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Measuring Technical Efficiency of Dairy Farms with Imprecise Data: A 

Fuzzy Data Envelopment Analysis Approach 

 

This article integrates fuzzy set theory in Data Envelopment Analysis (DEA) 

framework to compute technical efficiency scores when input and output data are 

imprecise. The underlying assumption in convectional DEA is that inputs and outputs 

data are measured with precision.  However, production agriculture takes place in an 

uncertain environment and, in some situations, input and output data may be 

imprecise.  We present an approach of measuring efficiency when data is known to lie 

within specified intervals and empirically illustrate this approach using a group of 34 

dairy producers in Pennsylvania.  Compared to the convectional DEA scores that are 

point estimates, the computed fuzzy efficiency scores allow the decision maker to 

trace the performance of a decision-making unit at different possibility levels.  

 

Key words: fuzzy set theory, Data Envelopment Analysis, membership function, α-cut 

level, technical efficiency 

JEL Classification:  D24, Q12, C02, C44, C61 

 

I. Introduction 

The Data Envelopment Analysis (DEA) approach has been extensively applied in 

agriculture to measure the productive efficiency of production entities.  Charnes et al. 

(1978) developed the DEA methodology for measuring relative efficiencies within a group 

of decision-making units (DMU’s) which utilize several inputs to produce a set of outputs.  

DEA constructs a nonparametric frontier over data points so that all observations lie on or 

below the frontier.  A competing method for computing technical efficiency scores is the 
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stochastic frontier approach (SFA) developed by Aigner et al. (1977) and Meeusen and 

van den Broeck (1977).   

DEA approach has been favored over the SFA for several seasons.  First, it 

requires no assumption about the distribution of the underlying data and deviation from 

the estimated frontier is interpreted purely as inefficiency.  Second, it does not require 

specification of a functional form for the frontier just as economic theory does not imply a 

particular functional form.  Third, multiple inputs and outputs can be considered 

simultaneously, and fourth, inputs and outputs can be quantified using different units of 

measurement.   

However, DEA requires detailed data about inputs and outputs.  It is based on the 

assumption that all the input and output data are crisp, i.e., all the observations are 

considered as feasible with probability one, meaning no noise or measurement error is 

assumed (Simar 2007, Henderson and Zelenyuk 2007).  This assumption may not be 

realistic in production agriculture where inputs and outputs of a decision making unit 

(DMU) are ever changing because of weather, seasons, operating states and so on (Guo 

and Tanaka 2001).  The dominance of uncertainty in agricultural production has seen the 

flourish of studies of production under risk in agricultural economics (Just and Pope 

2001).  Factors used in production agriculture, such as labor, are sometimes difficult to 

measure in a precise manner. Input measures are often based on accounting data even 

though the definition of accounting costs differs from that of economic costs by excluding 

the opportunity cost (Kuosmanen et al., 2007).  Producer data may also be available only 

in linguistic form such as “high yield”, “low yield”, “labor intensive” or “capital 

intensive.”  The convectional DEA
1
 approach is very sensitive to data measurement errors 

                                                 

1
 Here we refer to the Charnes, Copper and Rhodes (CCR) model that assume constant 

return to scale (Charnes et al., 1978).  The concept presented can equally be extended to 
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and changes in data, including outliers and missing data, can change the efficient frontier 

significantly.  The DEA model is deterministic in nature, meaning that it does not account 

for statistical noise.  

A number of techniques to account for the deterministic nature have been 

suggested in the literature, such as the techniques for detecting possible outliers (Cazals et 

al., 2002) and the stochastic programming approach (Cooper et al., 1998).  Notably, Simar 

and Wilson (1998, 2000a) introduced bootstrapping into the DEA framework to allow for 

consistent estimation of the production frontier, corresponding efficiency scores, as well as 

standard errors and confidence intervals.  However, as observed by Kousmanen et al., 

(2007), the statistical properties and hypothesis tests suggested by Simar and Wilson 

(2000a, 2000b ) focus exclusively on the effect of the sampling of firms from the 

production possibilities set and, hence, the bootstrap approach does not allow for data 

errors of any kind. Therefore, there is need for a model that can adequately represent the 

stochastic nature of production data at a micro-level.       

This paper introduces fuzzy DEA, an approach advanced in the field of industrial 

engineering, to measure technical efficiency where data is imprecise.  A group of 34 dairy 

producers in Pennsylvania is used to illustrate how to empirically compute fuzzy technical 

efficiency scores.  The approach incorporates fuzzy set theory and the DEA mathematical 

programming techniques to compute technical efficiency indices under natural uncertainty 

inherent in the production processes.  Unlike the convectional DEA model, with a fuzzy 

DEA model the decision maker can consider different degrees of measurement errors 

(possibilities) when estimating technical efficiency.  Expert judgment expressed in 

                                                                                                                                                   

the Banker, Charnes, and Cooper (BCC) model that assumes variable return to scale 

(Banker et al., 1984). 
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linguistic variables can also be incorporated into the fuzzy DEA models (Guo and Tanaka, 

2001).   

Fuzzy DEA models are rare in the economics or agricultural economics literature.  

