an indemnity. P denotes

the predetermined price.
5.2 Time-Varying Mixed Normal Distribution Model

The Vuong test statistic is -0.47026 (see, Table 5), which is larger than the critical value of 10
percent level of significance, -1.282, suggests that (1-A) is not significantly different from zero.
With a correction corresponding to Schwarz’s Bayesian information criteria, the adjusted Vuong
test suggests that a single time-varying normal is in favor (i.e., the mixing parameter A is
significantly equal to 1). Therefore, we can conclude that under the estimation of a time-vary
mixture normal, the density collapses into a time-varying single normal distribution. The maximized
log-likelihood function is nearly identical to that of the time-varying single normal distribution (the

-2 Log Likelihood values are identically equal to 672.9).

As to this time-varying model, we can think of each annual yield is drawn from an independent
normal distribution and the parameters (mean and standard deviation) of the normal distributions are
conditioned by linear temporal processes. That is to say, the normal distributions would be
characterized by different parameters annually. The estimated model demonstrates increasing mean

and variance, which reflects the technology improvement and the raising instability of crop yields.

As would be expected, insurance premium rates based on higher expected yields and lower
variances are relatively lower. The lower rate in part reflects the higher forecasted yields and lower
expected loss. Based our case, the model represents increasing estimates of mean and variance. The
premium rate therefore is not necessarily decreasing year by year as expected. Nevertheless, a
simulation practice is adapted to confirm the descending premium rate in this time-varying model.
This result may illustrate the technology improvement effect is larger than the variability of crop

yields.



Based on results of the Vuong test and other information criterions, the time-varying model is
significantly better than the two-stage estimation with mixed normals. The simulated premium rate
based on the time-varying model in 2009 is 0.0041 and the rate based on the two-stage estimation
with mixed normals under the same coverage is 0.012. Thus, the time-varying model may offer

another approach that could improve the efficiency of pricing the insurance contracts.

6. Conclusion

Due to the nonstationary characteristics of the yield data, an appropriate postulated distribution is
needed to well specify the realized yields. This study compares the performance of Beta distribution
and mixed normal distribution model given the same detrended yield, and the time-varying mixed
normal distribution model. We actually exam the specification abilities of Beta and mixed normal
distribution to the skewness and kurtosis. Also, we exam whether the time-varying model has a

superior fit than the conventional method.

Most criteria of goodness of fit suggest that mixed normal distribution provide a superior fit to the
detrended yields than Beta distribution in the conventional two-stage structure. However, the result
of Vuong’s nonnested specification test does not suggest a significantly superior model between
them. Overall, under the conventional two-stage structure, the mixed normal distribution slightly
outperforms the Beta distribution at specification to the skewness and kurtosis based on the yield

data I use.

While the parameters of mixed normal distribution are allowed to vary over time, its goodness of
fit and performance of specification are all superior to the conventional two-stage methods. This
model simultaneously and coherently specifies nonstationary nature and the parameters of the yield
distribution and therefore overcomes possible drawbacks of treating the detrended yields as

observed data.

The simulation practice of insurance premium rates based on the two-stage model and the time-
varying model may result in several suggestions for pricing crop insurance contracts. First, the
premium rate might be underestimated due to the underestimation of the probability of yields in

catastrophic years. Second, when the parameters evolve over time, we find this time-varying model



can more accurately capture the yield risk, which implies that the premium rates can be adjusted to

represent the most recent information.

In conclusion, although the results of statistical tests may be different according to different yield
data sets, the suggestions to the candidate selection should be consistent while abound data are
applied. The superior specification of the time-varying model implies the potential to improve the
accuracy of models used in rating crop insurance contracts and thus may improve risk management

mechanisms to protect producers from risk.
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APPENDIX

Table 1
Dependant Variable : Realized Yields
Cubic Trend Quadratic Trend
Variable Estimate Std. Error Estimate Std. Error
Intercept 30.42808 6.53611° 25.01456 4.81314"
t 0.32440 0.66200 1.06679 0.26135"
t? 0.03091 0.01804 0.00920 0.00298"
£ -0.00017 0.00013 - -
R’ 0.9126 0.9110
N 84 84

Note : An asterisk(*) denotes statistical significance at the o = 0.05 or small level.

Table 2
Dependant Variable : Square Error
Linear Trend Quadratic Trend

Variable Estimate Std. Error Estimate Std. Error

Intercept  59.49537 36.29338 -21.446 54.24905
t 1.76807 0.74593" 7.41598 2.94545"
t2 - - -0.0664 0.03358"
R’ 0.06 0.11
N 84 84

Note : An asterisk(*) denotes statistical significance at the a = 0.05 or small level.



Table 3 : Two-Stage Estimation

Parameter Beta Mixed Normal xixf (:1(1)\1 f (?(?73)1 Normal
15.3154
¢ (2.35027)
10.0810
p (1.5339%)
N 0.1007 0.1007
(0.2391)
126.99 126.98 180.00
Hi (76.3546) (15.5343") (3.1264")
5 27.4647 27.4621 28.6540
! (30.8233) (10.9761%) (2.2107")
185.94 185.94
Ha (7.5479") (2.7998"
21.8728 21.8730
02 (4.3990") (2.1133")
-2Log Likelihood 799.8 792.5 792.5 802.1
AIC 803.8 802.5 800.5 806.1
AICC 804.0 803.3 801.0 806.2
BIC 808.7 814.7 810.2 810.9

Note: Numbers in parentheses are standard errors. An asterisk(*) denotes statistical significance at the

o= 0.05 or small level.

Table 4 : Two-Stage Estimation (Specification Tests)

Mixed Normal Mixed Normal Beta

vs. Beta vs. Normal vs. Normal
Vuong statistic 1.19 1.45" 2.45°
Adjusted Vuong -0.97 -0.57 2.45

Note: An asterisk(*) denotes statistical significance at the o = 0.1 or small level. |



Table S : Time-Varying Model

Mixed Normal Normal

Parameter . .

Estimate Std. Error Estimate Std. Error
a 3.4583 0.04113" 3.4583 0.04109"
b 0.02197 0.000816° 0.02197 0.000816°
c 1.7575 0.1842" 1.7552 0.1840"
d 0.01950 0.003932° 0.01956 0.003931°
e 1.7719 313.96
f 0.2804 64.3667
g 3.1307 3.9730
h 0.2578 0.05985"
W 8.9636 9.6984
-2 Log Likelihood 672.9 672.9
AIC 690.9 680.9
AICC 693.4 681.4
BIC 712.8 690.6
Vuong statistic -0.47026
Adjusted Vuong -491.688"
Note: An asterisk(*) denotes statistical significance at the o = 0.05 or small level.
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Table 6. Simulation Premium Rates

Two-Stage

Normal 0.0054545
Beta 0.0059174
Mixed Normal 0.0120156
Time-Varying Normal

t=85 0.0040772
t=84 0.0041224
t=74 0.0045961
t=64 0.0051088
t=54 0.0056637
t=44 0.0062626
t=34 0.0069079
t=24 0.0076006
t=14 0.0083435
t=4 0.0091383

t=1 0.0093872




