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Abstract 

The utility maximization problem of a grain producer is formulated and solved numerically 

under prospect theory as an alternative to expected utility theory. Conventional theory 

posits that the optimal hedging position of a producer should not increase solely due to 

increases in the level of futures prices. However, a strong degree of positive correlation is 

apparent in the data. Our results show that with prospect theory serving as the underlying 

behavioral framework, the optimal hedge of a producer is affected by changes in futures 

price levels. The implications of this price-induced hedging behavior on spot prices and 

volatility are subsequently considered. 

Key Words: futures markets, hedging, prospect theory, risk preferences 

JEL codes: D03, D81, G11, Q13 
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1. Introduction 

Agricultural commodity markets have seen significant increases in volatility in recent 

years. Although there has been the occasional run-up over the years, the recent swings in 

volatility of corn, wheat, and soybeans have been particularly noteworthy. For each of 

these commodities, volatilities spiked to near-record levels during mid-2008. 

Subsequently, volatilities declined somewhat but began edging higher in 2010 along with 

upward price movements. 

Following the 2008 price spikes, futures market speculators have received increasing 

criticism for their role in exacerbating upward commodity price movements and increased 

volatility.4 This has fueled a debate as to the extent that commodity derivatives markets 

should be free of regulation due to the risks associated with higher volatility. Despite 

several studies having concluded that there is rather weak evidence that speculators do 

contribute to upward price movements (Irwin, Sanders, & Merrin, 2009; Robles, Torero, & 

von Braun, 2009), the discussion has continued unabated. 

It is generally accepted that futures markets are beneficial to commercial entities with a 

physical position in the underlying commodity which serves as an invaluable risk 

management tool. In this regard, it is possible for a producer who is naturally long in a 

given commodity to hedge a portion of his future output by taking a short position in the 

futures market and subsequently offsetting his position as harvest approaches. In the case 

of grains, a common scenario is for a producer to sell his future output forward through a 

contract with a local elevator. The elevator then manages its corresponding risk by taking a 

(possibly equivalent) short futures position. This hedging approach allows a producer to 

                                                      
4
 Speculators are referred to here as non-commercial entities with no physical position in the underlying asset. 
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effectively lock in a price for his crop well in advance of harvest. The producer is then 

obligated to deliver his grain to the elevator at harvest. 

There are two main contributions of this paper. The first is to outline a mechanism 

drawing on prospect theory whereby the amount hedged by grain producers in short 

futures contracts is dependent on the level of futures prices at a given point in time. This is 

a behavior that deviates from what conventional expected utility (EU) theory would 

predict. The second goal of the paper is to illustrate the effect this price-level-dependent 

futures hedge has on spot prices and price volatility at harvest. Specifically, a scenario will 

be presented in which prices and volatility at harvest increase as the amount of output 

hedged in futures markets increases during a crop year due to rising futures prices. Ceteris 

paribus, the larger the share of output that a producer is committed to through the use of 

forward markets, the less output available at harvest to respond to potential negative 

supply shocks as harvest approaches, i.e., bad weather events. This is because a portion of 

the crop has already been sold.5 It should be emphasized here that this result would not be 

obtained if speculators were the only group of traders taking the opposing futures trade. As 

illustrated in figure 1, however, grain purchasers who are naturally short the underlying 

commodity typically account for between 30% and 60% of futures contracts sold by 

producers. 

Conventional EU theory posits that the existence of an unbiased futures market allows a 

risk averse farmer to determine his optimal level of production as a function of only his 

marginal cost and the current futures price, referred to as the “separation result” (Sandmo, 

1971; Holthausen, 1979; Feder, Just, & Schmitz, 1980). This result holds when there is price 

                                                      
5
 In the case where a producer sells his crop to an elevator as an intermediary, it will be assumed that the elevator 

simply hedges in futures contracts precisely the amount that is sold forward by the producer. 
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uncertainty and no production uncertainty. Moreover, with only price uncertainty (and no 

basis risk), the optimal hedge is the complete hedge, effectively removing all exposure to 

risk. Allowing for output uncertainty complicates the determination of this optimal hedge 

somewhat by requiring knowledge of the interaction between revenue and prices (Rolfo, 

1980; Grant, 1985). Allowing for basis risk adds yet another dimension to consider (Lapan 

& Moschini, 1994; Myers & Hanson, 1996). 

 

Figure 1: Ratio of Producer Long to Short Contracts  

 

 
Source: Commodity Futures Trading Commission (CFTC) Disaggregated Commitment of Traders Report 

 

In an EU framework where there is no basis risk and futures markets are unbiased, the 

optimal amount of output hedged through futures contracts is determined by two factors: 

yield variability and the price-yield correlation. The presence of yield variability causes the 

optimal hedge to be less than the complete hedge observed when there is only price 
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uncertainty.6 This is because the “natural hedge,” due to a negative correlation between 

prices and yields, partially replaces the need for a futures hedge. As the price-yield 

correlation becomes more strongly negative, the natural hedge becomes relatively more 

effective and the amount hedged in futures markets decreases. Therefore, when prices and 

yields are uncorrelated and yield variability is held fixed, EU theory predicts that the 

optimal hedge does not increase as the level of futures prices increases. Prospect theory 

shows that even when prices and yields are uncorrelated and yield variability is constant, 

an increase in futures prices will cause the amount hedged to increase.  