A search for “fuzzy DEA” in the AGRICOLA, AgEcon Search, and EconLit databases 

returned no items.  The only recent application of fuzzy DEA in agriculture is by Hadi-

Vencheh and Matin (2011) who compute efficiency scores for wheat provinces in Iran.  

Other applications of fuzzy set theory in agricultural economics include van Kooten et al 

(2001) who proposed a fuzzy contingent valuation approach to measure uncertain 

preferences for non-market goods.  Duval and Featherstone (2002) compared compromise 

programming and fuzzy programming to a traditional mean-variance approach, and 

Krcmar and Van Kooten (2008) developed a compromise-fuzzy programming framework 

to analyze trade-offs of economic development prospects of forest dependent aboriginal 

communities.  

Analysis of technical efficiency using fuzzy DEA models is very useful to the 

decision maker and presents several advantages.  First, uncertainty in measurement can be 

incorporated in DEA model at different degrees.  Second, linguistic variables can be 

incorporated into the DEA model, e.g., expert judgment and environmental variables.  

Third, fuzzy DEA can be used to deal with missing data, and fourth, the decision maker 

can trace how the efficiency scores vary at different levels of uncertainty.  

In what follows, the convectional DEA model is presented followed by the basic 

concepts of fuzzy set theory and how those concepts are integrated into the DEA 

framework.  Then, a literature review of numerical and empirical fuzzy DEA models is 

presented.  The data set is discussed next followed by an application of the fuzzy DEA 

model to that data and discussion of the results.  Then, the article concludes.  
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2. Methodology 

Convectional DEA Model 

Data Envelopment Analysis (DEA) is a non-parametric methodology for measuring 

efficiency within a group of decision-making units (DMUs) that utilize several inputs to 

produce a set of outputs.  DEA models provide efficiency scores that assess the 

performance of different DMUs in terms of either the use of several inputs or the 

production of certain outputs.  The input-oriented DEA scores vary in (0, 1], the unity 

value indicating the technically efficient units (Leon et al., 2003).  The assumption 

underlying DEA is that all data assume specific numerical values.  

Consider n decision-making units, DMUj, where j =1… n.  Each DMU consumes 

input levels xij, i = 1… m, to produce outputs levels yrj, r = 1… s.  Suppose that 

[ ..., ]T

ij ij mjx x x=  and [ ..., ]T

rj rj sjy y y=  
are the vectors of inputs and outputs values for 

DMUj, where 0jx ≥  and 0jy ≥ .  The relative efficiency score of the DMUo, {1,..., }o n∈ , 

is obtained from the following input-oriented DEA model that aims at reducing the input 

amounts by as much as possible while keeping at least the present output levels: 

1 1

  subject to : , ,; , ,; 0θ θ λ λ λ
= =

= ≥ ∀ ≤ ∀ ≥∑ ∑
n n

io j ij ro j rj j

j j

Min Z x x i y y r    (1) 

where λ indicates the intensity levels which make the activity of each DMU expand or 

contract to construct a piecewise linear technology (Färe et al. 1994).  The DMUo is 

technically efficient if and only if θ =1, otherwise the DMUo is inefficient.  There is an 

extensive literature on classical DEA models. Cooper et al. (2007) provides a 

comprehensive review of some of the accomplishments and future prospects of DEA.  A 

major drawback of the DEA model is that the computed relative efficiency scores are very 

sensitive to noise in data.  Any outlier or missing value in the data may cause the 

efficiency measure of most DMUs to change drastically (Kao and Liu, 2000a; Kao and 
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Liu, 2000b).  This makes an approach that is able to deal with inexact numbers, numbers 

in range or vague measures desirable.  Fuzzy set theory can be incorporated in the DEA 

framework to deal with imprecise data in both the objective function and constraints.  

 

Fuzzy Set Theory  

Optimization techniques often used in economics are ‘crisp’ in that a clear distinction is 

made in a two-valued way between feasible and infeasible, and between optimal and 

nonoptimal solutions (Zimmerman, 1994).  The techniques do not allow for gradual 

transition between these categories, a limitation often referred to as the problem of 

artificial precision in formalized systems (Geyer-Schulz, 1997).  Bellman and Zadeh 

(1970) were the first to suggest modeling goals and/or constraints in optimization 

problems as fuzzy sets to account for uncertainty and fuzziness of the decision-making 

environment.  

Fuzzy set theory is a generalization of classical set theory in that the domain of the 

characteristics function is extended from the discrete set {0, 1} to the closed real interval 

[0, 1].  Zadeh (1965) defined a fuzzy set as a class of objects with continuum grades of 

membership.  Suppose X is a space of objects and x is a generic element of X.  A fuzzy 

set, A� , in X can be defined as the set of ordered pairs:  

{( , ( )) | }
A

A x u x x X= ∈� ,        (2) 

where uA(x): X→M is the membership function and M is the membership space that varies 

in the interval [0, 1].  The closer the value of uA(x) is to one, the greater the membership 

degree of X to A� .  However, if M = {0, 1}, the set A is non-fuzzy
2
 (Triantis and Girod, 

1998).  A fuzzy set A� can be defined precisely by associating with each object x a number 

                                                 

2
 This rule outs degree of belongingness.  It implies that x belong to the set 100% (1) or is 

not a member of the set (0).  
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between 0 and 1, which represents its grade of membership in A. Thus, uA(x) = 1 if x is 

totally in A, uA(x) = 0 if x is not in A, and 0 < uA(x) < 1 if x is partly in A.  

