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Abstract 

The objective of this paper is to examine whether noncognitive skills explain differences in  

employment status and hourly wages even after controlling for age, experience, schooling and 

cognitive skills. Of particular interest is to examine the relative magnitudes of the impacts of the 

cognitive and noncognitive skills on these labor market outcomes. Data used in this paper come 

from the Gansu Survey of Children and Families (GSCF), which followed a random sample of 

2,000 children in rural areas of Gansu Province who were 9-12 years old in the year 2000. Three 

waves of surveys were completed in 2000, 2004, and 2007-2009. The GSCF is the first large-

scale data collection on child and adolescent cognitive and noncognitive skills in rural China.



I. Introduction 

Economists have analyzed the impact of formal education, often measured in terms of years of 

schooling, on wages and other labor market outcomes ever since the seminal studies of Becker 

(1964) and Mincer (1974).  In these studies, years of schooling are viewed as an investment in 

human capital that provides the student a return in the form of higher earnings during his or her 

working years.  Many careful studies by economists have attempted to estimate the causal impact 

of years of schooling on wages; Card (1999, 2001) provides a thorough review of these efforts, 

focusing on developed countries. 

 Yet subsequent research has shown that the value of years of schooling can vary across 

schools and across students within the same school.  This suggests that children’s time in school 

does not by itself make them more productive workers.  Instead, time in school is valuable only 

to the extent that it leads to the development of skills that have returns in the labor market (see 

Hanushek, 2002, for a discussion of supportive evidence from developed countries).  This is 

especially true in developing countries, where studies have shown that mathematics, science and 

literacy skills vary widely across (and within) countries for children who have had the same 

years of schooling (see Hanushek and Woessman, 2008, for a recent review). 

 Until recently, the skills that economists have focused on are those that are generally 

classified as cognitive skills.  The definition of this term varies, and some studies do not define it 

at all, but a good starting point is the American Psychological Association’s (2007) definition of 

cognition: “all forms of knowing and awareness, such as perceiving, conceiving, remembering, 

reasoning, judging, imagining and problem solving.”  A simpler definition of cognitive skills is 

the knowledge that one has learned, and one’s ability to learn new knowledge.  Both economists 

and psychologists have long known that cognitive skills – or to use a somewhat different term, 
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cognitive ability – have strong predictive power for economic and social outcomes.  The 

predictive power of these skills fits easily into the human capital model developed by Becker, 

Mincer, and others; many, if not most, cognitive skills are developed when one is enrolled in 

school. 

 While there is a growing literature on the contribution of cognitive skills to earnings, 

there is a much smaller literature on the role of noncognitive skills, especially in developing 

countries. The objective of this paper is to examine whether noncognitive skills explain 

differences in employment status and hourly wages even after controlling for age, experience, 

schooling and cognitive skills. Of particular interest is to examine the relative magnitudes of the 

impacts of the cognitive and noncognitive skills on these labor market outcomes. To our 

knowledge, this paper is the first to examine the contribution of noncognitive skills to labor 

market outcomes in a developing country. 

 

II. Data 

This paper analyzes data collected in Gansu Province, which is located in northwest 

China and is one of that nation’s poorest provinces, consistently ranked last or second to last in 

rural income per capita among Chinese provinces.  In 2000, Gansu had a population of 25.6 

million, 76 percent of whom resided in rural areas.  Gansu’s socioeconomic and educational 

profiles resemble those of other interior provinces in China.  Relative to China as a whole, Gansu 

has low per capita income, high rates of illiteracy, and low per-child educational expenditures. 

Rural residents are predominantly employed in subsistence farming, animal husbandry, and 

migrant wage labor.  The following subsections describe the data in more detail. 
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A. The Gansu Survey of Families and Children.  The analysis in this paper is based on panel 

data from the Gansu Survey of Children and Families (GSCF), which followed a random sample 

of 2,000 children in rural areas of Gansu Province who were 9-12 years old in the year 2000.  

Three waves of surveys were completed in 2000, 2004, and 2007-2009.  Among the children 

surveyed in 2000, only nine had never enrolled in school, and of the 1991 who had enrolled (all 

of whom did so before 2000) only 19 had left school before 2000.  In each wave, the GSCF 

collected extensive data on these children using separate questionnaires administered to children, 

their parents, teachers, school principals, and community leaders. 

 One remarkable characteristic of the GSCF is its low rate of sample attrition.  Of the 

2,000 original children, all but one have complete information in the first wave of the survey, 

including a variety of tests and questions that measure both cognitive and non-cognitive skills.  

Of the 1,999 children with complete information in the first wave, 1,869 (93.5%) were re-

interviewed in wave 2 (2004), when they were 13-17 years old.1  Of these, all answered sets of 

questions designed to measure non-cognitive skills (i.e. completed the child questionnaire) and 

1647 completed tests that measure cognitive skills.  

Finally, wave 3 consists of two separate data collection efforts.  First, household 

questionnaires were completed in the summer of 2007 by the children’s parents, who provided 

information about children’s enrolment history and current employment situation.  Then, the 

children themselves were interviewed about 18 months later, during the 2009 spring festival (late 

January, 2009), when many who had migrated were likely to be visiting their families; if children 

were not at home but their parents were, then the parents were asked to answer some of the 

questions.  The analysis in this paper uses the data from the child questionnaire that was 

                                                            
1 In addition to the 1,869 children who were re-interviewed in wave 2, there are another 52 children from whom 
some information was collected from parents in the household questionnaire, although those children were not re-
interviewed.  Because we need information from the child questionnaire, these 52 are excluded from our analysis. 
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completed in early 2009, not the data from the household questionnaire completed in 2007.  The 

wave 3 child questionnaire collected information from 1,858 of the original 2,000 children. (This 

includes 86 children for whom no data were collected in wave 2, so the 142 children with no data 

in wave 3 consist of 42 that were already missing in wave 2 and another 100 who were present in 

wave 2.)  Of these 1,858 young people, 1407 (75.7%) completed the wave 3 tests for cognitive 

skills, 1421 (76.5%) completed wave 3 tests for non-cognitive skills, and 1413 (76.0%) have a 

complete set of both cognitive and non-cognitive skills for wave 3.   

 B. Data on Education, Cognitive Skills and Non-Cognitive Skills.  The GSCF 

collected detailed data on the sample children’s educational outcomes.  The household 

questionnaires, completed in 2000, 2004, and 2007, included information on whether the child 

attended kindergarten (and, if so, how many years he or she attended), the age when the child 

first enrolled in primary school, whether any grades were repeated or skipped (and, if so, which 

ones), the most recent grade completed, current enrolment status, and the distance to the nearest 

primary, middle and high schools.  Detailed data were also collected on parental expenditures on 

the child’s education.  Each of these variables was also collected for all of the child’s siblings. 

 In the first two waves, additional data were obtained from the child’s homeroom teacher, 

including that teacher’s assessment of the child’s behavior and study habits, as well as his or her 

past grades in Chinese and mathematics.  While almost all children have grades for the school 

currently attended, only about half have grades for the school previously attended. 

Information was also solicited from the sample children’s mothers about the child’s behavior and 

attitudes towards schooling.  Finally, a principal questionnaire provided more information about 

the school, and a village leader questionnaire collected information on the distances to the 

nearest schools. 
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 A child questionnaire was completed in each survey wave.  In the first two waves, in 

addition to asking questions about noncognitive skills (described below), children were asked 

questions about the time they spent on homework, as well as their attitudes toward education.  In 

the third wave, the children were surveyed in early 2009 during spring festival (late January).  As 

the children were older and most had completed schooling, the questions focused on school-to-

work transitions, including detailed work histories, migration histories, and the earnings from 

and the characteristics of their current jobs.   

The GSCF collected data on cognitive and non-cognitive skills in all three waves of the 

survey, although the specific skills covered vary by wave.  These are summarized in Table 1.  

The following paragraphs describe each of the skill measurements in greater detail.   

A general cognitive ability test was administered in the first wave of the GSCF.  

Developed by researchers at the Institute for Psychology of the Chinese Academy of Social 

Sciences, the test consists of four sets of questions.  The first is a set of miscellaneous questions 

of common knowledge, such as “Who invented the light bulb?”  The second set consists of 

somewhat abstract questions that ask what two objects have in common; an example of such a 

pair is “elbow” and “knee”.  The third set asks children to solve simple arithmetic problems that 

are read out to them, and the fourth is a series of miscellaneous written arithmetic questions that 

must be answered within 30 to 75 seconds (example: “A child has 12 children’s books, he/she 

gives 5 of them to a friend.  How many does he/she have left?”).      