As time progresses toward harvest, it is reasonable to assume that the degree of yield 

uncertainty diminishes. As shown by Lapan and Moschini (1994), this “time decay” is the 

only factor which would cause the optimal hedge to adjust under EU theory when prices 

and yields are uncorrelated. Given that the optimal hedge is the complete hedge when 

there is only price uncertainty, this causes the optimal hedge to increase as output 

uncertainty is resolved during a crop year. This aspect, however, is unrelated to a change in 

futures prices. Thus, the conclusion that changes in futures price levels do not affect the 

optimal hedge under EU theory is still maintained. 

The empirical reality, however, is that we observe a fairly strong correlation between 

producer hedging activity and the futures price level. Figure 2 provides an illustration. The 

dashed line, read from the left vertical axis, shows the aggregate corn producer hedge ratio 

from June 2006 to December 2010. This ratio is determined as the aggregate quantity of 

grain held by producers in short futures contracts divided by expected production plus 

                                                      
6
 It is possible that the presence of yield variability could cause the optimal amount hedged to be more than the 

complete hedge, but this would require a positive correlation between prices and yields which is not realistic. 
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inventories.7 The solid line displays nearby futures prices, read from the right vertical axis. 

Immediately apparent in figure 2 is the strong degree of correlation between the two 

series, particularly during price increases observed in 2006, 2008, and late 2010. It should 

be noted that forward contracts and options are not included in this figure, which could 

cause the amount of crop committed in advance to be substantially higher. 

Figure 2: Producers’ Hedge Ratio Based on Expected Production and Current  

  Inventories 

 

Figure 2 thus provides the motivation for considering a model in which hedging activity 

is a function of the futures price level and the implications this would present for spot 

prices and volatility at harvest. If futures prices rise during a crop year, for example due to 

increased demand for grain, this demand shock would induce farmers to sell a larger share 

                                                      
7
 Data on futures positions are obtained from the Commodity Futures and Trading Commission (CFTC) 

Disaggregated Commitment of Trader Reports. Production and inventory data are obtained from the United States 

Department of Agriculture (USDA). 
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of their crop in advance, reducing the flexibility to respond to subsequent negative supply 

shocks at harvest by reducing the uncommitted quantity available. 

In order to allow for a non-expected utility theory outcome in which futures price levels 

affect the optimal hedge ratio determination, this paper draws on a rapidly growing body 

of literature in behavioral finance referred to as prospect theory. Prospect theory was 

originally conceptualized in a seminal paper by Kahneman and Tversky (1979) and has 

become an empirically grounded alternative frequently used in behavioral economic 

models. At its core, prospect theory suggests that agents exhibit behavior that is 

inconsistent with the efficient markets hypothesis of expected utility under rational 

expectations. Specifically, it posits that agents tend to be risk averse over gains and risk 

seeking over losses as illustrated by the solid curve in figure 3. 

Figure 3: An Example of Utility Based on Prospect Theory 

 

Whereas traditional EU theory suggests a utility function that is everywhere concave, 

the function based on prospect theory in figure 3 is convex in the domain of losses 

Utility

GainsLosses

Wealth 

Distribution
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(negative changes in wealth) and concave in the domain of gains. A secondary component 

of prospect theory, referred to as loss aversion, also recognizes that agents are more 

sensitive to losses than to gains, seen by the differing slopes of the utility function in figure 

3 for changes in wealth of equal magnitude on either side of the vertical axis. 

Intuitively, we would expect that an agent who is risk averse over some domain and 

risk seeking over some other domain should behave differently than an agent who is 

everywhere risk averse. Within the context of this paper, a grain producer under prospect 

theory seeking to determine how much of his output to hedge in the futures market would 

take a different action than the same producer in an expected utility framework. By 

definition, risk seeking means to prefer a gamble relative to a certain outcome. A gamble in 

this context would entail a producer adding to his risk by taking a long position in the 

futures market in addition to his natural long position in the physical market. A risk averse 

agent, on the other hand, would take a short position in the futures market to mitigate his 

exposure to risk. Thus, if the representative producer’s probability distribution of wealth 

contains mass on both sides of the vertical axis, the producer will exhibit both risk seeking 

and risk aversion tendencies. 

The producer’s wealth distribution is determined by price and output distributions. For 

a wealth distribution initially centered at the vertical axis, as shown in figure 3, a rightward 

shift in the distribution of prices will consequently shift the wealth distribution rightward 

resulting in the agent becoming more risk averse and less risk seeking. Recalling the fact 

that a risk seeking producer would choose to take a long futures position and a risk averse 

producer a short position, this rightward shift in the price distribution causes the producer 



10 

 

to take a larger short futures position. An increase in demand that shifts the wealth 

distribution rightward, then, causes the optimal futures hedge to increase. 