Fuzzy set theory
3
 is based on several topological concepts that are beyond the scope of 

this paper.  The interested readers are referred to Kaufmann and Gupta (1991) and 

Zimmerman (1994) for an introduction to fuzzy sets theory and fuzzy mathematical 

models.  However, terms like fuzzy sets, membership functions and fuzzy numbers will be 

used several times but no real knowledge of the theory of fuzzy sets is required.  Basic 

concepts relevant to understand this paper are defined:  

1. A set in convectional set theory, A, such as a set of large dairy farms (x) that produce 

at least 1000 litres of milk per day is represented as { }| ( ) 1000A x milk x= ≥ .  A 

universal set, U, is the set from which all elements are drawn, for example, all dairy 

farms.  The convectional set is defined such that the elements in a universe are divided 

into two groups: members (those that do belong to it) and non-members (those that do 

not belong). 

2. A fuzzy set, drawn from U, allows its elements to belong to A at various degrees, with 

‘1’ implying a full belongingness and ‘0’ implying no belongingness.  For example, 

from { }1 2 3500, 900, 1200U x x x= = = = , we can have a crisp set { }3 1200A x= =  and 

fuzzy set { }1 2 3500 0.5, 900 0.9, 1200 1A x x x= = = =�  .  The values 0.5, 0.9 and 1 are 

membership functions, uA(x), and represent the grade of membership of x1, x2, and x3 to 

the set { }| ( ) 1000A x milk x= ≥ . The term “large dairy farms” here is vague and vary 

depending with the perception of an individual.  Therefore, farms x1 and x2 can be 

considered large farms too but with degrees of membership 0.5 and 0.9.   

                                                 

3
 Fuzzy set theory focuses on how to deal with imprecision or inexactness analytically.  

The imprecision here is non-statistical or non-probabilistic (Levine, 1997). 
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3. A fuzzy number is a quantity whose value is imprecise, rather than exact as is the case 

with single-valued numbers.  Generally, a fuzzy number is a fuzzy subset of a real 

number,� , which is both normal and convex where normal implies that the maximum 

value of the fuzzy set in � is 1.  It has a peak or plateau with membership grade 1, 

over which the members of the universe are completely in the set.  The membership 

function is increasing towards the peak and decreasing away from it.  Fuzzy numbers 

can be represented as linear, triangular, trapezoidal, or Gaussian. 

4. A triangular fuzzy number, A� , is a number with piecewise linear membership 

functions ( )
A

u x� defined by: 

0,

, ,

( )

, ,

0,

l

l
l m

m l

A m
m u

u m

u

x

x
x

u x
x

x

x

π

π
π π

π π

π
π π

π π

π

 <


− ≤ ≤
 −

= 
− ≤ ≤

 −


>

�        (3) 

This can be denoted as a triplet ( ), ,π π πm l u where , ,m l uπ π π  are the centre, left spread, and 

right spread of the number.  Figure 1 illustrates an example of a triangular fuzzy number. 

Letting A�  and B� to be two triangular fuzzy numbers denoted by ( ), ,l m ua a a  

and ( ), ,l m ub b b ,   it follows that A B≤� � if and only if l la b≤ , m ma b≤ , and u ua b≤ . 

< Insert figure 1> 

 

5. The α-cut level of a fuzzy set is a crisp subset of X that contains all the elements of X 

whose membership grades are greater than or equal to the specified value of α.  This is 

denoted by {( , ( )) | }
A

A x u x x Xα α= ≥ ∈�
� .  Each α-cut level of a fuzzy number is a 

closed interval which can be represented as ( ) ( ),L Uα α   , where ( )L α  is lower 

bound and ( )U α  is upper bound at a defined α-cut level, α.  A family of α-cut levels 

determines a fuzzy number. 
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6. Therefore, the interval of confidence at a given α-cut level, where L is lower bound 

and U is upper bound, can be characterized as :  

[ ]0 :1 , ( ) , ( )
m l l u u m

A L U
α

α α π π π π α π π∀ ∈ = = − + = − −   . 

 

Fuzzy DEA with Triangular Membership Functions  

Consider the convectional DEA model, equation 1, except that the inputs and outputs are 

fuzzy where, ‘~’, indicates fuzziness.  Suppose the input and output are triangular fuzzy 

numbers represented by ( , , )l m u

ij ij ij ijx x x x=� and ( , , )l m u

rj rj rj rjy y y y=� .  Kao and Liu (2000a) 

developed a method to find the membership function of the efficiency scores when the 

observations are fuzzy numbers based on the idea of the α-cut level and Zadeh’s extension 

principle
4
.  The main idea is to transform the levels of inputs and outputs such that the data 

lie within bounded intervals, i.e. [ , ]L U

ij ij ijx x x∈�  and [ , ]L U

rj rj rjy y y∈� where L and U represent 

the lower and upper bounds, respectively.  Therefore, equation 1 can be reformulated, 

taking into consideration the fuzzy data, as:  

1 1

  . : , ,; , ,; 0
n n

io j ij ro j rj j

j j

Min Z s t x x i y y rθ θ λ λ λ
= =

= ≥ ∀ ≤ ∀ ≥∑ ∑� � � � � �     (4) 