  The Chinese and mathematics achievement tests collected in waves 1 and 2 were 

designed by experts at the Gansu Educational Bureau to cover the range of the official primary 

school curriculum.  In 2004, separate exams were given to children in grades 1-2, 3-4, and 5-6 of 

primary school, and for each grade of middle school. The academic tests were administered in 
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school classrooms for currently enrolled children, and in the village committee office for 

children who were no longer enrolled.  In the first wave, half of the sample children were 

randomly assigned to take the Chinese test, while the other half took the mathematics test.  In the 

second wave, all students took both tests.  The wave 1, children were given 45 minutes to take 

the math test and 60 minutes to take the Chinese test.  In wave 2, children in primary school were 

given 60 minutes to complete both tests (i.e. about 30 minutes each) and middle school students 

were given 90 minutes for both tests.  Chinese and mathematics test were not administered in 

wave 3, since less than have of the sample were still in school in 2009, so there is no clear 

reference curriculum on which to base the tests. 

Literacy (“life skills”) tests were administered in waves 2 (2004) and 3 (2009).  In waves 

2 and 3 children were given 30 minutes to take this test.  The tests are modeled after the 

International Adult Literacy Surveys (OECD and Statistics Canada, 2000) and were designed by 

an expert from the China Educational Research Institute in Beijing.  They assess three domains 

of life skills: prose literacy, document literacy, and numeracy.   

Prose literacy focuses on the knowledge and skills needed to understand and use 

information from texts that contain extended prose organized in a typical paragraph structure 

found in materials such as editorials, news stories, brochures and pamphlets, manuals, and 

fiction.  Document literacy focuses on knowledge and skills required to locate and use 

information found in qualitatively different printed materials that contain more abbreviated 

language and use a variety of structural devices to convey meaning, such as tables, charts, 

graphs, indices, diagrams, maps, and schematics.  Numeracy refers to the ability to interpret, 

apply, and communicate mathematical information in commonly encountered situations.  

Numeracy tasks can be characterized by the computational skills required and by the problem-
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solving strategies used.  In contrast to the Chinese and math achievement tests administered in 

waves 1 and 2, the literacy test focuses on how to apply literacy and numeracy skills to function 

effectively in society.  The same test was taken by everyone in the sample, regardless of their 

grade level.  The wave 2 and 3 tests are not identical, since by 2009 these young adults should 

have developed more advanced skills.  In particular, the wave 3 test included more questions on 

reading comprehension.    

 Measurements of non-cognitive skills are constructed from sets of questions included in 

the child questionnaires in each wave of the GSCF.  Measures of internalizing behavior and 

externalizing behavior are asked in exactly the same way in waves 1 and 2.  Internalizing 

behavior problems are intrapersonal in nature.  The internalizing index captures the extent to 

which the child suffers from anxiety, depression and withdrawal.  Externalizing problems are 

interpersonal in nature and are characterized by destructive behavior, impulsivity, aggression and 

hyper-activity (Achenbach and Edelbrock, 1978; Hinshaw 1992; Dearing et al 2006).  The child 

psychology literature suggests that environments that impede a child’s self-regulatory efforts, as 

well as the presence of anti-social role models, increase the likelihood of a child developing 

externalizing problems (Evans, 2004).  Environments that destabilize a child’s sense of self 

control over his or her life may increase the likelihood of internalizing problems (Dearing et al 

2006; Chorpita and Barlow, 1998).   

To measure internalizing and externalizing behavior, each child was read 36 statements 

under the heading “Description of Your Life” and asked to indicate the extent to which they 

agreed with the statement, with four possible responses (fully agree, agree, disagree, totally 

disagree).  Half of these statements were used to create an internalizing behavior index and the 

other half were used to create an externalizing behavior index.  An example of a statement used 
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for the internalizing index is: “I am shy.”  An example of a statement used for the externalizing 

index is: “I often lose my temper with others.”  From the two indices, normalized internalizing 

and externalizing variables were created; for both, a higher value indicates a child with more 

behavioral problems.  

 In wave 2, another set of questions, in the form of statements that respondents are then 

asked whether they agree, were used to measure children’s resilience.  The series of statements is 

based on Song’s (2001, 2003) adaption of Noam and Goldstein’s (1998) “Resilience Inventory”.  

Resilience is defined as the capacity to achieve favorable outcomes despite challenges and “risk” 

factors.  The Resilience Inventory (RI) was developed to be a culturally sensitive measure of 

child and adolescent resilience and has been administered to children and adolescents in the US, 

Thailand, China, Korea, Switzerland, and Israel. The GSCF adapted Song’s RI for Korea.  Song 

(2001) generated six subscales of the RI for use on Korean adolescents.  The subscales are: 

Optimism, Self-Efficacy, Relationships with Adults, Peer Relationships, Interpersonal Sensitivity 

and Emotional Control.  This was the first large-scale data collection on child and adolescent 

“resilience” characteristics in rural China.   

 The third wave did not collect data on internalizing and externalizing behavior, nor on 

resilience, but it did administer two sets of questions to measure two other types of noncognitive 

skills, the Rosenberg Self-Esteem Scale assessment and the Center for Epidemiological Studies 

Depression Scale (CES-D).  The main reason for using different tests is that the internalizing, 

externalizing and resilience tests are designed for children, while the self-esteem and depression 

test are designed for adults, and by wave 3 the children were 17-21 years old.  The Rosenberg 

scale measures perceptions of self-worth.  It is a 10-item scale, designed for adolescents and 

adults, that measures an individual's degree of approval or disapproval toward himself 
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(Rosenberg, 1965).  The scale is short, widely used, and has accumulated evidence of validity 

and reliability. It contains 10 statements of self-approval and disapproval to which respondents 

are asked to strongly agree, agree, disagree, or strongly disagree.    

 CES-D is one of the most frequently used depression questionnaires that psychologists 

have constructed that can be used in general surveys to detect the presence of depressive 

symptoms.  It was developed in the 1970s by Lenore Radloff (1977), while she was a researcher 

at the U.S. National Institute of Mental Health.  It consists of 12 statements, such as “I felt that 

everything that I did was an effort”.  For a reference period of the past week, the respondent is 

asked to express the frequency of such feelings on a four point scale (No, Once in a while, 

Sometimes, and Frequently).  

 C. Employment and Wage Data.  Of the 2,000 children sampled in the year 2000, 

information was collected for 1,858 of them using the child questionnaire that was administered 

in early 2009.  Of these children, 846 (45.5%) were still in school, another 845 (45.5%) were 

working, and 167 (9.0%) are neither working nor in school.  Note that some of this information 

was provided by the children’s parents; of the 1,858 children, 423 were unavailable to directly 

answer the questionnaire because they had migrated and did not return home for the spring 

festival (240 children), were not at home for other reasons, such as military service or higher 

education (83 children), or for unknown reasons (100 children).  Thus only 1,435 children were 

available to take tests of cognitive and non-cognitive skills in the 2009 data. 

 Of the 845 children who were working in 2009, 771 (91.2%) were working for wages and 

the rest were self-employed (or, in two cases, this information is missing).  Among all 845 

working children, 517 (61.2%) were working in another province, and 167 (19.8%) were 

working in Gansu province but in a different county than the one they grew up in.   
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 The earnings regressions presented below use the log of the hourly wage as the dependent 

variable.  It is computed based on the answers to three questions: monthly income from current 

job (including bonuses and subsidies), days worked per month, and hours worked per day.  Of 

the 845 workers, 568 are classified as unskilled workers (manufacturing workers and restaurant 

workers are the most common categories) and the rest can be classified as skilled workers. 

  

III. Estimation Strategy 

 The basic approach is to estimate standard models of these outcomes, and examine 

whether non-cognitive skills offer additional explanatory power for those labor market outcomes.  

Table 2 presents evidence that cognitive and non-cognitive skills measure different attributes.  

