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Abstract 

Invasive species are significant threats to biodiversity, natural ecosystems and 

agriculture leading to large worldwide economic and environmental damage. Spread 

and control of invasive species are stochastic processes with important spatial 

dimensions. Most economic studies of invasive species control ignore spatial and 

stochastic aspects. This paper covers this gap in the previous studies by analysing a 

spatially explicit dynamic process of controlling invasive species in a stochastic 

setting. We show how stochasticity, spatial location of infestation and control can 

influence the spread, control efficiency and optimal control strategies. The main aim 

of this paper is to analyse the relationship between economic parameters and 

stochastic spatial characteristics of infestation and control. In the model used, there 

are two ways to control infestation: border control, under which the spread of 

invasive species from any of its infested neighbouring cell is prevented, and cell 

control, which removes the infestation from the existing cell. An integer optimisation 

model is applied to find the optimal strategies to deal with invasive species. Results 

show that it is optimal to eradicate or contain for a larger range of border control and 

cell control costs when the invasion is in the corner or on the edge as compared to the 

case where the initial infestation is in the middle of the landscape. Decrease in the 

probability of successful border control makes containment an unfavourable control 

option even for low border control costs. We show that decrease in the rate of spread 

can result in switching optimal strategies from containment to abandonment of 

control, or from eradication to containment. We also showed when the probability of 

successful cell control decreases, a lower eradication cost is required for eradication 

to remain the optimal strategy. In summary, this paper shows that in order to avoid 

providing misleading recommendations to environmental managers, it is important to 

include uncertainty in the spatial dynamic analysis of invasive species control.  
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1. Introduction:  

Invasive species are significant threats to biodiversity, natural ecosystems and 

agriculture, leading to major economic and environmental damage worldwide 

(Costello et al. 2007; Olson and Roy 2010). 

The spread and control of invasive species is a stochastic spatial process. Even 

though there have been a number of spatially-explicit studies of invasive species 

problems by ecologists (e.g. Brow et al. 2002; Latimer et al. 2009; Espanchin-Niell 

and Wilen 2010), most economic studies ignore spatial aspects and focus on the 

performance of particular management strategies (e.g. Olson and Roy 2002; Odom et 

al. 2002; Burnett et al., 2007).  

This paper covers this gap in the previous studies by analysing a spatially 

explicit dynamic process of controlling invasive species in a stochastic setting. We 

show how stochasticity can influence spread, control efficiency and optimal control 

strategies in a spatially explicit model. The main aim of this paper is to analyse the 

relationship between economic parameters and stochastic spatial characteristics of 

infestation and control. We tackle the challenging task of developing a spatial 

dynamic model of invasive species control and dealing with uncertainty in a 

numerical model that builds on the work of Espanchin-Niell and Wilen (2010).  

 

2. Method 

2.1. Modelling biological spread and Economics  

We develop a stochastic and spatially explicit dynamic optimisation model. A series 

of square cells represent the landscape where invasion in each cell can spread to the 

neighbouring cell and eventually can cover the entire landscape.  
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In a landscape with i× j cells, cells are presented as ai,j. If the cell is invaded 

with a pest species, ai,j=1 and if the cell is not invaded ai,j=0. Without any control, the 

neighbouring cells of an invaded cell will be infested with some probability in the 

next time period. For example, if, in year t, cell ai,j is infested, in year t+1, cells ai,j+1, 

ai,j-1, ai+1,j and ai-1,j may be invaded with a certain probability.  

Total economic damage caused by the invasive species depends on the number 

of infested cells. Damage to each cell is represented by d. Thus the economic damage 

in the landscape are equal to d * number of infested cells. There are two control costs: 

cell control cost (cc) and border control cost (bc). Cell control cost refers to the cost 

of removing infestation from an infested cell. When a cell is infested, it will remain 

infested unless it is removed by cell control. Border control cost (bc) refers to the cost 

of preventing a cell being infested by its neighbours through their shared boundary. 

Each cell has 4 boundaries with neighbouring cells and the border control cost for 

each cell is bc*number of boundaries with uninvaded cells.  