To our knowledge, this is the first paper to propose a mechanism by which the optimal 

hedge ratio increases due solely to changes in the level of futures prices, thereby 

contributing to otherwise higher price levels and volatility at harvest in the event of a 

subsequent supply shock. The remainder of the paper is organized as follows. In section 2, 

we provide a review of the relevant literature regarding futures hedging in an agricultural 

context and a brief review of literature on prospect theory. In section 3, we present a 

simple model that incorporates prospect theory into a producer’s hedging decision. In 

section 4, we present numerical simulations to show the effect of prospect theory on the 

determination of the optimal hedge and ultimately its impact on spot prices and volatility. 

Section 5 provides concluding remarks. 

 

2. Literature Review 

Optimal Producer Futures Hedging 

Some of the first studies developing the theory of hedging in commodity markets in an 

EU framework are those of Sandmo (1971), Holthausen (1979), and Feder, Just and 

Schmitz (1980). Considering only price uncertainty, these papers present implications 

associated with hedging in futures markets and the effect of futures markets on the 

production decision. These papers propose a two period model in which a producer makes 

his production and hedging decision in the first period by maximizing a given utility 

function of second period profit. In addition to the result that a producer’s output decision 

is made separate from the evolution of cash prices, it is also shown that the optimal hedge 
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is to hedge all output, which is considered to be known with certainty. Turnovsky (1983) 

and Kawai (1983) seek to expand on this by determining market clearing spot and futures 

prices in a rational expectations framework. The two-period model of these early papers 

was subsequently generalized by Anderson and Danthine (1983) into three periods and 

also by Ho (1984) in an intertemporal context. 

Rolfo (1980), Grant (1985), and Losq (1982)  generalize these models that consider 

only price uncertainty to allow for output uncertainty as well. Assuming a mean-variance 

representation of utility, Rolfo, Grant, and Losq show that the optimal hedge consists of two 

components, a pure hedging component and a pure speculative component.8 In unbiased 

futures markets, the speculative component vanishes, leaving only the hedging component. 

The hedge is determined as the ratio between the covariance of revenue with futures prices 

and the variance of futures prices. In most other utility representations, such analytically 

appealing results are often difficult to obtain. 

Adding another dimension of risk, Lapan and Moschini (1994) construct a model to 

allow for the determination of the optimal hedge under joint price, output, and basis risk. In 

their model, Lapan and Moschini assume a constant absolute risk aversion (CARA) utility 

function to obtain analytical results characterizing the optimal hedge ratio. Myers and 

Hanson (1996) also consider the additional effects of basis risk in their study. 

Various functional forms for utility are employed in the literature. Whereas some 

representations are more tractable, others may be more capable of capturing empirical 

realities. Perhaps the simplest form used to derive the optimal futures hedge is the 

minimum variance utility representation (Johnson, 1960; Ederington, 1979). Mean-

                                                      
8
 Speculative here refers to taking a position in the futures market in an attempt to gain from changes in futures 

price movements. 



12 

 

variance utility provides another widely used form through which analytical results are 

easily obtained (Turnovsky, 1983; Rolfo, 1980). Constant absolute risk aversion (CARA) 

represents a unique form of utility that is often used in the literature due to its tractability 

in generating closed form analytical solutions (Lapan & Moschini, 1994; Lence, 1995; Lien, 

2001; Mattos, Garcia, & Pennings, 2008). When closed form expressions are unattainable, 

one must employ numerical estimation procedures to determine the optimal futures hedge 

(Cecchetti, Cumby, & Figlewski, 1988; Baillie & Myers, 1991). 

While there have been many studies that have focused on commodity futures market 

hedging behavior within an expected utility framework, very few have considered the 

implications in a non-expected utility environment. Three papers that have attempted to do 

so are those of Albuquerque (1999), Lien (2001) , and Mattos et al. (2008). 

Albuquerque (1999) applies prospect theory in the context of a loss averse firm seeking 

to determine an optimal currency hedge, specifically the implications of managing 

downside risk, compared with a conventional firm that is not loss averse. Lien (2001) uses 

a two-period model of grain production to show how the optimal hedge of a commodity 

producer differs under loss aversion as opposed to a producer who maximizes mean-

variance utility. One of the main results is that loss aversion has no effect when futures 

markets are unbiased. If markets are in either backwardation or contango, this is not true. 

Lien (2001) goes on to show how, and in which direction, the optimal hedge is influenced 

in these generalized cases. Mattos et al. (2008) expand on this result by also allowing for 

subjective probability weighting together with loss aversion. Employing numerical 

simulations, Mattos et al. (2008) show that the optimal hedge ratio decreases as the degree 
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of loss aversion increases, as risk seeking behavior increases, or as the parameter of 

subjective probability weighting decreases. 

 

Prospect Theory 

Prospect theory was introduced by Kahneman and Tversky (1979) as an attempt to 

better explain observed psychological behavior, with the violation of Allais’ paradox 

serving as a well known example. There have been numerous other theories proposed to 

explain deviations from traditional expected utility theory such as weighted-utility theory 

(Hong, 1983), disappointment aversion (Gul, 1991), regret theory (Bell, 1982; Loomes & 

Sugden, 1982), and rank-dependent utility (Quiggin, 1982). Prospect theory is often 

espoused as the most promising due to its ability to capture observed behavior by relaxing 

only the independence axiom among the von Neumann Morgenstern (VNM) expected 

utility axioms. The other theories cited here require the weakening of additional axioms 

beyond independence. 