The general cognitive development test is moderately correlated with the Chinese and 

mathematics tests, with correlation coefficients of 0.322 and 0.247, respectively.  (The 

correlation between the Chinese and mathematics tests cannot be calculated for 2000 since 

children took either one or the other.)  In contrast the correlation between the Chinese and math 

test and the two tests of non-cognitive skills (internalizing and externalizing scales) is lower, 

ranging between -0.087 and -0.186 (one would expect negative correlation, since these non-

cognitive skills have higher values of children with more behavioral problems). The cognitive 

development test is more correlated with non-cognitive skills (correlation coefficients of -0.246 

and -0.298), but the strongest correlation of all is between the two non-cognitive skills (0.823). 

Yet one needs to be very careful because the apparent impact of both cognitive and non-

cognitive skills on labor market outcomes could reflect causal pathways in the opposite 

direction: an individual’s employment status and wages could affect their current levels of both 

types of skills.  Our main approach to address this problem is to use measures of both types of 



10 
 

skills that were collected when the children were much younger: either the skills measured in 

2000, when almost all of the sample children (98.6%) were in school, or the skills measured in 

2004, when 89% of the sample children were still in school (and only 7% were working). 

A second problem is omitted variable bias.  In almost any regression estimate, some 

variables that have explanatory power are not available in the data set.  If those variables, which 

in effect become part of the error term in the regression, are correlated with the explanatory 

variables in the regression the estimates of the causal impacts of the observed variables will be 

biased.  For example, child “innate ability” could affect scores on test of cognitive skills but 

could also have direct effects on the decision to remain in school.   

A third problem is bias due to measurement errors in the data, especially with respect to 

the scores on the cognitive and non-cognitive tests.  It is well known that random errors in 

regressors generally lead to underestimation of the associated coefficients.  Any variable that is 

measured by administering a test or a set of questions will have at least some measurement error 

in it, since respondents may make errors, and the test itself cannot fully capture the underlying 

concept.  One way to remove, or at least minimize, this type of bias is to use instrumental 

variable methods, where the instrument is a “second measurement” of the underlying variable.  

For example, Chinese and math scores in 2000 could be used as IV’s for the same variables in 

2004, and vice versa. 

 A fourth problem, which applies only to estimates of the impact of cognitive and non-

cognitive skills on wages, is selection bias.  Only about 45% of the individuals in the sample 

were working for wages when they were interviewed in early 2009.  These wage workers are 

unlikely to be a random sample of the original 2000 children, and the objective is to estimate a 

relationship that applies to the entire sample.  To avoid sample selection bias we use the 2-step 
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method first proposed by Heckman (1979).  The first step consists of estimating a probit model 

of whether the individual works for wages in early 2009, and the second equation is the wage 

equation.  There is little reason to think that the selection correction term is identified by 

arbitrary functional form assumptions about the error terms in these equations, so one or more 

variables is needed to that have predictive power for the probit regression but have no 

explanatory power for the earnings of wage earners.  The main exclusion restriction used in this 

paper is whether the child passed the upper secondary school entrance examination; children 

who fail this exam cannot continue to upper secondary school, and this event is unlikely to have 

predictive power on wages after controlling for children’s cognitive and non-cognitive skills.  

 Consider the roles of cognitive and non-cognitive skills in determining a child’s current 

education/employment status.  The sample children were 17-21 years old in 2009, and while 

many were still enrolled in school slightly more than half have finished their schooling.  In terms 

of standard human capital theory, the children who have already left school have attained their 

optimal level of schooling, while those who are still in school have not yet reached their optimal 

level.  Simple utility maximizing models (e.g. Glewwe, 2002) indicate that the following 

exogenous factors increase the number of years that children continue in school (and thus 

increase the probability that a young person is still in school in 2009): higher “learning 

efficiency”, higher school quality, higher parental “tastes” for schooling, and a lower price of 

schooling (which could include lower travel costs).  Learning efficiency can be divided further 

into parental education (better educated parents are more able to help their children with their 

schoolwork), households’ purchases of educational services (e.g. tutoring services), children’s 

“innate ability”, and children’s interest in schooling. 
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 How do cognitive and non-cognitive skills fit in this simple model?  First, the 

development of both types of skills could reflect different aspects of children’s innate ability, and 

they could also reflect children’s interest in (tastes for) schooling.  Second, in the absence of 

precise measures of school quality, they could also reflect unobserved school quality (we will get 

around this by using commune or village fixed effects).  Third, they could also reflect 

unobserved parental tastes for schooling, since parents who put more weight on their children’s 

education presumably spend more time helping their children with their schoolwork (and give 

their children more encouragement to do well in school).  Finally, to enter upper secondary 

school in China students must pass an academic entrance exam, and children’s cognitive (and 

perhaps non-cognitive) skills almost certainly affect their performance on that exam.  While 

there is growing literature on the contribution of cognitive skills to earnings, there is a much 

smaller literature on the role of non-cognitive skills, especially in developing countries.  To our 

knowledge, this paper is the first to examine the contribution of non-cognitive skills to labor 

market outcome in a developing country. 

 Standard neoclassical models of the role of human capital in determining earnings 

assume that workers are paid the marginal product of their labor, and that higher levels of human 

capital increase those workers marginal product of labor and thus increase their wages.  In 

theory, human capital can be treated as a set of many different types of skills, ranging from 

different types vocational training (some of which are primarily acquired through work 

experience) to higher order thinking skills.  All of these can be thought of as cognitive skills.  In 

addition, the productivity of most types of work depends on individuals’ motivations and their 

ability to work well with others.  These are their non-cognitive skills.  In the wage regressions 

presented below, the first specifications include the standard factors that determine wages, 
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namely work experience and years of education.  These specifications are then expanded by 

adding measure of cognitive skills.  Finally, then measures of non-cognitive skills are added.  To 

avoid bias due to reverse causation (working conditions affect these skills), most specifications 

use measurements of these skills that were obtained before the vast majority of the sample 

children started working (e.g. measurements from waves 1 and 2).    

 

IV. Results 

 This section presents estimates of the impact of cognitive and non-cognitive skills on the 

sample children’s employment outcomes when they were 17-21 years old.  The first subsection 

presents estimates of the impact on those skills on whether they are still in school, are working, 

or doing neither.  The second subsection examines the impacts of those skills on their wages. 

 A. Determinants of Education and Employment Status.  Table 3 presents multinomial 

logit estimates of the determinants of the sample children’s education or employment status in 

2009, when they were 17-21 years old.   As explained above, data are available for 1858 of the 

original 2000 children, of which 846 (45.5%) are still in school, another 845 (45.5%) are 

working, and 167 (9.0%) are neither working nor in school.  In all regressions the base group is 

students. 

 The first two columns of Table 3 present estimates that include only very basic 

explanatory variables, none of which measure either cognitive or non-cognitive skills.  As 

expected, older students are more likely to be working or doing nothing, relative to being a 

student.  Girls are no more likely to be in either category than boys.  Children with educated 

parents, especially educated fathers, are less likely to be working or doing nothing; in other 

words, they were more likely to be in school, as one would expect. Children from better off 
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families are also much less likely to be working than being a student, but this variable has no 

effect on the probability of doing nothing (relative to being a student).  Several other variables 

that one may expect to be significant had no explanatory power and thus were dropped from the 

regression; these variables were distance to the nearest upper secondary school, number of bad 

harvests from 2000 to 2006, land holdings, child height-for-age Z-score, a dummy variable 

indicating a first-born child, and number of men and women of working age in the household in 

the year 2000.   

 The third and fourth columns of Table 3 add three cognitive skill variables that were 

measured in the year 2000, when the children were 9-12 years old and almost all of them 

(98.6%) were in school. These students were mainly in grades 3-6 at that time, and their scores 

on the mathematics and Chinese tests have strong negative predictive power on the likelihood 

that they were either working or doing nothing in 2009.  The same result is also found for the 

cognitive development test given in the year 2000.  Of course, this is not particularly surprising; 

even after controlling for parental education and wealth, there is additional variation in children’s 

academic performance, and more generally in their cognitive development, and those who were 

learning skills more quickly are much more likely to remain in school. 

 The last two columns of Table 3 address the main question of this paper, whether non-

cognitive skills have an impact on student’s schooling to employment transitions over and above 

the predictive power of their cognitive skills.  The two non-cognitive skills variables that were 

measured in the year 2000, when these children were 9-12 years old, are the internalizing and 

externalizing scales.  The negative sign of the coefficients on the internalizing scale suggests that 

relatively withdrawn students are more likely to remain in school, although only the impact on 

doing nothing is statistically significant.  The externalizing scale has significantly positive 
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explanatory power for both the probability that children are working and the probability that 

children are doing nothing (relative to being in school).  This suggests that children who were 

more aggressive, destructive and/or impulsive when they are 9-12 years old are less likely to be 

in school when they are 17-21 years old, even after accounting for their academic skills. 