We solve the model considering three stochastic variables each with three 

assigned probabilities. The three stochastic processes are: spread, cell control and 

border control. We assigned separate probabilities to each of these processes and for 

each cell and time (t).  

Each cell is either invaded or clear at the end of time t. Decision (abandon, cell 

control or border control) is taken in year t+1. In year t+1, an uninvaded cell will be 

invaded with a probability if in year t it had an invaded neighbour and an effective 

border control has not been applied to the relevant border.  
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2.2. Optimisation model 

We minimise net present value of the damages caused by invasion and control costs in 

an optimisation framework.  

The optimisation model is: 

Min 
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s(b)i,j,k,l,t=1 Nlkji ∈∀ ),,,( , tlkjiltkji cpbrand ,,,,,,, )()( ≤
 (15) 

s(b)i,j,k,l,t =0 Nlkji ∈∀ ),,,( , tlkjiltkji cpbrand ,,,,,,, )()( ≥
 (16) 
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where  

i indexes row and j indexes the column in a rectangular set of cells (C).  

k and l index pairs of the neighbors of cells ai,j.  

t represents time (year) and T is the number of years considered.  

ai,j,t represents the cells in row i, column j at time t. When a cell is invaded ai,j,t =1, 

otherwise ai,j,t =0. 

ci,j,t is a binary decision variable to remove the pest from cell ai,j in time t. ci,j,t=1 if the 

decision is to remove invasion and ci,j,t=0 otherwise.  

bi,j,k,,l,t is a binary decision variable to control the spread of invasion along the border 

between ai,j,t  and ak,l,t. bi,j,k,,l,t=1 if the border control is applied and bi,j,k,,l,t=0 

otherwise. 

ai,j,t, ci,j,t and bk,l,,t, are random variables. For the purpose of this illustrative analysis, it 

is assumed that they have uniform distributions.   

p(a)i,j,t, p(b)k,l,j,t and p(c)i,j,t are assigned probabilities of successful spread, border 

control and cell control respectively.  

δ is the real discount factor at time t (t>0). 
1)1(

1
−

+
=

t
r

δ where r is real discount rate.  

d is the economic damages caused by invasive species for each cell in year t.  
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cc is cell control cost, representing the cost of removing the pest from a cell. 

bc is border control cost, representing the cost of avoiding pest spread between 

neighbouring cells.  

Equation (2) indicates initial infestation in year t0. Equations (2) and (3) show 

that cell control and border control start in the next time period. Equations (11-16) 

represent stochastic binary multipliers for spread, border control and cell control at 

time t and cells a(i,j). The value of these stochastic multipliers depends on the 

assigned probabilities of successful spread, cell control and border control (equations 

8-10). If these assigned probabilities are bigger than the random variables (equations 

5-7) at time t, the stochastic variable equals 1 otherwise 0. Equation (17) shows that a 

cell that has been invaded in year t-1 will be invaded in year t unless a cell control 

measure is applied and the assigned probability of cell control is bigger than the 

random variable for cell control.  Equation (18) shows that cell a(i,j) is invaded at 

time t, if it had an invaded neighbour at time t-1 and the assigned probability of 

spread is larger than the random variable for spread. However, the spread will not 

occur if cell control is applied and the assigned probability of successful control is 

larger than the border control random variable. Spread also would not occur if border 

control measure is applied along the relevant border and the assigned probability for 

successful border control is larger than border control random variable.  

The problem is solved for a finite time horizon using Bellman’s principal of 

optimality. When solving for an infinite time horizon, the system can reach a state that 

will remain the same. However, this is not the case in a finite time horizon where the 

system can reach the steady state and depart from it and reach it again. To solve this 

problem, we lock in the steady state equilibrium using constraints after the steady 

state has been reached. To do this, a terminal value function has been added that 
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accounts for economic values (damages and control costs) after the fixed time 

horizon. The following equation has been added to lock in the steady state solution: 

ai,j,t=ai,j,t_m       mttTtCji _,,),( >∈∈∀  (20)  

where t_m is smaller than T. We allow enough time for the steady state to be reached 

before t_m and T. 