Maintaining much of the structure of the standard VNM axioms has allowed prospect 

theory to become a relatively accepted alternative to the efficient markets hypothesis in 

behavioral economics. For this reason, prospect theory and loss aversion was chosen as the 

model specification in this paper although a brief mention will be made of how regret 

theory, another seemingly plausible alternative in our context, could also be applied to 

obtain similar results. 
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3. The Model 

Consider a three-period model of corn production. In the context of this model, period 1 

can be thought of as a pre-planting period (March), period 2 as an intermediate (July) 

period, and period 3 as harvest (October). A grain consumer makes a utility maximizing 

demand decision facing expected spot market prices in period 3. All consumption is 

assumed to occur in this terminal period. Aggregate demand will be specified by the 

following isoelastic demand function: 

 ( ) 1

3 0 3 2
sq p

δ
δ ε

−
=  (1) 

In equation (1), iδ are exogenously specified parameters, 3q  is the quantity of grain demanded 

in period 3, 3
sp  is the terminal spot price, and 2ε is taken to be a demand shock variable such 

that 1 2[ ] 0E ε = . This formulation explicitly allows for the possibility of a demand shock 

occurring in period 2, which will affect both the period-2 futures price as well as the 

period-2 conditional expectation of the period-3 spot price. 

In period 1, a representative corn producer must determine how much output to 

produce and how much of this output to hedge in the futures market. The producer faces 

both price and output risk. It is assumed that there is no basis risk. Futures markets are 

assumed to be unbiased and for simplicity this model does not allow for inventory 

holdings. The producer determines his optimal output and optimal futures hedge by 

maximizing the following utility as a function of terminal wealth: 

 ( ) ( ) ( )( )3 1 1 2 2 2 3
s f f f fU W U p ya x p p x p p ca= + − + − −ɶ ɶ ɶ ɶ ɶ ɶ  (2) 

In the above, 
f

ipɶ  denotes the futures price in period i , yɶ  denotes the crop yield at 

harvest, and c  represents the marginal cost of an acre of land, assumed to be constant. 
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Tildes indicate random variables unknown to the producer in period 1 for which there is a 

known distribution. In period 1, decision variables include a , the amount of acreage the 

producer chooses to allocate to crop production and 1x , the quantity of grain hedged in 

futures contracts (where short positions are represented by positive values). In period 2, 

acreage is fixed and only the quantity hedged, 2x , may be adjusted. 

In a 3 period model, maximization of equation (2) is solved recursively. In period 2, the 

representative producer, taking a  and 1x  as fixed, chooses 2x  optimally according to: 

 ( ) ( )( )
2

2 3 1 1 2 2 2 3max
x

E U p ya x p p x p p ca+ − + − −ɶ ɶ ɶ  (3) 

In equation (3), 2E  represents the expectations operator in period 2. Given the 

assumptions of unbiasedness, no basis risk, and no inventory holdings, the futures price 

will be equal to the spot price in each period, allowing us to drop the s  and f  superscripts. 

With 2x  optimally chosen (denoted as 
*
2x ), the producer faces a similar maximization 

problem then in period 1 with a  and 1x  as choice variables. Thus, solving equation (4) 

results in solutions to each of the decision variables, a , 1x , and 2x  from the perspective of 

period 1. 

 
( ) ( )( )

( )( )
1

1

*
1 3 1 1 2 2 2 3

,

1 3 1 1 2
,

max

max

a x

a x

E U p ya x p p x p p ca

E U p ya x p p ca

+ − + − −

= + − −

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

 (4) 

Hedging Under Expected Utility Theory 

In an EU framework, (·)U  is typically taken to be some increasing and concave function, 

0U ′ >  and 0U ′′ < , stemming from risk aversion. If this were the case, equation (4) would 

be solved as the following integral: 
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 ( )( ) ( )
1

3 31 3
,

31max ,
a x

U p ya x p p p y pca f yd d+ − −∫∫ ɶ ɶɶ ɶ ɶɶ ɶ  (5) 

Here 3( , )f p yɶ ɶ  represents the joint distribution of prices and yields. Equation (5) also 

makes use of the fact that from the perspective of period 1, the expectation of period-3 

prices is the same as the expectation of period-2 prices, i.e., 2 3p p=ɶ ɶ . As shown by Grant 

(1985), first order conditions would be specified as: 

 
( ) ( )( ) ( )3 3 3,
·

· 0
dE U

U p y c f p y
d

d d
a

p y′ −
 

=  = ∫∫ ɶ ɶ ɶ ɶ ɶ ɶ  (6) 

 
( ) ( )( ) ( )1 3 3

1
3

·
,· 0p p

dE U
U dy y

dx
f p dp


′ −

  = =∫∫ ɶ ɶ ɶ ɶ ɶ  (7) 

It is assumed that the presence of risk neutral speculators ensures that futures markets 

clear and are unbiased, where speculators’ futures positions are denoted as 
*
1z . 