 Inspection of the coefficient estimates in Table 3 suggests that they are similar for the 

two alternatives to remaining in school (working and doing nothing).  Indeed, a chi-squared 

(joint) test of the equality of all the coefficients across these two alternatives cannot be rejected 

at the 5% level, although it is (just barely) rejected at the 10% level (p-value of 0.098).  Thus the 

remainder of this subsection uses a simple logit, both to increase the efficiency of the estimates 

and also to allow for fixed effects estimation. 

 It is possible that unobserved community characteristics may be correlated with the 

explanatory variables in Table 3.  For example, school quality could be highly correlated with 

children’s acquisition of cognitive skills when they are 9-12 years old and it could have a direct 

effect on their education and employment decisions when they are 17-21 years old.  Moreover, 

other community characteristics, such as local employment opportunities, may affect both non-

cognitive skills at an early age (e.g. uncertain parental earnings could affect children’s psycho-

social development) and later education and employment decisions.  It is very difficult to 

implement a multinomial logit model with fixed effects.  Yet since the parameter estimates for 

working and doing nothing (relative to being in school) are very similar, one can group those two 

categories and estimate a simple logit model with village fixed effects.  The results for these 

regressions are presented in Table 4. 

 The first three columns of results in Table 4 are similar to the three sets of results given in 

Table 3, and they confirm that grouping the working and doing nothing categories leads to very 
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similar results.  In particular, after controlling for age, sex, parental education, household income 

and distance to the nearest high school, students’ cognitive skills (as measured by scores on the 

Chinese, mathematics and the general cognitive skills test) in 2000 have strong predictive power: 

higher scores increase the probability that they are still in school nine years later.  Turning to 

non-cognitive skills, the externalizing score earlier in life greatly increases the probability that 

the child is not in school (most of these children are working) even after controlling for 

children’s cognitive skills.    

 The marginal impacts of a one unit change in the variables are also given in column 3.  

Both cognitive and non-cognitive tests are standardized to have a standard deviation of one.  The 

main result of interest here is that the impact of a one standard deviation change in the 

externalizing score is slightly larger than the impact of a one standard deviation change in the 

three cognitive skill variables.  This demonstrates that the impact of this non-cognitive skill is 

not only statistically significant but also at least as large as the impacts of the cognitive skills. 

 Columns 4, 5 and 6 in Table 4 examine whether these results continue to hold when 

county fixed effects are added (recall that the 2000 children are located in 20 different counties).  

Very simply, the results continue to hold.  Most importantly, a child who has a high externalizing 

score when he or she was age 9-12 is more likely not to be in school at age 17-21, even after 

conditioning on cognitive skills when the child was 9-12 years old.  Indeed, when fixed effects 

are added the internalizing variable is weakly significant, so that children with higher 

internalizing scores are more likely to remain in school. 

 Table 5 presents the same estimates as Table 4, except that a linear probability model 

(OLS) specification is used instead of a binary logit specification.  The results are very similar to 

those in Table 4, as is usually the case.  Given this verification that the results are similar, the 
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remaining results will use a linear probability model, which is more amenable for instrumental 

variable estimates. 

 As mentioned in Section IV, it is very likely that both the cognitive and non-cognitive 

skill variables, which are test scores, include random measurement error, which implies that they 

are likely to underestimate the true effects of these variables on the transition from education to 

employment.  Fortunately, there are several instrumental variables for both types of skills, which 

can be used to minimize this bias.  In particular, the mother questionnaire in wave 1 asks a large 

number of questions of the mother about the child’s academic abilities.  In addition, it asks the 

mother the exact same questions of the child that are used in the child questionnaire to construct 

the internalizing and externalizing variables.  In addition, the child’s homeroom teacher was 

asked to complete a questionnaire on the child’s academic skills, as well as on the child’s 

personality and behavior.  These can be use as instruments for both the cognitive and non-

cognitive skill variables.  The results presented in columns 1-4 of Table 6 examine what happens 

to the results when the cognitive and non-cognitive skills variables are instrumented.  The first 

two columns reproduce columns 3 and 6 of Table 5.  The third column of Table 6 is the same 

specification as the second column (in particular, it has village fixed effects), except that it uses 

instrumental variables for the three cognitive skills variables and the two non-cognitive skills 

variables.  As one would expect, the standard errors are much larger when instrumental variables 

are used; the main issue is whether the parameter estimates increase in absolute value, which is 

what one would expect if these variables have a large amount of random measurement error.  

There is almost no change in the effect of the Chinese score, although of course it is no longer 

statistically significant.  On the other hand, the effect of the math score is about 60% larger (in 

absolute value), but again it is not significant because of the even larger increase in its standard 
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error.  In contrast, the effect of the general cognitive skills variable is almost four times as large, 

and is statistically significant at the 10% level.   

Turning to the non-cognitive skill variables, the internalizing variable remains small and 

statistically insignificant, but the coefficient on the externalizing variable increases fourfold, 

although it loses significance.  Given that the internalizing variable has no significant impact, 

and that it is relatively hard to find strong instruments for it, column 4 in Table 6 excludes that 

variable.  The main effect of this change is to reduce the standard error on the externalizing 

variable to the point where it is highly significant, and still four times larger than the impact 

when instrumental variable estimation is not used.  Overall, the instruments are not always 

“strong” enough to give precise results, but the estimates strongly suggest that there is 

measurement error in most, if not all of the cognitive and non-cognitive skill variables, and thus 

their impacts are, in general, underestimated in estimates that do not use instrumental variables. 

The last two columns in Table 6 are the same as the first two columns except that they 

replace the 2000 Chinese, math, internalizing and externalizing variables with their 2004 

counterparts.  It also replaces the 2000 general cognitive skills test with the 2004 literacy (life 

skills) test.  This was done in the hope that the 2004 scores may have less measurement error.  

Surprisingly, on four of the five tests the 2004 scores have lower explanatory power than the 

2000 tests.  The only exception is that the 2004 literacy (life skills) test has more explanatory 

power than the 2000 general cognitive skills test when village fixed effects are not used.  

 In 2004, an additional non-cognitive skill was measured: resilience.  Interpreting its 

predictive power for staying in school is problematic because, as explained above, about 7% of 

children in 2004 had already left school, and most of them were working.  Thus it is possible that 

their leaving school had an effect on their resilience as measured in 2004.  Table 6B presents 



19 
 

several regressions that investigate the impact of resilience on children’s propensity to stay in 

school. 

 The first two columns in Table 6B simply add the resilience variable to the regressions in 

the first two columns of Table 6.  Note that the sample size drops by about 90 students because 

these students did not take the resilience test in 2004.  The main finding here is that, even after 

controlling for cognitive skills and externalizing and internalizing behavior, resilience has strong 

negative predictive power for working; that is, more resilient children are more likely to remain 

in school.  The second column adds village fixed effects, and the result is the same.  To avoid 

bias due to reverse causality, the third and fourth columns in Table 6B exclude the 183 children 

who were already working in 2004.  There is very little change in the size of the impact of the 

resilience variable, and it is still highly significant.  This 11% reduction in the sample size could 

also introduce selection bias, but the sample size reduction is not very large, and since less 

resilient children are more likely to drop out of the sample the main bias may be to underestimate 

the impact of resilience. 

 Recall that the resilience test can be decomposed into six different subscores, namely 

optimism, self-efficacy, relationships with adults, peer relationships, interpersonal sensitivity and 

emotional control.  Columns 5 and 6 of Table 6B are the same as columns 1 and 2, except that 

the resilience variable has been replaced by these six subcomponents.  Only one of the six 

components is significant at the 1% level in both columns 5 and 6: optimism.  This indicates that 

children who were more optimistic at ages 13-16 are more likely to still be in school when they 

are 17-21 years old.  One other component of the resilience index has predictive power, self-

efficacy, but its significance is not as strong. 
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 B. Determinants of Wages.  As explained in Section IV, OLS estimates of earnings 

equations could suffer from sample selection bias.  To avoid this bias a standard Heckman 

selection procedure is used.  Table 7 presents two sets of probit estimates for whether an 

individual is working for a wage.  For the first set, the binary dependent variables equals one for 

any person working for a wage, regardless of whether he or she has test score data collected in 

2009 (wave 3).  This is used for regressions that do not include wave 3 test scores, which are 

missing for over 400 individuals who have wage data in wave 3.  For the second set, the binary 

dependent variable equals one for those who have wage data and have wave 3 test score 

variables.  