The above model can be expanded to indicate the center, lower, and upper bound values as 

follows:  

                                                 

4
 The extension principle states that the classical results of Boolean logic are recovered 

from fuzzy logic operations when all fuzzy membership grades are restricted to the 

classical set {0, 1}. 
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1 1 1

1 1 1

  . :

( , , ) , , ,

( , , ) , , ,

0

io io io ij ij ij

ro ro ro rj rj rj

n n n
m l u m l u

j j j

j j j

n n n
m l u m l u

j j j

j j j

j

Min Z s t

x x x x x x i

y y y y y y r

θ

θ θ θ λ λ λ

λ λ λ

λ

= = =

= = =

=

 
≥ ∀ 
 

 
≤ ∀ 
 

≥

∑ ∑ ∑

∑ ∑ ∑

�

� � �

     (5) 

This model is fuzzy and the usual linear programming method cannot solve it without 

being defuzzified.  The α-cut level and extension principle is used to defuzzify the model 

by transforming the fuzzy triangular numbers to ‘crisp’ intervals that are solvable as a 

series of conventional DEA models as follows:   

1 1

1 1

  subject to:

[ ( (1 ) ), ( (1 ) )]

( (1 ) ), ( (1 ) ) ,

[ ( (1 ) ), ( (1 ) )]

( (1 ) ), ( (1

m l m u
io io io io

n n
m l m u

j ij ij j ij ij
j j

m l m u
ro ro ro ro

n n
m l m

j rj rj j rj
j j

Min Z

x x x x

x x x x i

y y y y

y y y

θ

θ α α θ α α

λ α α λ α α

θ α α θ α α

λ α α λ α

= =

= =

 
 
  

=

+ − + − ≥

+ − + − ∀

+ − + − ≤

+ − +

∑ ∑

∑ ∑

0

) ) ,

j

u
rjy i

λ

α

≥

 
 
  

− ∀

    (6) 

The model is solved by means of comparing the left hand side (LHS) and right hand side 

(RHS) of each equality/inequality constraint.  The main advantage of the α-cut level 

approach used in this paper is that it provides flexibility for the analyst to set their own 

acceptable possibility levels for decision making in evaluating and comparing DMUs.  

Zadeh (1978) suggested that fuzzy sets can be used as a basis for the theory of possibility 

similar to the way that measures theory provides the basis for the theory of probability.  

The fuzzy variable is associated with a possibility distribution is the same manner that a 

random variable is associated with a probability distribution.  Therefore, the computed 

fuzzy efficiency scores are viewed as a fuzzy variable in the range [0, 1].  
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3. Literature Review 

Sengupta (1992) was the first to propose a mathematical programming approach where 

fuzziness was incorporated into DEA by allowing the objective function and the 

constraints to be fuzzy.  The stochastic DEA model was to be solved using chance-

constrained programming and required the analyst to supply information on expected 

values of variables, the variance-covariance matrices of all variables, and the probability 

levels at which the feasibility constraints are to be satisfied.  This method was difficult to 

implement due to those data requirements.   

Triantis and Girod (1998) suggested a mathematical programming approach that 

transforms fuzzy inputs and outputs into crisp data using membership function values.  

Efficiency scores would then be computed for different membership functions and 

averaged.  Hougaard (1999) suggested an approach that allows the decision maker to 

include other sources of information such as expert opinion in technical efficiencies 

computation.  Kao and Liu (2000a) suggested the use of α-cut level sets to transform fuzzy 

data into interval data so that the fuzzy model becomes a family of convectional crisp 

DEA models.  This approach was much similar to Guo and Tanaka (2001) who proposed a 

fuzzy CCR model in which fuzzy constraints, including fuzzy equalities and fuzzy 

inequalities, were all converted to crisp constraints by predefining different possibility 

levels.   

Lertworasirikul et al (2003) proposed a possibility approach in which fuzzy 

constraints are treated as fuzzy events and fuzzy DEA model is transformed into 

possibility DEA model by using possibility measures on fuzzy events.  Saati (2002) 

adopted the α-cut level approach, defined the fuzzy CCR model as a possibility-

programming problem, and transformed it into an interval programming problem.  This 

model could be solved as a crisp LP model and produce crisp efficiency score for each 
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DMU and for each given α-cut level.  All the above authors used numerical examples to 

illustrate the application of the proposed fuzzy DEA approach.  

 

Empirical Application of Fuzzy DEA 

Empirical application of fuzzy DEA models is still in the infancy stage with only 

one application in agricultural economics.  Hadi-Vencheh and Matin (2011) used an 

imprecise DEA (IDEA) model to compute the technical efficiency of 15 Iranian wheat 

producing provinces.  Four inputs (acreage, water, wages and number of tractors) and one 

output (wheat produced) are used.  Water and wages are the imprecise variables.  The 

model shows that a DEA model with interval data can be treated as a peculiar DEA model 

with exact data.  

Wu et al. (2006) applied a fuzzy DEA model to determine the efficiency of 24 

cross-region bank branches in Canada.  The authors incorporating fuzzy environmental 

variables (income level, population density, and the economy) to assess the performance 

of bank branches from three different regions: Ontario, Quebec, and Alberta.  The 

assumption made was that different regions may face different external environments that 

exert significant influence to the performance of different branches.  The labels of the 

environmental variables were linguistic, i.e., “high”, “medium”, “very good” and “good.”  