Additionally, following from grain consumer utility maximization that gives rise to 

equation (1), consumers also choose an optimal futures position denoted by 
*
1v . Assuming 

N  producers and optimal solutions to equations (6) and (7) denoted by *a  and 
*
1x , first 

period market clearing conditions are specified as: 

 
*

3q Nya=  (8) 

 
* * *

1 1 1 0x v z+ + =   (9) 

where equation (8) represents spot market clearing, with [ ]E y y=ɶ , and equation (9) 

represents the futures market clearing condition. It should be emphasized here that due to 

consistent, unchanging risk preferences on the part of the producer (and consumer by 

assumption), period-2 market clearing conditions can be expected to take precisely the 

form of equations (8) and (9) in the absence of any new information revealed in period 2. 
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Upon choosing the optimal production, *a , this amount cannot be changed in period 2. 

From the perspective of a producer, only 
*
2x  could potentially differ from 

*
1x . In an attempt 

to further characterize the optimal hedging decision, equation (7) can be rewritten as: 

 ( ) ( ) ( ) ( ) ( )3 11 3 3cov· · · ,E U E U E pp p p pU= − −            ′ ′ − ′ɶ ɶ ɶ  (10) 

Given that futures markets are unbiased, equation (10) reduces to: 

 ( ) ( ) ( )1 3 3cov · 0· ,E U Up p p′ = − =     − ′ ɶ ɶ  (11) 

In general, a closed-form expression for the optimal hedge, *
ix  is unobtainable. 

However, it can be seen from equation (11) that determining *
ix  amounts to the 

determination of 3cov( , )U p′ ɶ . This covariance term is dependent upon the correlation 

between prices and output (or yields) as well as output (or yield) variability as explained 

earlier. When prices and yields are uncorrelated, an increase in the level of futures prices 

has no effect on this covariance term and thus no effect on the optimal hedge, *
ix .  

Moving from period 1 to period 2, a portion of uncertainty surrounding crop yields at 

harvest is resolved. Assuming prices and yields are uncorrelated, this is the only factor 

which will cause the optimal hedge to change from period 1 to period 2 under EU theory. 

Allowing for negative correlation between prices and yields does not change the key result 

of this paper. An increase in the level of futures prices still causes the optimal hedge to 

increase initially before declining somewhat.9 For this reason, we make the simplifying 

assumption that prices and yields are uncorrelated, but model both cases and illustrate 

                                                      
9
 As with price-yield correlation, the presence of yield variability may also cause the optimal hedge to decline 

slightly under expected utility. However, yield variability must be rather high for the magnitude of this effect to be 

non-trivial. Moreover, this also does not affect the main results of this paper and will be ignored for expositional 

purposes but included in the numerical results. 
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how the results change when allowing for correlation. As this assumption is not crucial to 

our main results, the exposition from this point forward considers only the case when 

prices and yields are uncorrelated. This is done to isolate and accentuate the effects of the 

underlying behavioral framework. 

Therefore, a demand shock realized in period 2, which causes futures prices to rise, will 

not cause the optimal hedge to change. Intuitively, this is because producers expect this 

same (higher) price to prevail in the next period as well and risk preferences, embodied in 

the utility function, have not changed due to the shock. In this paper, we show that the 

optimal hedge is affected by a change in the level of futures prices due to changing risk 

preferences inherent under prospect theory. In conventional EU theory, a change in the 

level of futures prices would have no impact on the change in the volatility of spot prices, or 

prices themselves, at harvest. Under prospect theory, this is not so. A change in futures 

prices will result in a change in volatility of spot prices as well as a change in price levels at 

harvest. 

 

Hedging Under Prospect Theory 

The approach to modeling market conditions under prospect theory is quite similar to 

the approach shown above under traditional EU theory that posits 0U′ >  and 0U ′′ <  

everywhere. In prospect theory, however, we have 0U′ > , 0U ′′ >  for 0W <ɶ  and 0U′ > , 

0U ′′ <  for 0W >ɶ  where 3 1 1 2 2 2 3( ) ( )W p ya x p p x p p ca= + − + − −ɶ ɶ ɶ ɶ ɶ ɶ , or the change in wealth 

from period 1 to period 3. Thus, in our model, equation (5) must be written as: 

 ( ) ( ) ( ) ( )
1

0

1 2
,

0

max
a x

W W W WU f d U f W dW
∞

∞−

+∫ ∫ɶ ɶ ɶ ɶ ɶ ɶ  (12) 
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In equation (12), 1U  is a convex function reflecting risk seeking behavior in the domain of 

losses and 2U  is a concave function indicating risk averse behavior in the domain of gains. 

The distribution of Wɶ  is determined by the distributions of pɶ and yɶ . 

If the distribution of Wɶ  were known, equation (12) could be solved separately for the 

optimal period-1 futures position with 1
Lx  corresponding to the solution for the term on the 

left and 1
Gx  the solution for the term on the right. The optimal hedge could then be 

determined as 
*
1 1 1(1 )G Lx x xα α= + −  where α  equals the fraction of Wɶ  such that 0W ≥ . The 

optimal hedge would be a weighted average of risk seeking behavior and risk averse 

behavior where the weights are determined by the area under the probability density 

function for random variable Wɶ  as shown in figure 3. 