 The estimates in the first column of Table 7 are similar to those in the first column of 

Table 4, the main difference being that some additional variables were added to obtain 

identification of the wage equation from an exclusion restriction.  The most important identifying 

variable is failing the high school entrance exam.  This effectively bars students from continuing 

on to upper secondary school and so should have a strong positive predictive power for whether 

they are working.  As long as students’ cognitive and non-cognitive skills are included in the 

wage regressions, there is little reason to think that this variable also belongs in the wage 

regression, and hence it is a valid exclusion restriction.  Two other variables that have predictive 

power and in principle do not belong in the wage regression are the parental education variables.  

Another variable with potential to be excluded from the wage regression that also has some 

explanatory power is the number of years for which the household experienced bad harvests 

from 2000 to 2006; households that experience more negative income shocks are likely to have 

difficulties financing their children’s education and so their children are more likely to be 
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working.2  Two final variables that could have some explanatory power and that could be a valid 

exclusion restriction are the number of man and women of working age in the household in the 

year 2000.  Households with more such men and women have less need of children, especially 

girls, to drop out of school in order to contribute to farm work and housework. 

 The results in the first column of Table 7 show that failing the upper secondary school 

entrance exam makes an individual much more likely to be working for a wage, as one would 

expect.  A history of bad harvests from 2000 to 2006 significantly increases the probability that a 

child is working for a wage, which is also to be expected.  Finally, the number of males of 

working age in the household in 2000 has no effect, but the number of women of working age 

has a negative effect, which suggests that girls face less pressure to leave school if there are other 

women in the household that can contribute to housework.  The second probit estimate in Table 

7 adds parental education as another variable that can predict children’s working for a wage.  As 

expected, both mother’s and father’s education have strong negative impacts. 

Columns 3 and 4 in Table 7 repeat the estimates in columns 1 and 2, but the binary 

dependent variables equals one only if individuals work for a wage and have 2009 test score 

data.  The results are broadly similar to those of the first two probits.  They are shown here 

mainly for completeness, that is, to show that the probits that generate the selection correction 

term for the wage regressions that include the 2009 test scores also have identifying variables 

that have strong explanatory power. 

 Table 8 presents basic wage regressions, as well as regressions that use cognitive skill 

variables (but not non-cognitive skills variables) as regressors. Columns 1 and 2 use no cognitive 

skill variables at all; they are standard wage regressions in which wages depend on years of 

                                                            
2 In the 2004 village leader questionnaire, those leaders were asked for reasons why children dropped out of lower 
secondary school; they could chose multiple reasons, and 51% cited that tuition and fees were too high, which was 
the second most cited reason. 
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schooling, years of experience, and job training, plus a dummy variable for women.  In addition, 

two variables are added to control for employers who provide free meals (which reduce wages) 

and for jobs that necessitate that the employee rent housing to be close to the place of 

employment (which should increase wages).  Finally, the inverse Mills ratio from the first probit 

regression in Table 7 is included.  In column 1, it is based on the probit that does not use parents’ 

education as an exclusion restriction (identifying variable for the selection correction term), 

while column 2 uses the probit that includes parents’ education as an exclusion restriction. 

 The results in columns 1 and 2 of Table 8 are as one would expect.  Young adults with 

more years of schooling receive higher wages, and the same is true of employees with more 

experience and with job-related training.  The results are very similar when parents’ education is 

excluded (column 1) or included (column 2) as an exclusion restriction in the probit equation.  

Another finding that is not surprising (for China) is that women’s wages are about 25% lower 

than those of men.  The dummy variables for employers that provide meals or employees that 

need to rent housing have the expected signs, but neither is statistically significant.  Finally, the 

selection correction term is insignificant in both regressions. 

 If school quality varies substantially within Gansu province, the years of schooling 

variable does not fully capture the variation in skills that students obtain while in school.  The 

remaining columns in Table 8 add cognitive skill variables to see whether they offer additional 

explanatory power.  Column 3 uses the test scores that were administered in wave 1 (2000), 

while columns 4 and 5 do the same for waves 2 (2004) and 3 (2009), respectively.  In all cases, 

none of these variables has any explanatory power, and the years of schooling variable maintains 

its statistical significance.  None of the estimated parameters is very large, even allowing for 

some attenuation bias, and three of the seven have unexpected negative signs.  This suggests that 
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either there is little variation in school quality across Gansu province, so that years of schooling 

is a good indicator of skills learned in school, or the cognitive skill variables are measured with a 

large amount of error and thus their coefficients are biased toward zero.  Of course, both could 

be true.     

 Finally, Table 9 presents results when variables are added that measure non-cognitive 

skills.  In the first column, neither of the two non-cognitive skill variables that were measured in 

2000 (internalizing and externalizing) is significant.  This holds even if the three insignificant 

cognitive skill variables are removed from the regression (column 2).  The same is true for three 

non-cognitive skills (internalizing, externalizing and resilience) measured in wave 2 (2004), as 

seen in column 3.   

 Yet the two non-cognitive skills measured in 2009, the Rosenberg self-esteem score and 

the CES-D depression variable do have statistically significant explanatory power for wages.  In 

column 4, the Rosenberg scale has a significantly positive effect, as expected, and it is quite 

large: an increase of one standard deviation is associated with a 7% increase in wages.  Similarly, 

in column 5 the depression index has a significantly negative impact, as one would expect.  The 

impact is very large, in that an increase of one standard deviation leads to a 9% decrease in 

wages.   Lastly, when both variables are measured together only the depression scale has a 

significant effect (their correlation coefficient is -0.294).    Of course, it is possible that the 

results for 2009 are picking up reverse causality; getting a job with high wages may increase 

one’s self-esteem, and getting that pays low wages may make one more depressed.     

 

V. Summary  
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Our results indicate strong effects of non-cognitive skills on schooling years, but not labor 

productivity.  It could be that the effects of non-cognitive skills are greater for those with more 

schooling years, in particular, children in our sample that have not yet entered the workforce 

(almost half of whom are in high school now).  It could also be that the types of non-cognitive 

skills measured in our survey contribute more to the formation of cognitive skills and thus years 

of schooling. Thus a closer look at the formation of skills may give a more clear picture.  
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Table 1: Cognitive and Non-Cognitive Skills in the Gansu Survey of Children and Families 
 

Year Cognitive Skills Non-Cognitive Skills 
2000 1. Chinese Test (half sample) 

2. Math Test (other half) 
3. General Cognitive Skills Test 

1. Internalizing Behavior 
2. Externalizing Behavior 

2004 1. Achievement Tests 
2. Literacy/Life Skills Test 
3. Classroom grades 

1. Internalizing Behavior 
2. Externalizing Behavior 
3. Resilience (with subscales in 

optimism, self-efficacy, adult 
relationship, peer relationship, 
interpersonal sensitivity and 
emotional control) 

2008-09 1. Literacy/Life Skills Test 
(similar to one used in 2004) 

1. Rosenberg Self-Esteem Scale 
2. Depression Scale (from Center for 

Epidemiological Studies)  
 
 

Table 2: Correlations Between Cognitive and Non-Cognitive Skills 
 

 
Year 2000 
                      |  Chinese   Math    Cogn. Dev. Internalizing Externalizing 
-----------------+-------------------------------------------------------------------- 
Chinese         |   1.0000 
Math              |       --        1.0000 
Cogn. Dev.    |   0.3223    0.2468     1.0000 
Internalizing  |  -0.1232   -0.0868    -0.2461     1.0000 
Externalizing |  -0.1857   -0.1462    -0.2976     0.8234          1.0000 
 
  
 



28 
 

Table 3: Multinomial Logit: Factors that Influence Education/Employment in 2009, using 2000 Skills Data 

(1)  (2)  (3) 