The terminal value is calculated from the followings that will be added to the 

objective function: 
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3. Results 

The binary integer programming model was solved using GAMS (General Algebraic 

Modelling System). When 8.0)( ,, =tjiap  or 1, T_m and T are set at 50 and 100 years 

respectively. However, when tjiap ,,)( =0.2, it takes longer for the system to reach the 

steady state and t_m and T are set at 100 and 150, respectively.  

We solved the model for all possible combinations of the cases where the 

probability of spread, successful cell control and border control are 0.2, 0.8 and 1. 

Here we present a selection of the results obtained.   

 

3.1. Optimal decisions for the deterministic case 

Here we illustrate how optimal control strategies change depending on the eradication 

and cell control costs when the probability of spread, border control and cell control 

are deterministic. Three cases are considered: (1) when the initial infestation is in the 

middle of the landscape (Figure 1-A); (2) when the initial infestation is in the corner 

of the landscape (Figure 2-B); and (3) when the initial infestation is on the edge 
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(Figure 2-C). For all these cases, when the border control costs are low and 

eradication cost is relatively high, the optimal strategy is to contain (Figure 1).  
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Figure 1. Optimal strategies for the deterministic model when A) the initial infestation 

is in the middle, B) initial infestation is in the corner and C) initial infestation is on the 

edge.   

 

When the eradication and border control costs are both high, the optimal strategy is to 

abandon control and when the eradication costs are low and border control costs 

sufficiently high, the optimal strategy is to eradicate. When the initial infestation is in 

the middle of landscape, infestation can potentially cover the entire landscape more 

quickly. This means that controlling invasion when the initial infestation is in the 

middle of the landscape can be harder relative to the cases where the invasion is on 

the edge or in the corner. Therefore when the invasion is in the corner or on the edge,  

it is optimal to eradicate or contain for a larger range of border control and cell control 
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costs as compared to the case where the initial infestation was in the middle of the 

landscape.  

 

3.2. Optimal decisions when the probability of spread, successful cell and border 

control is 80% 
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Figure 2. Optimal strategies when the probability of spread, successful cell and border 

control is 80%. The initial invasion is either in the middle (A), in the corner (B) or on 

the edge (C).  

 

 

Optimal control strategies when the probabilities of spread, cell control and border 

control are 80% are different to the deterministic case. With stochastic border control, 

containment is not strictly possible, so containment does not appear as an optimal 

strategy in any of the panes of Figure 2. When the initial infestation is located in the 

middle of landscape (Figure 2A) it is optimal to eradicate only when eradication cost 
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is low. However, when the initial infestation is in the corner (Figure 2B) or on the 

edge of landscape (Figure 2C), it is relatively less costly to contain the infestation, as 

there are fewer boundaries over which spread threatens to occur. Therefore it is 

optimal to eradicate for a larger range of eradication costs.  

Border control together with cell control helps eradication of the invasive species. 

When the initial infestation is in the corner or edge of the landscape, an increase in 

border control cost makes border control less cost-effective. Thus the increase in 

border control costs make eradication a less favourable strategy and the optimal 

strategy may become to abandon control (Figure 2A and 2B).    

 

3.3. Optimal decisions when the probability of spread, successful cell and border 

control is 20% 

 

Optimal control strategies when the probability of spread, cell control and border 

control are 20% are presented in Figure 3A-C. Similar to the case where probability 

of spread, successful cell and border control is 80%, border control is not effective so 

containment is not optimal in any scenario. When the initial infestation is in the 

middle or on the edge, due to the relative difficulty of controlling and containing the 

pest, invasion spreads quickly and eradication is not optimal (Figure 3A and 3C). 

However, when the initial infestation is in the corner, there are fewer boundaries over 

which spread threatens to occur and it is easier to eradicate the invasion. In this case 

for a range of low eradication cost it is optimal to eradicate (Figure 3B). Note that the 

optimality of eradication mainly depends on eradication costs, but also depends to 

some extent on border control costs. For example in the cases that eradication is 
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optimal, increase in border control cost alone can result in replacement of eradication 

by abandonment of control.  
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Figure 3. Optimal strategies when the probability of spread, successful cell and border 

control is 20%. The initial invasion is either in the middle (A), in the corner (B) or on 

the edge (C). 