Now suppose that equation (12) were solved first by assuming that the producer was 

everywhere risk seeking, i.e., 1 2, 0, 0U U U U= ′ > ′′ > . This would be the case if the entire 

distribution of Wɶ  were to reside to the left of the vertical axis in figure 3. For a producer 

who is naturally long in the underlying physical commodity, this would imply taking a long 

position in the futures market, clearly a more risky proposition. The solution to this 

problem would be 1 *Lx = −∞ . A strictly risk seeking producer would prefer the largest 

gamble possible. As a practical matter, a producer would clearly face some wealth 

constraint preventing him from taking such a long position. Therefore, let the solution to 

this problem be given by 1 *Lx L=  where L  is some real negative number arising due to the 

wealth constraint. 
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Likewise, suppose that equation (12) were solved with the producer everywhere risk 

averse, i.e., 1 2, 0, 0U U U U= ′ > ′′ < . This would correspond to the case in which the entire 

distribution of Wɶ  lies to the right of the vertical axis in figure 3. The solution in this case 

would correspond to the standard EU outcome presented earlier, where the producer takes 

a short position in the futures market to mitigate exposure to risk. Let this solution be 

denoted by 1 *Gx G= , where 0G > . Thus, in the case where 1α = , we have 
*
1 1 *Gx x G= =  and 

for 0α = , we have 
*
1 1 *Lx x L= = . The general solution to this approach can be represented 

as the following: 

 

( )

* *
1 1

* *
1 1

* *
1 1

*
1

  for 

  for 

0

1

1   fo

 

r 0 1

L

G

G L

x x

x x

x x x

α
α

α α α

=

=

+ −

 =


=

< < =

 (13) 

It should be clear that since L G< , there is increasing weight placed on the risk averse 

solution and decreasing weight placed on the risk seeking solution as the distribution of Wɶ  

shifts from left to right. This would occur with a period-2 demand shock such that 2 0ε > . 

Thus, we have the result that 
* *

2 1x x>  whenever 2 1p p>  and 0 1α< < . It is important to 

emphasize here that the only change required to cause an increase in the optimal hedge is 

an increase in the price level. As of period 1, the producer has sold in advance an amount of 

output equal to
*
1x . In the absence of hedging, the amount of unsold output is

* *
1( )a N y x− .

10
  

Once period-1 decisions have been made, the producer faces an optimization problem 

similar to equation (12) in period 2 as follows: 

                                                      
10

 Again for expositional purposes, this supposes that only commercial end-users take the opposing trade to 

producers’ short positions. The presence of speculators would reduce the amount of committed production in that 

speculators do not typically intend to take delivery of the underlying commodity. 
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1 2

0

max
x

W W W W W WU f d U f d
−

∞

∞

+∫ ∫ɶ ɶ ɶ ɶ ɶ ɶ  (14) 

In this case, 
* *

3 1 1 2 2 2 3
* ( ) ( )W p ya x p p x p p ca= + − + − −ɶ ɶ ɶ ɶ  as before with 

*
1x  and *a  fixed at 

values optimally chosen in period 1 and period-2 prices no longer uncertain. As acreage is 

no longer a choice variable in period 2, the only decision variable that a producer can 

adjust is the amount of output hedged in futures contracts. Assuming for the moment that 

there is no output uncertainty resolved from period 1 to period 2, the producer would 

choose his period-2 hedge, 
*
2x  such that 

* *
2 1x x= . Consider, however, the case in which 

2 0.ε > An increase in demand will cause 2 1p p>  and 
* *
2 1x x>  as more weight is placed on 

the risk averse solution and less weight on the risk seeking solution. In this case, the 

amount of unsold output available at harvest will be 
* *

2( )a N y x− , which is less than the 

amount previously available in period 1, 
* *

1( )a N y x− . 

Moving forward to the terminal period, consider the effect of a negative supply shock, 

possibly unfavorable weather near harvest, such that y y< . The negative supply shock 

affects the entire harvest. However, a portion of this harvest has already been sold in 

advance. As the supply curve shifts leftward, there is a larger increase in the spot price in 

the presence of futures market hedging than if there had not been any crop sold in advance. 

Moreover, the increase in the level of futures prices in period 2, which caused the amount 

hedged to increase, will exacerbate this price increase even further. Figure 4 provides the 

intuition behind this result. 
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Figure 4: Effect of Terminal Period Supply Shock on Price Volatility 

 

In figure 4, aggregate demand is taken to be the sum of two (equal) individual grain 

consumer demand curves, here shown to be each equal to half of the aggregate demand. 

Group 1 is interpreted as consumers purchasing grain through forward (futures) markets, 

intending to take delivery at harvest. Group 2 purchases only in the spot market at harvest. 

In the absence of any supply shocks at harvest, realized aggregate supply is equal to 

expected aggregate supply 0y . In this case, the price paid by group 1, 0p  is equal to the 

price paid by group 2, hp . In equilibrium, both groups purchase grain in the amount of hy  

since they are equal in size. 