Base group: Students  Add Cognitive 
Add Cognitive and Non‐

Cognitive 

Outcome:  Working  Doing nothing Working  Doing nothing  Working  Doing nothing 

Chinese achievement test score in 2000  ‐0.246**  ‐0.297**  ‐0.238**  ‐0.296** 
(0.103)  (0.121)  (0.105)  (0.119) 

Math achievement test score in 2000  ‐0.265***  ‐0.245  ‐0.257***  ‐0.243 
(0.0867)  (0.172)  (0.0858)  (0.169) 

General cognitive skills test score in 2000  ‐0.208**  ‐0.252**  ‐0.165  ‐0.218** 
(0.104)  (0.101)  (0.103)  (0.107) 

Internalizing scale in 2000  ‐0.116  ‐0.285** 
(0.0969)  (0.133) 

Externalizing scale in 2000  0.272**  0.362** 
(0.108)  (0.153) 

Age of sample children  0.474***  0.270***  0.539***  0.344***  0.557***  0.359*** 
(0.0397)  (0.0635)  (0.0482)  (0.0524)  (0.0472)  (0.0600) 

Gender dummy (=1 if female)  0.114  0.0388  0.106  0.0337  0.126  0.0515 
(0.168)  (0.271)  (0.166)  (0.278)  (0.165)  (0.279) 

Father's years of schooling  ‐0.0933*** ‐0.0867***  ‐0.0867***  ‐0.0786***  ‐0.0869***  ‐0.0789*** 
(0.0185)  (0.0285)  (0.0195)  (0.0289)  (0.0193)  (0.0286) 

Mother's years of schooling  ‐0.0603*** ‐0.0487  ‐0.0446**  ‐0.0311  ‐0.0468**  ‐0.0341 
(0.0186)  (0.0299)  (0.0197)  (0.0335)  (0.0193)  (0.0338) 

Log 2000 per capita wealth in 2009 Yuan  ‐0.303*** ‐0.0640  ‐0.252***  ‐0.00416  ‐0.246***  ‐0.00544 
(0.0742)  (0.143)  (0.0787)  (0.144)  (0.0822)  (0.147) 

Constant  ‐5.915*** ‐5.468***  ‐7.697***  ‐7.541***  ‐8.091***  ‐7.828*** 
(1.038)  (1.897)  (1.375)  (1.763)  (1.382)  (1.911) 

Observations  1857  1857  1857 

Standard errors in parentheses.  * p<0.10,  ** p<0.05,  *** p<0.01 
Scores on Chinese and Math achievement tests, Internalizing scale, Externalizing scale are standardized 
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Table 4: Binary Logit: Factors that Influence Education/Employment in 2009, using 2000 Skills Data, Village Fixed Effects 

Base group: Students (1)  (2)  (3)  (4)  (5)  (6) 

Outcome: Working or Doing nothing
 

Add Cognitive Add Cognitive 
and 

Non‐Cognitive 

Marginal 
Effect 

  Add Cognitive Add Cognitive 
and  

Non‐Cognitive 

Chinese achievement test score in 2000 ‐0.256***  ‐0.249***  ‐0.0523*** ‐0.212**  ‐0.200** 

(0.0925)  (0.0942)  (0.01941)  (0.0974)  (0.0957) 

Math achievement test score in 2000  ‐0.262***  ‐0.255***  ‐.0536*** ‐0.301***  ‐0.293*** 

(0.0873)  (0.0858)  (0.01765)  (0.0959)  (0.0928) 

Literacy test score in 2000  ‐0.215**  ‐0.174*  ‐0.0366  ‐0.399***  ‐0.352*** 

(0.0971)  (0.0967)  (0.0204)  (0.102)  (0.106) 

Internalizing scale in 2000  ‐0.147  ‐0.0309  ‐0.144* 

(0.0948)  (0.0196)  (0.0856) 

Externalizing scale in 2000  0.288***  0.0606*** 0.328*** 

(0.104)  (0.02123)  (0.100) 

Age of sample children  0.437*** 0.504***  0.521***  0.1096*** 0.456*** 0.570***  0.594*** 

(0.0377)  (0.0407)  (0.0415)  (0.0084)  (0.0442)  (0.0538)  (0.0544) 

Gender dummy =1 if female  0.100  0.0926  0.112  0.0236  0.0884  0.0720  0.0951 

(0.173)  (0.174)  (0.173)  (0.0362)  (0.176)  (0.173)  (0.172) 

Years of schooling of Father  ‐0.0923*** ‐0.0854***  ‐0.0856***  ‐0.0180*** ‐0.0898*** ‐0.0836***  ‐0.0849*** 

(0.0170)  (0.0184)  (0.0181)  (0.0037)  (0.0155)  (0.0165)  (0.0164) 

Years of schooling of Mother  ‐0.0583*** ‐0.0424**  ‐0.0447***  ‐0.0094*** ‐0.0642*** ‐0.0519***  ‐0.0546*** 

(0.0157)  (0.0176)  (0.0172)  (0.0035)  (0.0181)  (0.0190)  (0.0182) 

Log of per capita wealth in 2000  ‐0.260*** ‐0.208**  ‐0.204**  ‐0.0428*** ‐0.234*** ‐0.188***  ‐0.187*** 

(0.0781)  (0.0824)  (0.0857)  (0.01779)  (0.0660)  (0.0663)  (0.0671) 

Constant  ‐5.346*** ‐7.180***  ‐7.553*** 

(1.103)  (1.331)  (1.363) 

Fixed effects at county level  NO  NO  NO  YES  YES  YES 
Observations  1857  1857  1857  1857  1857  1857 

Standard errors in parentheses.  * p<0.10,  ** p<0.05,  *** p<0.01 
Scores on Chinese and Math achievement tests, Internalizing scale, Externalizing scale are standardized 
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Table 5: Linear Probability Model: Factors that Influence Education/Employment in 2009, using 2000 Skills Data 
Base group: Students  (1)  (2)  (3)  (4)  (5)  (6) 

Outcome: Working or Doing nothing 
Add 

Cognitive 
Add Cognitive and 
Non‐Cognitive 

Add 
Cognitive 

Add Cognitive and 
Non‐Cognitive 

Chinese achievement test  score in 2000  ‐0.0581***  ‐0.0563**  ‐0.0446**  ‐0.0424** 
(0.0196)  (0.0197)  (0.0196)  (0.0190) 

Math achievement test  score in 2000  ‐0.0579***  ‐0.0564***  ‐0.0630***  ‐0.0610*** 
(0.0188)  (0.0185)  (0.0191)  (0.0185) 

General cognitive skills test score in 2000  ‐0.0427**  ‐0.0335  ‐0.0740***  ‐0.0637*** 
(0.0203)  (0.0199)  (0.0196)  (0.0201) 

Internalizing scale in 2000  ‐0.0310  ‐0.0280 
(0.0197)  (0.0170) 

Externalizing scale in 2000  0.0610**  0.0653*** 
(0.0216)  (0.0203) 

Age of sample children  0.0906***  0.102***  0.104***  0.0908***  0.107***  0.111*** 
(0.00702)  (0.00781)  (0.00792)  (0.00767)  (0.00847)  (0.00834) 

Gender dummy =1 if female  0.0233  0.0212  0.0255  0.0192  0.0146  0.0195 
(0.0374)  (0.0366)  (0.0361)  (0.0363)  (0.0347)  (0.0342) 

Father's years of schooling  ‐0.0180*** ‐0.0165***  ‐0.0165***  ‐0.0172*** ‐0.0158***  ‐0.0158*** 
(0.00311)  (0.00326)  (0.00326)  (0.00277)  (0.00291)  (0.00289) 

Mother's years of schooling  ‐0.0130*** ‐0.00943**  ‐0.00978***  ‐0.0135*** ‐0.0109***  ‐0.0113*** 
(0.00314)  (0.00346)  (0.00333)  (0.00371)  (0.00379)  (0.00360) 

Log 2000 per capita wealth in 2009 Yuan  ‐0.0558*** ‐0.0431**  ‐0.0418**  ‐0.0491*** ‐0.0373**  ‐0.0363** 
(0.0167)  (0.0172)  (0.0176)  (0.0137)  (0.0132)  (0.0132) 

Constant  ‐0.595**  ‐0.940***  ‐1.006***  ‐0.654**  ‐1.093***  ‐1.165*** 
(0.233)  (0.273)  (0.276)  (0.233)  (0.241)  (0.234) 

Fixed effects at village level  NO  NO  NO  YES  YES  YES 
Observations  1857  1857  1857  1857  1857  1857 