The possibility approach and α-cut level method as formulated by Lertworasirikul et al. 

(2003) was used with a slight modification where both crisp and fuzzy variables are 

incorporated into the DEA model.  The crisp financial input variables used are personnel, 

equipment, occupancy and other general expenses.  Crisp output variables are term 

deposits, personal loans, small business loans, non term depots and mortgage.  The 

efficiency scores generated by the classical DEA model are compared to those from the 
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Fuzzy DEA model.  The study finds that the disadvantage posed by the environment 

contribute to inefficiency besides the inefficiency that is purely operational. 

Triantis and Girod (1998) used a three-stage approach to measure the technical 

efficiency performance of one packaging line that is part of a newspaper preprint insertion 

process.  The model has three fuzzy inputs (direct labor, rework and raw materials) and 

one fuzzy output (packages).  In stage one, the vague input and outputs are expressed in 

terms of their risk free and impossible bounds
5
 and a membership function.  In the second 

stage, the classical DEA models are re-formulated in terms of their risk free and 

impossible bounds and the membership function for each of the fuzzy input and output 

variables.  The technical efficiency scores are computed in the third stage for different 

values of the membership function to identify unique sensitive decision making units.   

Kao and Liu (2000a) applied the concept of fuzzy set theory for representing three 

missing values in data when studying the efficiencies of 24 university libraries in Taiwan.  

A triangular membership function is constructed for the missing values by deriving the 

smallest possible, most possible, and largest possible values from the observed data.  Thus, 

nine libraries end up having fuzzy efficiency scores.  The authors observe that interval 

estimation is more desirable than point estimation of the efficiency score in the absence of 

certain data.  However, they caution that the number of missing data should be restricted 

to a level such that the number of DMUs, after taking off DMUs with a lot of missing 

values, should be at least two to three times of the total number of inputs and outputs 

specified in the model.  This study used the ranking approach to rank fuzzy efficiency 

scores.  

 

                                                 

5
 The risk free and impossible bounds represent the production extremes given a fuzzy 

data. The risk free bound is production scenario that is realistically implementable while 

the impossible bound is the most realistically non-implementable scenario.  
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4. Data   

Fuzzy DEA is applied to compute the technical efficiency scores of 34 dairy farms in 

Pennsylvania using the α-cut level approach.  The dairy producers use three inputs (land, 

labor, and cows) to produce two outputs (milk and butterfat).  The data is obtained from 

Stokes et al. (2007) who used the convectional DEA to computed technical efficiencies, 

assuming that either the data is precise or the relationship between inputs and outputs is 

deterministic.  However, the authors hint that the data may not be precise, “Due to the 

structure of the data set it was not possible to determine whether all resources such as 

land or labor were utilized by the dairy operations.”  (pp 2558).  

To illustrate the application of fuzzy DEA, uncertainty is introduce in the data by 

representing the inputs and outputs as symmetric triangular fuzzy numbers with a fuzzy 

interval.  The input and output data can be represented as pairs consisting of centers and 

spreads as ( , )m

ij ij ijx x ε=�  and ( , )m

rj rj rjy y β=�  respectively
6
.  A representation of the 

input/output relationship is simply:  

( , ) ( , , )Y milk butterfat X land labor cows=� � ,      (7) 

where Y� and �X  are matrices of the fuzzy outputs and inputs.  The data is listed in Table 1.  

The spread for each variable is generated as a random number using the random number 

generator in Microsoft Excel.  For the purpose of this study, we assume that the spread for 

labor is a random number between 0 and 1.  The spread for cows is between 1 and 10 and 

that of land is between 1 and 20.  The spread of milk is between 100 and 500 and for 

butterfat is between 1 and 20
7
.  

                                                 

6
 Symmetric fuzzy numbers means that the upper and lower spreads are equal, i.e., 

l u

ij ij ij
x x ε= =  

7
 Those assumptions are introduced for illustration purposes only. The random numbers 

around the actual value facilitate the generation of symmetric triangular fuzzy inputs and 

outputs.  
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We follow a three-stage approach to compute the technical efficiency scores.  In 

the first stage, the inputs and outputs are expressed in terms of symmetric triangular fuzzy 

numbers and membership functions at six different α-cut levels ranging from 0 to 1.  Pre-

specified intervals of 0.2 are used.  In the second stage, the classical DEA model is re-

formulated as a series of DEA models in-terms of the membership functions for each of 

the fuzzy input and output variables following equation (6).  The adopted model is 

presented in the appendix.  In the third stage, fuzzy technical efficiency scores are 

computed for different membership functions to track how the relative efficiency scores of 

each farm varies at different possibility levels. The FEAR package in R is used to solve 

the different LP problems.     

5. Empirical Results 

The lower bound and upper bound input reducing technical efficiency scores ( )iαθ  are 

presented in Table 2 and Table 3.  The input and output data were assumed to be imprecise 

and, therefore, the computed efficiency scores are fuzzy too.  In general, the lower bound 

technical efficiency scores ( )
L

ji i
E α  decreases as the membership function shifts the input 

and output data from the most precise measurement (α = 1) to the most imprecise 

measurement (α = 0).  The upper bound scores ( )
U

ji i
E α increases as α decrease from 1 to 0.  