Now consider the effect of a terminal period supply shock in which realized aggregate 

supply is reduced to 0y . In this case, grain producers have committed to supplying grain to 

group 1 in the amount contractually agreed upon, hy . Subtracting this amount from 

aggregate realized supply gives 0 h hy y y− = , the amount of uncommitted grain available to 
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respond to the negative shock at harvest. Now the equilibrium price at harvest, based on 

the demand curve of group 2, still in need of grain, is hp ′ . As illustrated in figure 4, this 

price is greater than what the equilibrium price would have been if there had been no 

futures trading, 0p ′ . This simple illustration shows that an increase in the amount of output 

hedged by producers in the futures market reduces the amount of output available at 

harvest to respond to negative (or positive) supply shocks. As a result, cash prices and 

volatility at harvest are necessarily higher. Thus, in the context of our paper, any factor that 

increases futures prices (such as an increase in demand) within a crop year will cause spot 

prices and the volatility of prices at harvest to increase. In the case of isoelastic demand, 

this increase increases dramatically as the severity of the supply shock at harvest increases, 

or as the amount of crop sold in advance increases. 

 

4. Numerical Results 

This section provides numerical results to support the theory presented in the previous 

section to help provide a better understanding of two key points: the extent to which the 

optimal hedge is affected by upward price movements under prospect theory and the 

ensuing impact on spot prices and volatility.  

For the purposes of the numerical simulations, a CARA utility representation will be 

used to obtain results due to its ability to be parameterized to encompass prospect theory 

as well as its general prevalence in the hedging literature alluded to in section 2. Utility is 

thus specified as follows: 
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In equation (15), 3 1 1 2 2 2 3( ) ( )W p ya x p p x p p ca= + − + − −ɶ ɶ ɶ ɶ ɶ ɶ as before, Gθ  ( Lθ ) defines the 

measure of risk averse (risk seeking) behavior over gains (losses), and ϕ  allows for the 

possibility of a higher sensitivity to losses than gains (loss aversion). This would be the 

case when 1ϕ > . Estimates for ϕ  are found to be between 2.25 and 2.5 (Kahneman & Tversky, 

1992; Pennings & Smidts, 2003). Given the specification of utility in equation (15), the 

producer’s first-period maximization problem can be written as: 
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Prices, 3pɶ , are drawn from a lognormal distribution with a (period 1) mean and 

standard deviation of 4.19 and 1.28 respectively. As explained previously, yields are 

assumed to be uncorrelated with prices and are drawn from a four-parameter beta 

distribution. For robustness, results will also be presented for a case in which prices and 

yields are negatively correlated with a correlation coefficient of -0.47. The mean and 

variance of the yield distribution in period 1 is 150 and 15.4 respectively. From these 

distributions, a distribution for revenue per acre, 3p yɶ ɶ  is constructed. For simplicity, and 

without loss of generality, the demand equation given by (1) is calibrated by adjusting 0δ  

so as to generate a market clearing price equal to the mean of the given price distribution 

for 1a = . The elasticity of demand, 1δ , is set equal to 0.5. The cost parameter c , is set to 

ensure that there is an approximately equal probability of realizing a loss as a gain. 

For the purposes of simulations, ϕ  is set equal to 2.25 as cited in the literature, but the 

value of this parameter is not crucial to the key results. Likewise, values of risk aversion 
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and risk seeking parameters, Gθ  and Lθ  are set equal to each other at 0.01. The values for 

these parameters were chosen so as to allow for sufficient non-degenerate curvature over 

the range of the distribution of Wɶ . The relatively arbitrary values chosen for these 

parameters are also not crucial to the key results, but provide some ease in numerical 

simulations by preventing extremely large or small numbers, given the range of Wɶ . 

In most circumstances, as discussed earlier, it can be expected that a producer who has 

a natural long position in an underlying commodity will take a short position in the futures 

market to manage price and production risk. Recalling the fact that a risk seeking producer 

will choose a long futures position as large as possible without a wealth constraint, a lower 

bound was placed on the size of the long position taken. This bound can be interpreted as a 

wealth constraint which ensures that the amount hedged by the producer will be non-

negative, thereby conforming to empirically observed data. Ultimately, we are interested in 

how the optimal hedge changes due to an increase in the level of prices, so the exact 

magnitude of this bound is of little importance. 

As mentioned in section 3, after period-1 decisions on production (acreage) and 

hedging have been made, the only choice variable in period 2 is the hedging decision. 

Moreover, there is an assumed stickiness in the hedging decision. Once a portion of output 

is sold in short futures contracts, it cannot be “unsold.” Thus, the only real decision is 

whether to hedge additional output in the second period beyond what was hedged in the 

first period. In the second period, we allow for a demand shock of varying intensity (i.e. 

2 0ε > ) that causes producers to hedge additional output under prospect theory due to a 

price level increase. 
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Figure 5a illustrates this result for two cases. The solid curve represents the case in 

which no uncertainty is resolved moving from period 1 to period 2. The dashed curve 

represents the case in which the variance of prices and yields is reduced by 25%. In figure 

5a, the period-2 conditional expectation of the period-3 spot price is displayed on the 

horizontal axis. This is the mean of the price distribution as of period 2. The curves then 

represent the optimal hedge ratio read from the vertical axis. As prices increase, risk averse 

behavior takes over and a larger short position is maintained. The optimal hedge ratio 

eventually flattens out at a level corresponding to the solution in which the producer is 

strictly risk averse. 