Standard errors in parentheses. * p<0.10,  ** p<0.05,  *** p<0.01 
Scores on Chinese and Math achievement tests, Internalizing scale, Externalizing scale are standardized. 
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Table 6: Linear Probability Model: Factors that Influence Education/Employment in 2009, using IV’s and 2004 Skills Data 
(1)  (2)  (3)  (4)  (5)  (6) 

Base group: Students All children  2004 Scores 
Outcome: Working or Doing nothing IV with internal IV without internal

Chinese achievement test score in 2000  ‐0.0563**  ‐0.0424**  ‐0.0481  ‐0.0511 
(0.0197)  (0.0190)  (0.0932)  (0.0929) 

Math achievement test score in 2000  ‐0.0564*** ‐0.0610*** ‐0.0937  ‐0.0977 
(0.0185)  (0.0185)  (0.138)  (0.136) 

General cognitive skills test score in 2000  ‐0.0335  ‐0.0637*** ‐0.224*  ‐0.222* 
(0.0199)  (0.0201)  (0.121)  (0.120) 

Internalizing scale in 2000  ‐0.0310  ‐0.0280  0.0180 
(0.0197)  (0.0170)  (0.175) 

Externalizing scale in 2000  0.0610**  0.0653*** 0.233  0.247*** 
(0.0216)  (0.0203)  (0.174)  (0.0928) 

Chinese achievement test score in 2004  ‐0.0228  ‐0.0192 
(0.0174)  (0.0163) 

Math achievement test score in 2004  ‐0.0358**  ‐0.0343** 
(0.0149)  (0.0146) 

Literacy test score in 2004  ‐0.0726*** ‐0.0833***
(0.0196)  (0.0193) 

Internalizing scale in 2004  ‐0.0108  ‐0.0150 
(0.0184)  (0.0168) 

Externalizing scale in 2004  0.00974  0.0153 
(0.0201)  (0.0191) 

Age of sample children  0.104***  0.111***  0.163***  0.163***  0.0870***  0.0912*** 
(0.00792)  (0.00834)  (0.0164)  (0.0164)  (0.00501)  (0.00611) 

Gender dummy =1 if female  0.0255  0.0195  0.0293  0.0300  0.00152  ‐0.00373 
(0.0361)  (0.0342)  (0.0304)  (0.0298)  (0.0423)  (0.0397) 

Years of schooling of Father  ‐0.0165*** ‐0.0158*** ‐0.0103***  ‐0.0104***  ‐0.0162*** ‐0.0160***
(0.00326)  (0.00289)  (0.00321)  (0.00314)  (0.00290)  (0.00277) 

Years of schooling of Mother  ‐0.00978*** ‐0.0113*** ‐0.00671  ‐0.00684  ‐0.00748  ‐0.00943* 
(0.00333)  (0.00360)  (0.00506)  (0.00478)  (0.00442)  (0.00503) 

Log of per capita wealth in 2000  ‐0.0418**  ‐0.0363**  ‐0.00374  ‐0.00388  ‐0.0495*** ‐0.0366** 
(0.0176)  (0.0132)  (0.0156)  (0.0156)  (0.0162)  (0.0160) 
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Dummy =1 if first born in HH  0.0177  0.0174 
(0.0294)  (0.0289) 

Constant  ‐1.006***  ‐1.165***  ‐0.621***  ‐0.796*** 
(0.276)  (0.234)  (0.205)  (0.225) 

Fixed effects at village level   NO  YES  YES  YES  NO  YES 
Observations  1857  1857  1782  1782  1557  1557 

Standard errors in parentheses. * p<0.10,  ** p<0.05,  *** p<0.01 
Scores on Chinese and Math achievement tests, Internalizing scale, Externalizing scale are standardized 
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Table 6B: Linear Probability Model: Factors that Influence Education/Employment in 2009, Adding 2004 Resilience Variable  
 

Base group: Students  (1)  (2)  (3)  (4)  (5)  (6) 
Outcome: Working or Doing nothing  All children  Only children in school in 2004  Resilience subscale 

Chinese achievement test score in 2000  ‐0.0584*** ‐0.0458**  ‐0.0540**  ‐0.0402*  ‐0.0551**  ‐0.0423** 
(0.0200)  (0.0189)  (0.0212)  (0.0210)  (0.0201)  (0.0192) 

Math achievement test score in 2000  ‐0.0556*** ‐0.0603*** ‐0.0551***  ‐0.0591***  ‐0.0549*** ‐0.0593***
(0.0181)  (0.0183)  (0.0187)  (0.0185)  (0.0179)  (0.0182) 

General cognitive skills test score in 2000  ‐0.0305  ‐0.0622*** ‐0.0268  ‐0.0561**  ‐0.0295  ‐0.0620***
(0.0213)  (0.0213)  (0.0241)  (0.0236)  (0.0209)  (0.0216) 

Internalizing scale in 2000  ‐0.0325  ‐0.0319*  ‐0.0338  ‐0.0354  ‐0.0340*  ‐0.0327* 
(0.0191)  (0.0169)  (0.0238)  (0.0208)  (0.0193)  (0.0167) 

Externalizing scale in 2000  0.0564**  0.0644*** 0.0585**  0.0698***  0.0583**  0.0659***
(0.0219)  (0.0204)  (0.0242)  (0.0220)  (0.0210)  (0.0196) 

Resilience scale in 2004  ‐0.0323*** ‐0.0325*** ‐0.0298**  ‐0.0324*** 
(0.0106)  (0.0112)  (0.0109)  (0.0113) 

Optimism scale in 2004  ‐0.0432*** ‐0.0390***
(0.0123)  (0.0114) 

Self‐Efficacy scale in 2004  ‐0.0266*  ‐0.0337** 
(0.0132)  (0.0138) 

Relationship with Adults scale in 2004  0.0169  0.0142 
(0.0145)  (0.0127) 

Peer Relationship scale in 2004  ‐0.0109  ‐0.00653 
(0.0134)  (0.0142) 

Interpersonal Sensitivity scale in 2004  0.0157  0.0158 
(0.0146)  (0.0143) 

Emotional Control scale in 2004  0.00911  0.00989 
(0.0141)  (0.0147) 

Age of sample children  0.0982***  0.107***  0.0804***  0.0898***  0.0981*** 0.107*** 
(0.00811)  (0.00879)  (0.00940)  (0.0109)  (0.00793)  (0.00850) 

Gender dummy =1 if female  0.0333  0.0303  0.0339  0.0260  0.0305  0.0272 
(0.0352)  (0.0334)  (0.0380)  (0.0355)  (0.0338)  (0.0319) 

Years of schooling of Father  ‐0.0182*** ‐0.0175*** ‐0.0170***  ‐0.0163***  ‐0.0180*** ‐0.0174***
(0.00321)  (0.00282)  (0.00320)  (0.00293)  (0.00318)  (0.00275) 
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Years of schooling of Mother  ‐0.00929** ‐0.0109*** ‐0.00849**  ‐0.0109**  ‐0.00893** ‐0.0106***
(0.00336)  (0.00346)  (0.00404)  (0.00408)  (0.00332)  (0.00344) 

Log of per capita wealth in 2000  ‐0.0437**  ‐0.0365**  ‐0.0429**  ‐0.0338**  ‐0.0427**  ‐0.0361** 
(0.0176)  (0.0141)  (0.0180)  (0.0141)  (0.0180)  (0.0147) 

Constant  ‐0.869***  ‐1.087***  ‐0.568*  ‐0.812**  ‐0.876***  ‐1.092*** 
(0.280)  (0.249)  (0.295)  (0.299)  (0.278)  (0.244) 

Fixed effects at village level  NO  YES  NO  YES  NO  YES 
Observations  1768  1768  1585  1585  1768  1768 

Standard errors in parentheses. * p<0.10,  ** p<0.05,  *** p<0.01 
Scores on Chinese and Math achievement tests, Internalizing scale, Externalizing scale are standardized 
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Table 7: Probit Estimates of Factors that Influence Education/Employment in 2009 (to generate selection correction terms) 
(1)  (2)  (3)  (4) 

Observe 
wage 

Observe wage‐
with parent 
education 

Observe wage and 
test scores 

Observe wage and test 
scores‐with parent educ. 