The closer α approaches 1 the greater the level of possibility and the lower the degree of 

uncertainty is.  The fuzzy efficiency score lie in a range and the different α-cut levels 

indicate those intervals and the uncertainty level associated with precision in data.  

Specifically, α = 0 has the widest interval.  On the other hand, the value of α=1 is the most 

likely value of efficiency score.  

Using the α-cut level approach, the range of a farm’s efficiency score at different 

possibility levels is derived.  For example, the efficiency scores for Farm 1 at α-cut level = 

1 is 0.740. This deterministic case assumes precision in measurement.  At α-cut level = 
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0.8, the efficiency score range is [0.737, 0.823].  This indicates that it is possible that the 

efficiency score of Farm 1 will fall between 0.737 and 0.823 at the possibility level 0.8.  

The range of the efficiency score at the extremes (α = 0) is [0.598, 0.829].  This implies 

that the efficiency score of Farm 1, relative to other farms, will never exceed 0.829 or fall 

below 0.598. Results of the other farms at different possibility levels can be interpreted in 

similar manner.  Figure 2 illustrates the membership function of the triangular fuzzy 

efficiency scores for Farm 1.  Figure 3 plots the best practice frontiers for the upper bound 

(dashed lines) and lower bound (dotted lines) membership functions of inputs and outputs  

at α = 0. This represents the extreme range that the frontiers defining the relative technical 

efficiency scores of each farm are expected to shift due to imprecision in data. The shift of 

the frontier at 0 < α < 1 would fall within this range and would keep on narrowing as α 

approached 1.  

The results from the fuzzy DEA model provide more information to the decision 

maker compared to the point estimates from the convectional DEA model.  The analyst 

can observe the variation of the technical efficiency profile of each farm from the 

impossible value when α-cut level = 0 to the risk-free value when α-cut level =1.  Only 

four farms, Farm 10, Farm 15, Farm 25 and Farm 30, remain technical efficient at all α-cut 

levels.  Farm 9 becomes technical efficient at the extreme α-cut level = 0.      

The computed fuzzy efficiency scores need to be ranked in order to determine how 

each farm performs relative to the other farms in an uncertain environment.  The ranking 

of the fuzzy efficiency scores can be compared to the ranking of scores of the convectional 

DEA model in order to discriminate which decision-making units are sensitive to the 

variation of the inputs/output variable measurement inaccuracy.  We use the Chen and 

Klein (1997) ranking method to compute an index, I, for ranking fuzzy numbers as: 
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where { },
min ( )

L

i j ji i
c E

α
= and { },

max ( )
U

i j ji i
d E

α
= .  The lower bound and upper bound 

efficiency indices are represented by ( )
L

ji i
E α and ( )

U

ji i
E α .  A larger index indicates the fuzzy 

number is more preferred.  The Chen-Klein’s method is used to compute the ranking 

indices for each farm.  The ranking is compared to a ranking of the crisp technical 

efficiency indices from the classical DEA model and the results are presented in Table 4.   

The Chen Klein ranking index gives similar results compared to the ranking of 

crisp technical efficiency scores with one exception.  Five farms, Farms 4, 16, 10, 25, and 

30, have perfect score of 1, meaning that they are the farms that define the production 

frontier.  The convectional DEA model only identifies Farms 10, 25 and 30 as defining the 

frontier.  The Spearman’s rank correlation of the two ranking methods is 0.99 and is 

significant at less than 1%.     

6. Conclusions 

The main objective of this paper was to introduce fuzzy DEA models by literature review 

and application as an alternative for analyzing the productive efficiency of agricultural 

entities in an uncertain environment.  Fuzzy DEA models were found to be applicable 

when expert judgment or environmental variables (linguistic variables) needs be 

incorporated into the convectional DEA model, when there are missing data and when the 

measurement of the data is imprecise.   

  An empirical example of symmetrical triangular membership functions was used to 

illustrate the application of fuzzy DEA to a group of 34 dairy farms in Pennsylvania.  The 

α-cut level approach was used to convert the fuzzy DEA scores into crisp scores.  The 
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fuzzy DEA model was able to discriminate the farms whose efficiency performance is 

sensitive to variation in the inputs/outputs.  Compared to the classical DEA model, results 

from the fuzzy DEA model allow for a determination of robustness and lead to 

recommendations that are more rigorous.  

We conclude by arguing here that it will be interesting to apply empirical fuzzy 

DEA models in the field of agricultural economics using the α-cut level approach.  Given 

the incomplete knowledge of input and output measures often used in DEA models, fuzzy 

DEA models will provide agricultural economists with an additional tool for efficiency 

analysis.  Uncertainty always exists in human thinking and judgment. Research in 

efficiency and productivity analysis should apply recent advancements in DEA that 

address current concerns. Fuzzy DEA can play an important role for evaluation 

performance of decision-making units when data are imprecise.  
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Table 1.  Inputs and Outputs used in the Fuzzy DEA Analysis Models  

 

 

DMU 

 

Labor 

(FTE) 

 

 

Cows 

 

Land 

(ha) 

Milk 

production 

(kg/cow) 