 

 

3.4. Optimal strategies for different probabilities of spread 

Here we analyse how change in the probability of spread affects the optimal strategies 

when the probability of successful cell and border control are deterministic. This 

analysis focuses on the case where initial infestation is on the edge of the landscape. 

The optimal decision does not change significantly when the probability of spread 

decreases from 100% (Figure 3A) to 80% (Figure 3B). Only for a small range of 

eradication costs at higher border control costs, decrease in the probability spread to 
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80% results in replacement of abandonment by eradication. With the reduced 

probability of spread, eradication becomes slightly more feasible, and so becomes 

optimal in a few more cases.  
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Figure 4. Optimal strategies when the probability of spread is either deterministic (A), 

80%(B) or 20% (C). Cell control and border control are deterministic and the initial 

infestation is on the edge.  

 

However, when the probability of spread reduces to 20% (Figure 4C), the benefits of 

eradication are reduced – failure to eradicate causes less damage because of the lower 

probability of spread. In this case, eradication becomes a less favourable strategy and 

is optimal in fewer scenarios.  

On the other hand, when the probability of spread decreases, containment becomes a 

more cost-effective control option. It becomes the preferred option for a larger range 

of border control costs.  
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3.5. Optimal strategies for different probabilities of successful cell control 

 

Figure 5A-C show how change in the probability of successful cell control affects 

optimal strategies when the probability of spread and successful border control are 

deterministic and initial infestation is in the middle. Decrease in the probability of 

successful cell control to 80% does not have a significant impact on the optimal 

decision.  
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Figure 5. Optimal strategies when the probability of cell control is either deterministic 

(A), 80%(B) or 20% (C). Spread and successful border control are deterministic and 

initial infestation is on the edge. 

 

However, when the probability successful cell control deceases to 20%, eradication is 

optimal only at a lower eradication cost. Border control plays an important role when 

the probability of cell control decreases to 20%. For the deterministic case when 
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border control cost is larger than 48, an increase in border control cost does not affect 

optimal decision. However, when the probability of successful cell control decreases 

to 20%, increases in border control cost rapidly lead to replacement of eradication 

with abandonment.  

3.6. Optimal strategies for different probabilities of successful border control 

 

The effect of change in the probability of successful border control on the optimal 

decision options are analysed here.  
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Figure 6. Optimal strategies when the probability of border control is either 

deterministic (A), 80%(B) or 20% (C). Spread and successful cell control are 

deterministic and initial infestation is on the edge. 

 

The probability of spread and successful cell control are deterministic and initial 

invasion is on the edge of the landscape. Results show that a decrease in the 

probability of successful border control has an important affect on the optimal 
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strategies. As the probability of successful control decreases invasion can spread 

through borders and containment is no longer an optimal option even for low levels of 

border control costs (Figures 6B and 6C). When the probability of successful border 

control decrease to 80%, eradication remains optimal if the eradication cost is low 

enough. However, when the probability of border control decreases to 20%, it is no 

longer optimal to eradicate at any eradication cost. 

 

4. Conclusions 

In this study we have analysed optimal strategies to deal with invasive species in a 

stochastic, spatial, dynamic, setting. We have extended the work of Espanchin-Niell 

and Wilen (2010) by introducing stochasticity to a spatial dynamic process in an 

optimisation formwork. Results showed that stochasticity and spatial location play 

important roles in determining the optimal strategy adopted.  

We confirm the finding of Espanchin-Niell and Wilen (2010) that it is optimal 

to eradicate or contain for a larger range of border control and cell control costs when 

the invasion is in the corner or on the edge as compared to the case where invasion is 

in the middle of the landscape. This remains generally true in the stochastic 

framework. For low probabilities of successful border control and cell control, it is 

not optimal to eradicate unless the invasion is in the corner of landscape.  

 Decreases in the probability of successful border control make containment an 

unfavourable control option even for low border control costs. As the probability of 

spread decreases, it takes longer for the invasion to cover the land and economic 

damages become smaller. Thus economic benefits of control become smaller and for 

some ranges of parameter values abandonment can replace containment and 

containment can replace eradication. We also showed that when the probability of 
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successful cell control deceases to 20% it is optimal to eradicate only at a low 

eradication costs. 
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