

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Imperfect Information and the Reserve Price Dynamics In Auctions

Jafar Olimov

Department of Agricultural, Environmental & Development Economics Ohio State University, 2120 Fyffe Road, Columbus, OH 43210 Contact Author: olimov.1@osu.edu

Poster prepared for presentation at the Agricultural & Applied Economics Association 2011 AAEA & NAREA Joint Annual Meeting, Pittsburgh, Pennsylvania, July 24-26, 2011.

Copyright 2011 by Jafar Olimov. All rights reserved.

Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Imperfect Information and the Reserve Price Dynamics In Auctions

Jafar Olimov, Dept. of Agricultural, Environmental & Development Economics

Abstract

I study a hybrid bargaining model with an English auction in each state. The seller uses auctions to extract information about the bidders' values of the object on sale. The bargaining element is introduced to maximize revenue, since the winning bidder has to exceed not only the second-highest bid but also the reservation price of the seller.

This model can explain the following empirical facts from Ebay auctions: multiple relisting of similar items, the use of secret reserve prices, and the convergence of sale prices to buy-it-now prices.

Motivation

Sequential Auctions without Commitment

McAffee and Vincent (1997): Revenue equivalence between sequential auctions with publicly observed reserve prices and static auction without publicly observed reserve price when the time between sequential auctions goes to zero

Reserve Prices

Myerson (1981), Riley and Samuelson (1981), Xu(2010): revenue optimality of publicly observed reserve prices in independent private values environment – screening;

Milgrom and Weber (1982), Cai, Riley and Ye (2007): revenue optimality of publicly observed reserve prices in common value environment – signaling;

Theoretical conclusions

Theory predicts no repeated auctions

Theory predicts no use of secret reserve prices

Empirical Evidence

Existence of repeated auctions

Widespread use of secret reserve prices

Data and Methods

Empirical Evidence

The dataset of English auctions on tractors sold on Ebay between 11/17/04 and 5/30/07. The total number of observations is 39441.

Theoretical Approach

Rubinstein bargaining model with incomplete information. Bargaining model with one-sided incomplete information: Rubinstein (1985) with an overview of the literature in Kennan and Wilson (1993). Bargaining model with two-sided incomplete information: Cramton (1992) and Satterthwaite and Shneyerov (2007).

Empirical Evidence from Ebay dataset

Table 1. Frequency of Relistings

Tractors	Number of tractors	number of sold tractors	% of sold tractors
1 listing	23253	13251	56.99
2 listings	4031	1448	35.92
3 listings	1069	344	32.19
4 listings	404	117	28.96
5 listings	197	60	30.46
6 listings	102	30	29.41
7 listings	61	20	32.79

Table 2. Use of Secret and Public Reserve Prices

Tractors with one listing	number of listings	Percent of listings
Total number of listings	23253	100.00
listings with reserve prices	10705	46.04
listings with first bids >100	15573	66.97
listings with both reserve prices		
and first bids	7544	32.44

Table 3. Dynamics in Sale Prices

	# of sold	% of sold listings with	mean of sale price	stde of sale price of% of BIN
	with buy-it-	buy-it-now price	as % of BIN	
	now			
1 listing	2556	19.29	90.57	20.40
2 listings	539	37.22	93.52	11.52
3 listings	134	38.95	95.41	7.46
4 listings	55	47.01	95.01	7.83
5 listings	23	38.33	96.22	6.56
6 listings	13	43.33	97.49	4.51
7 listings	9	45.00	96.99	3.68

Implications of the Approach

- •The bargaining model with incomplete information allows to introduce delays and multiple relistings
- •Secret reserve prices are justified, since they are used to elicit information
- •Convergence of sale prices to BINs can be explained by the seller's use of auctions to acquire information
- •The use of BINs in later stages is justified by informed sellers
- •Sellers use auctions to elicit information instead of selling
- explains the low probability of sales in repeated auctions

References

Cai, H., John Riley, and Lixin Ye, (2007), "Reserve Price Signaling," *Journal of Economic Theory*, 135 (1), 253-268;

Cramton, Peter C., (1992), "Strategic Delay in Bargaining with Two-Sided Uncertainty," *Review of Economic Studies*, vol. 59(1), 205-225;

Kennan, John and Robert Wilson, (1993), "Bargaining with Private Information," *Journal of Economic Literature*, Vol. 31, No. 1 (Mar., 1993), pp. 45-104;

McAfee, R. Preston and Daniel Vincent, (1997), "Sequentially Optimal Auctions," *Games and Economic Behavior*, 18, 246-276;

Milgrom, P. R., and Weber, R. J., (1982), "A Theory of Auctions and Competitive Bidding," *Econometrica*, *50*(5), 1089–1122;

Myerson, R. B., (1981), "Optimal auction design," *Mathematics of Operations Research, 6*, 58–73;

Riley, John, and Samuelson, W., (1981), "Optimal auctions," *The American Economic Review, 71*(3), 381–392;

Rubinstein, A., (1985), "A Bargaining Model with Incomplete Information about Time Preferences," *Econometrica* 53 (1985), 1151-1172;

Satterthwaite, Mark and Artyom Shneyerov, (2007), "Dynamic Matching, Two-Sided Incomplete Information, and Participation Costs: Existence and Convergence to Perfect Competition," *Econometrica*, vol. 75(1), pages 155-200;

Xu, Xiaoshu, (2010), "Optimal Sequential Auctions with the Arrival of New Bidders," PhD dissertation, Ohio State University;