Butterfat 

Production 

(kg/cow) 

Farm1 2.66 70 98 10,490 372 

Farm2 3.06 67 97 8,736 337 

Farm3 3.59 72 38 8,267 319 

Farm4 1 60 48 10,010 392 

Farm5 2.8 180 166 8,918 330 

Farm6 2 112 66 9,953 359 

Farm7 1.6 40 109 7,446 302 

Farm8 2.28 55 105 9,362 337 

Farm9 4.71 118 121 9,016 347 

Farm10 1.8 55 19 9,067 317 

Farm11 2 58 57 8,605 339 

Farm12 2 87 63 9,148 336 

Farm13 1.8 40 36 6,802 262 

Farm14 2 53 136 8,433 298 

Farm15 4.18 249 257 7,339 294 

Farm16 1.6 43 40 8,530 303 

Farm17 1.38 55 101 6,795 256 

Farm18 1.6 36 85 4,870 183 

Farm19 1.9 44 60 7,426 297 

Farm20 1.51 54 81 8,350 315 

Farm21 1 98 121 9,406 365 

Farm22 1.65 36 89 7,166 267 

Farm23 1.67 54 147 4,391 155 

Farm24 3.2 110 127 9,981 349 

Farm25 1 64 51 11,438 405 

Farm26 3.72 110 42 8,995 352 

Farm27 1.93 81 80 11,201 410 

Farm28 2.17 56 74 7,015 267 

Farm29 2 71 61 6,689 254 

Farm30 1 30 45 6,105 245 

Farm31 2 82 52 5,379 202 

Farm32 2 73 113 7,844 278 

Farm33 3 143 126 9,045 353 

Farm34 1.15 62 86 8,621 322 

Mean  2.15 77.00 88.15 8259.97 309.38 

SD  0.92 44.57 46.61 1656.94 59.03 

Minimum  1.00 30.00 19.00 4391.00 155.00 

Maximum  4.71 249.00 257.00 11438.00 410.00 
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Table 2.  Input Reducing Technical Efficiency Scores at varying α-cut levels  

Lower Bound Membership Function Value ( )L

j iE α   

DMU 
1θ  0.8θ  0.6θ  0.4θ  0.2θ  0θ  Average 

Farm1 0.740 0.717 0.699 0.673 0.696 0.598 0.687 

Farm2 0.642 0.633 0.603 0.571 0.572 0.544 0.594 

Farm3 0.719 0.721 0.726 0.667 0.740 0.622 0.699 

Farm4 1.000 1.000 0.973 1.000 1.000 1.000 0.996 

Farm5 0.291 0.284 0.281 0.275 0.272 0.251 0.276 

Farm6 0.591 0.592 0.572 0.522 0.545 0.486 0.551 

Farm7 0.924 0.892 0.929 0.798 0.758 0.742 0.840 

Farm8 0.836 0.822 0.767 0.710 0.665 0.668 0.745 

Farm9 0.407 0.395 0.395 0.378 0.389 0.328 0.382 

Farm10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Farm11 0.821 0.809 0.821 0.777 0.831 0.690 0.791 

Farm12 0.603 0.601 0.608 0.573 0.552 0.546 0.580 

Farm13 0.938 0.946 0.929 0.870 0.923 0.976 0.930 

Farm14 0.782 0.764 0.723 0.724 0.693 0.598 0.714 

Farm15 0.180 0.179 0.176 0.167 0.163 0.154 0.170 

Farm16 1.000 1.000 1.000 0.995 1.000 1.000 0.999 

Farm17 0.644 0.626 0.628 0.566 0.614 0.595 0.612 

Farm18 0.665 0.635 0.658 0.547 0.527 0.505 0.589 

Farm19 0.855 0.846 0.838 0.780 0.797 0.736 0.808 

Farm20 0.789 0.763 0.749 0.749 0.726 0.634 0.735 

Farm21 0.901 0.876 0.902 0.868 0.933 0.762 0.874 

Farm22 0.978 0.953 0.960 0.876 0.976 0.901 0.941 

Farm23 0.406 0.394 0.376 0.377 0.352 0.325 0.372 

Farm24 0.465 0.450 0.436 0.432 0.429 0.408 0.437 

Farm25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Farm26 0.548 0.552 0.543 0.512 0.524 0.457 0.523 

Farm27 0.735 0.720 0.710 0.680 0.703 0.634 0.697 

Farm28 0.620 0.600 0.608 0.574 0.593 0.523 0.586 

Farm29 0.527 0.516 0.525 0.508 0.497 0.510 0.514 

Farm30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Farm31 0.393 0.391 0.385 0.362 0.368 0.333 0.372 

Farm32 0.550 0.536 0.504 0.487 0.481 0.474 0.505 

Farm33 0.366 0.362 0.362 0.347 0.337 0.317 0.348 

Farm34 0.779 0.774 0.766 0.803 0.789 0.704 0.769 

Average 0.697 0.687 0.681 0.652 0.660 0.618 0.666 

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Min 0.180 0.179 0.176 0.167 0.163 0.154 0.170 

The table reports the lower bound input reducing technical efficiency scores at various α-

levels.   
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Table 3.  Input Reducing Technical Efficiency Scores for Various α-cut levels  