Figure 5b presents the case when there is negative correlation between prices and 

yields. As can be seen from the figure, the result that the optimal hedge initially increases 

as the weight on risk averse behavior increases is still maintained. In contrast to figure 5a, 

however, the optimal hedge reaches a peak before subsequently declining as the 

effectiveness of a natural hedge is increased. 

Finally, in period 3 we consider the effect of a supply shock in order to emphasize the 

pronounced effect on volatility and spot prices at harvest due to producers having sold a 

greater amount in the futures market between periods 1 and 2. Intuitively we would expect 

that as producers sell a larger share in advance, the effect of the supply shock in the 

terminal period will become amplified. This is illustrated in figure 6 for supply shocks 

ranging from -10% to 10%. In this figure, the solid curve represents the case in which the 

hedge ratio remains unchanged from period 1 to period 2 (baseline hedge). The dashed 

curve represents the case in which there is a period-2 demand shock of 30 bu/acre. 
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Figure 5a: Hedge Ratio as a Function of Price Levels (No price-yield correlation) 

 

 

Figure 5b: Hedge Ratio as a Function of Price Levels (Negative price-yield 

correlation) 
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Figure 6: Effect on Spot Price Levels and Volatility due to Increased Hedging 

 

With period-2 expected yields of approximately 152 bu/acre (assuming the 25% 

uncertainty resolution case), a -10% supply shock corresponds to a realized yield of 137 

bu/acre. As expected, increased hedging activity results in a higher variation of equilibrium 

prices. This effect increases non-linearly as the magnitude of the period-3 supply shock 

increases. As illustrated, changes in price volatility are minimized when the amount of 

output hedged in period 2 remains unchanged from the amount hedged in period 1, i.e. the 

baseline hedge. It is also apparent in figure 6 that observed spot prices in the scenario 

hedge case increase due to a negative period-3 supply shock above those price levels that 

would have been observed in the baseline hedge case. It should be clear from figure 6, and 

intuitively so, that less unsold grain available at harvest (due to higher period-2 hedge 

ratios) directly translates to a higher conditional variance in spot prices. 
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5. Concluding Remarks 

Using prospect theory as an alternative to conventional expected utility theory, this 

paper considers the corresponding utility maximization problem of a representative grain 

producer. There are two key findings. First, under prospect theory futures price level 

increases can lead to a higher share of output being hedged in futures markets. This is a 

result that conventional expected utility theory does not generate, but is observed 

empirically. Second, as more output is sold in advance, there is less available at harvest to 

respond to a potential supply shock, resulting in greater spot price volatility as well as 

higher spot price levels. 

In connection with these findings, there are several qualifications and limitations that 

must be addressed. The first qualification is the degree to which output sold in advance in 

futures markets is considered unavailable in the terminal period. The numerical results of 

this paper present a case in which grain consumers, intending to take delivery at harvest, 

take the opposing positions for all of the output hedged by producers in short futures 

contracts. As was mentioned in the paper, the ratio of commercial long contracts to 

commercial short contracts typically lies within a range of 0.3 and 0.6 with non-commercial 

traders (speculators) accounting for the remainder of opposing positions. Thus, the 

numerical results on price level effects and volatility effects at harvest due to increased 

short hedging are biased upward somewhat. These effects should be scaled by the ratio of 

commercial long-to-short contracts to better capture the extent to which future output is 

sold to a buyer intending to take delivery, thereby rendering this output unavailable at 

harvest. 
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A second point that deserves some mention is the extent to which the optimal hedge 

under expected utility theory differs from the optimal hedge under prospect theory in 

magnitude. Since expected utility theory assumes producers are everywhere risk averse, 

the corresponding optimal hedge will be an upper bound for the hedge under prospect 

theory. This is because prospect theory incorporates some degree of risk seeking behavior, 

which would imply taking a long position in futures markets rather than a short position. It 

might seem then that the effects under expected utility theory at harvest would always 

dominate the effects under prospect theory if more output is hedged under the former. The 

focus of this paper, however, is not necessarily on the magnitude of the optimal hedge ratio 

in any given period, which is somewhat arbitrary, but rather the direction and magnitude 

of the change in this hedge ratio from one period to the next. 

A final comment to be made concerning the results of this paper is in regards to the 

specific behavioral assumption being made: that grain producers are risk averse over gains 

and risk seeking over losses. A limitation of this paper is that this is not necessarily the only 

behavioral assumption that would give rise to increased short hedging activity due to an 

increase in futures prices. Regret theory would also generate similar results. In this case, as 

the distribution of prices rises above some reference, a producer would experience regret if 

prices subsequently fall below this level. This would induce the producer to sell more when 

prices are above the reference in order to avoid regret later. Modeling this or other 

behavioral assumptions could be done as a possible extension to the current paper. 
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