Age of sample children  0.258***  0.262***  0.177***  0.178*** 
(0.0339)  (0.0348)  (0.0372)  (0.0373) 

Gender dummy =1 if female  0.0210  0.0250  ‐0.0510  ‐0.0468 
(0.0804)  (0.0820)  (0.0764)  (0.0775) 

Years of schooling of Father  ‐0.0391***  ‐0.0352*** 
(0.0108)  (0.00833) 

Years of schooling of Mother  ‐0.0405***  ‐0.0210* 
(0.0144)  (0.0123) 

Failed the entrance exam to high school  0.832***  0.843***  0.577***  0.577*** 
(0.131)  (0.125)  (0.114)  (0.111) 

Number of males of working age in HH in 2000  0.00110  ‐0.0252  ‐0.00682  ‐0.0274 
(0.0862)  (0.0891)  (0.0996)  (0.101) 

Number of females of working age in HH in 2000  ‐0.157**  ‐0.166***  ‐0.105*  ‐0.109* 
(0.0620)  (0.0576)  (0.0617)  (0.0619) 

Log of per capita wealth in 2000 (in 2009 yuan)  ‐0.121***  ‐0.0762**  ‐0.0617  ‐0.0300 
(0.0390)  (0.0381)  (0.0409)  (0.0406) 

Years of bad harvest during 2000‐2006  0.0646***  0.0625***  0.0553**  0.0548** 
(0.0206)  (0.0213)  (0.0229)  (0.0224) 

Constant  ‐4.190***  ‐4.161***  ‐3.323***  ‐3.257*** 
(0.645)  (0.648)  (0.750)  (0.764) 

Observations  1860  1858  1860  1858 

Standard errors in parentheses. * p<0.10,  ** p<0.05,  *** p<0.01 
Scores on Chinese and Math achievement tests, Internalizing scale, Externalizing scale are standardized 
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Table 8: Wage Regressions for 2009 – The Role of Cognitive Skills 
(1)  (2)  (3)  (4)  (5) 

Dependent variable: lnwage  2000 Cognitive Scores 2004 Cognitive Scores 2009 Cognitive 

Years of schooling  0.0335**  0.0370***  0.0288*  0.0423***  0.0344* 
(0.0126)  (0.0117)  (0.0138)  (0.0144)  (0.0198) 

Work experience measured in years  0.0334**  0.0364***  0.0306**  0.0248*  0.0280* 
(0.0117)  (0.0114)  (0.0114)  (0.0141)  (0.0146) 

Had job‐related training  0.237***  0.238***  0.236***  0.215***  0.241*** 
(0.0460)  (0.0470)  (0.0465)  (0.0625)  (0.0616) 

Chinese achievement test score in 2000  0.0174 
(0.0440) 

Math achievement test score in 2000  ‐0.00530 
(0.0276) 

Chinese achievement test score in 2004  0.0179 
(0.0295) 

Math achievement test score in 2004  ‐0.0418 
(0.0322) 

General cognitive development test score in 2000  0.0208 
(0.0228) 

Literacy test score in 2004  ‐0.0211 
(0.0327) 

Literacy test score in 2009  0.00991 
(0.0390) 

Gender dummy =1 if female  ‐0.258***  ‐0.255***  ‐0.258***  ‐0.258***  ‐0.386*** 
(0.0565)  (0.0569)  (0.0575)  (0.0639)  (0.0701) 

Dummy =1 if employer provides free meals  ‐0.0121  ‐0.0147  ‐0.00979  ‐0.0578  ‐0.0260 
(0.0374)  (0.0372)  (0.0380)  (0.0435)  (0.0597) 

Dummy =1 if need to spend money on rent for the job  0.00953  0.0134  0.0106  0.00177  ‐0.0182 
(0.0354)  (0.0349)  (0.0356)  (0.0396)  (0.0492) 

Inverse Mills ratio for wage selection probit  ‐0.127  ‐0.125  ‐0.0973 
(0.0753)  (0.0749)  (0.0792) 

Inverse Mills ratio, with parent education in probit  ‐0.0576 
(0.0616) 

Inverse Mills ratio for test scores & wage selection probit  ‐0.0448 
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(0.117) 
Constant  1.182***  1.090***  1.228***  1.111***  1.238*** 

(0.160)  (0.137)  (0.167)  (0.177)  (0.283) 
Number of observations  809  807  809  651  506 

Standard errors in parentheses. * p<0.10,  ** p<0.05,  *** p<0.01 
Scores on Chinese and Math achievement tests, Internalizing scale, Externalizing scale are standardized 
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Table 9: Wage Regressions for 2009 – The Role of Non-Cognitive Skills 
(1)  (2)  (3)  (4)  (5)  (6) 

Dependent variable: lnwage 

2000 
scores 

2000 
Noncognitive 

only 
2004 scores 

2009 
Rosenberg 

only 
2009 CES‐D only 

2009 
Rosenberg 
and CES‐D 

Years of schooling  0.0292*  0.0341**  0.0427***  0.0276  0.0287  0.0255 
(0.0140)  (0.0129)  (0.0138)  (0.0203)  (0.0205)  (0.0204) 

Work experience  measured in years  0.0312**  0.0340**  0.0224  0.0248  0.0249*  0.0229 
(0.0117)  (0.0119)  (0.0141)  (0.0161)  (0.0141)  (0.0151) 

Had job‐related training  0.234***  0.236***  0.207***  0.240***  0.233***  0.235*** 
(0.0474)  (0.0468)  (0.0640)  (0.0595)  (0.0634)  (0.0619) 

Chinese achievement test score in 2000  0.0179   
(0.0436)   

Math achievement test score in 2000  ‐0.00443   
(0.0275)   

Chinese achievement test score in 2004  0.0177   
(0.0292)   

Math achievement test score in 2004  ‐0.0402   
(0.0313)   

General cognitive development test score in 2000  0.0233   
(0.0212)   

Literacy test score in 2004  ‐0.0185   
(0.0306)   

Literacy test score in 2009  0.000528  0.00483  ‐0.000244 
(0.0360)  (0.0384)  (0.0360) 

Internalizing scale in 2000  ‐0.00687  ‐0.00640   
(0.0372)  (0.0377)   

Externalizing scale in 2000  0.0158  0.0107   
(0.0282)  (0.0295)   

Internalizing scale in 2004  0.0495   
(0.0334)   

Externalizing scale in 2004  ‐0.0133   
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(0.0336)   
Resilience scale in 2004  ‐0.00924   

(0.0307)   
Standardized Rosenberg Self‐Esteem Scale 2009  0.0742**  0.0497 

(0.0299)  (0.0332) 
Percentiles of CES‐D Depression Scale in 2009  ‐0.0942***  ‐0.0784** 

(0.0284)  (0.0321) 
Gender dummy =1 if female  ‐0.256***  ‐0.258***  ‐0.260***  ‐0.386***  ‐0.385***  ‐0.387*** 

(0.0570)  (0.0564)  (0.0641)  (0.0715)  (0.0716)  (0.0722) 
Dummy =1 if employer provides free meals  ‐0.00995  ‐0.0122  ‐0.0568  ‐0.0343  ‐0.0377  ‐0.0416 

(0.0382)  (0.0378)  (0.0425)  (0.0597)  (0.0637)  (0.0624) 
Dummy =1 if need to spend money on rent for the 
job 

0.00982  0.00912  ‐0.00126  ‐0.0218  ‐0.00920  ‐0.0142 

(0.0357)  (0.0355)  (0.0384)  (0.0517)  (0.0487)  (0.0501) 
Inverse Mills Ratio for Wage Selection Probit  ‐0.130  ‐0.130  ‐0.105   

(0.0758)  (0.0764)  (0.0835)   
Inverse Mills Ratio for Rosenberg & Wage Selection 
Probit       

‐0.0441  ‐0.0266  ‐0.0246 

(0.123)  (0.111)  (0.117) 
Constant  1.226***  1.178***  1.121***  1.317***  1.281***  1.319*** 

(0.168)  (0.161)  (0.174)  (0.295)  (0.280)  (0.286) 
Observations  809  809  650  498  503  498 

Standard errors in parentheses. * p<0.10,  ** p<0.05,  *** p<0.01 
Scores on Chinese and Math achievement tests, Literacy test, Internalizing, Externalizing, Rosenberg, CES‐D are standardized 
Higher percentiles of CES‐D means more depressed.  

 
 