Upper Bound Membership Function Value ( )U

j iE α   

DMU 
1θ  0.8θ  0.6θ  0.4θ  0.2θ  0θ  Average 

Farm1 0.740 0.761 0.778 0.755 0.701 0.829 0.760 

Farm2 0.642 0.650 0.683 0.712 0.688 0.747 0.687 

Farm3 0.719 0.718 0.710 0.753 0.693 0.795 0.731 

Farm4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Farm5 0.291 0.298 0.302 0.304 0.308 0.355 0.310 

Farm6 0.591 0.589 0.600 0.648 0.628 0.636 0.615 

Farm7 0.924 0.956 0.930 1.000 1.000 1.000 0.968 

Farm8 0.836 0.849 0.904 0.864 0.867 0.918 0.873 

Farm9 0.407 0.417 0.417 0.404 0.397 0.470 0.419 

Farm10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Farm11 0.821 0.831 0.812 0.819 0.780 0.903 0.828 

Farm12 0.603 0.605 0.595 0.618 0.649 0.647 0.619 

Farm13 0.938 0.934 0.951 0.949 0.909 0.913 0.932 

Farm14 0.782 0.798 0.839 0.758 0.733 0.887 0.799 

Farm15 0.180 0.181 0.181 0.196 0.191 0.206 0.189 

Farm16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Farm17 0.644 0.661 0.655 0.716 0.663 0.672 0.668 

Farm18 0.665 0.693 0.671 0.714 0.707 0.766 0.702 

Farm19 0.855 0.863 0.873 0.958 0.942 0.976 0.911 

Farm20 0.789 0.814 0.822 0.806 0.817 0.908 0.826 

Farm21 0.901 0.927 0.900 0.918 0.858 0.906 0.902 

Farm22 0.978 1.000 0.994 0.967 0.859 0.959 0.960 

Farm23 0.406 0.418 0.431 0.417 0.419 0.464 0.426 

Farm24 0.465 0.481 0.494 0.488 0.482 0.501 0.485 

Farm25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Farm26 0.548 0.544 0.551 0.581 0.571 0.769 0.594 

Farm27 0.735 0.751 0.758 0.769 0.777 0.836 0.771 

Farm28 0.620 0.640 0.639 0.663 0.633 0.731 0.655 

Farm29 0.527 0.536 0.522 0.515 0.538 0.536 0.529 

Farm30 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Farm31 0.393 0.394 0.393 0.416 0.417 0.454 0.411 

Farm32 0.550 0.565 0.597 0.587 0.564 0.588 0.575 

Farm33 0.366 0.369 0.365 0.367 0.390 0.406 0.377 

Farm34 0.779 0.785 0.801 0.774 0.795 0.859 0.799 

Average 0.697 0.707 0.711 0.719 0.705 0.754 0.715 

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Min 0.180 0.181 0.181 0.196 0.191 0.206 0.189 

The table reports the upper bound input reducing technical efficiency scores at various α-

levels.   
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Table 4.  Ranking of the Crisp and Fuzzy Efficiency Scores 

 

 

Rank 

 

 

DMU 

 

Chen-Klien  

Index 

CCR 

Technical 

Efficiency 

1 Farm15 0.023 0.180 

2 Farm5 0.162 0.291 

3 Farm33 0.241 0.366 

4 Farm31 0.277 0.393 

5 Farm9 0.287 0.407 

6 Farm23 0.290 0.406 

7 Farm24 0.359 0.465 

8 Farm29 0.425 0.527 

9 Farm32 0.450 0.550 

10 Farm26 0.470 0.548 

11 Farm6 0.498 0.591 

12 Farm12 0.517 0.603 

13 Farm28 0.540 0.620 

14 Farm2 0.560 0.642 

15 Farm17 0.562 0.644 

16 Farm18 0.565 0.665 

17 Farm3 0.651 0.719 

18 Farm1 0.654 0.740 

19 Farm27 0.665 0.735 

20 Farm14 0.688 0.782 

21 Farm20 0.712 0.789 

22 Farm34 0.731 0.779 

23 Farm8 0.734 0.836 

24 Farm11 0.759 0.821 

25 Farm19 0.795 0.855 

26 Farm7 0.833 0.924 

27 Farm21 0.853 0.901 

28 Farm13 0.916 0.938 

29 Farm22 0.930 0.978 

30 Farm4 0.995 1.000 

31 Farm16 0.999 1.000 

32 Farm10 1.000 1.000 

33 Farm25 1.000 1.000 

34 Farm30 1.000 1.000 
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Note: ( )l m lL π α π π= + −  and ( )u u mU π α π π= + −  

Figure 1.  A triangular fuzzy number 
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Figure 2.  Triangular fuzzy efficiency scores for Dairy Farm 1 
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Note 

1. The dotted line represent the lower non-increasing returns to scale frontier at α-

level=0  

2. The dashed line represent upper non-increasing returns to scale frontier at α-

level=0  

 

Figure 3.  Best-practice frontiers at α-level=0 
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where LN = Land, LB = Labor, CW = Cows, MK = Milk and BF = Butterfat, 0 ≤ α ≤ 1 is 

the α-cut level, 0 < θ ≤ 1 is the efficiency index, subscripts l, m, and u indicate the lower, 

center, and upper bounds of the fuzzy number. 


