
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


!
!
!

!"#$%&'()*+,*-(".-*/%#&,0%1,(+,%&'(#2,."$*/%#&*-(3*/*(
(
(

(
(
(
(

4.&"5(67(8"5*&/(
"#$%&!'()!*+,-#.&,/0!
123.0%+/4/%567#86!

(
9*$%3(:7(8.,,-."(

"#$%&!'()!*+,-#.&,/0!
823#&&9#.4/%567#86!

!
!
!
!
!
!
!

!"#"$%"&'()*"+'*+"*)+"&',-+'*+"."/%)%0-/')%'%1"'23+0$4#%4+)#'5'2**#0"&'6$-/-70$.'
2..-$0)%0-/8.'9:;;'2262'5'<2=62'>-0/%'2//4)#'?""%0/3@'(0%%.A4+31@'("//.B#C)/0)@'

>4#B'9DE9F@'9:;;;!
!
!
!
!
!
!
!
!
!
!
!
'

G-*B+031%'9:;;'AB'H"/+B'IJ'K+B)/%')/&'L)C0&'2J'K"..#"+J''2##'+031%.'+"."+C"&J''=")&"+.'
7)B'7)M"'C"+A)%07'$-*0".'-,'%10.'&-$47"/%',-+'/-/E$-77"+$0)#'*4+*-.".'AB')/B'
7")/.@'*+-C0&"&'%1)%'%10.'$-*B+031%'/-%0$"')**")+.'-/')##'.4$1'$-*0".J'



Proving causal relationships using observational
data

Henry L. Bryant

Texas A&M University

David A. Bessler

Texas A&M University

April 27, 2011

Abstract

We describe a means of rejecting a null hypothesis concerning ob-
served, but not deliberately manipulated, variables of the form H0: A �→
B in favor of an alternative hypothesis HA: A → B, even given the pos-
sibility of causally related unobserved variables. Rejection of such an H0

relies on the availability of two observed and appropriately related instru-
mental variables. While the researcher will have limited control over the
confidence level in this test, simulation results suggest that type I errors
occur with a probability of less than 0.15 (often substantially less) across
a wide range of circumstances. The power of the test is limited if there are
but few observations available and the strength of correspondence among
the variables is weak. We demonstrate the method by testing a hypothesis
with critically important policy implications relating to a possible cause
of childhood malnourishment.

1 Introduction
A burgeoning literature describes the inference of causal relationships among
observed random variables when controlled experiments are not conducted (Gly-
mour and Cooper, 1999; Pearl, 2000; Spirtes et al., 2000). This literature gener-
ally documents the development of algorithmic approaches to inferring causality
among a possibly large number of variables. Such algorithms facilitate an ex-
ploratory approach to causal inference, wherein the researcher does not explicitly
form or test specific causal hypotheses.

A nascent offshoot from this literature, however, applies the logic that under-
lies such algorithms to the problem of investigating specific causal hypotheses.
Bryant et al. (BBH, 2009) demonstrate how, under certain conditions, one can
use observational data on three variables, say A, B and C, to conclude, in the
presence of latent variables or not, that A does not cause B. They use Monte
Carlo methods to demonstrate reliable small sample properties of such inference.
The key idea is that a non-zero correlation between A and B can be interpreted
as causal and not just associational under certain reasonable assumptions, and
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that causality cannot run from A to B if there exists a third variable C (call
this an instrument) such that A and B are correlated, A and C are correlated,
and C and B are not correlated. Abstracting from the possibility of causally
related latent variables, the associated causal structure is C → A ← B. Thus,
an “inverted fork” in the causal structure is the revealing feature that facilitates
inference of the direction of causal flow.

BBH describe two avenues by which a hypothesis that A causes B might be
rejected, which they label weak-basis rejections and strong-basis rejections. The
former rejections arise when the correlation between A and B is judged to be not
significantly different from zero (on the basis of a statistical test). Strong-basis
rejections arise from rejection of the hypothesis that the correlation between A

and B is zero, rejection of the hypothesis that the correlation between A and C

is zero, and failure to reject the hypothesis that the correlation between C and B

is zero. In a sense, C acts as a natural experiment or manipulation of A, which,
under the null hypothesis that A causes B, should result in a correspondence
between C and B.

Scheines (2005) describes the similarities between causal inference in ex-
perimental and observational studies, and the conditions under which one can
conclude that A does cause B even when A is not directly manipulated. As
described below, two instrumental variables are required for such a conclusion,
rather than just one—it is easier to disprove a causal relationship (as in BBH)
using observational data than to prove one. These two instruments must be
related to A and B, and to one another, in very specific ways. A causal inverted
fork (involving A and the test instruments) is again crucial to the inference of
the direction of causal flow, and distinguishes the methods described here from
standard instrumental variables methods. If suitable instruments are available,
then under some reasonable assumptions positive causal relationships can be
formally inferred.

The present study seeks to provide evidence on the conviction with which
one can conclude that A does cause B, where A, B, and related instruments
are only observed and not actively manipulated. Couched in the philosophy
of falsification and the framework of classical statistical hypothesis testing, we
consider the conditions under which we can reject a null hypothesis that A does
not cause B, which we write as H0: A �→ B, and the confidence that we can
place on such judgements. That is, we conduct an analysis like that of BBH for
the causal inference problem discussed in Scheines (2005).

2 Conditions that require rejection of H0: A �→ B

Two fundamental assumptions underlie causal inference using observational
data. First, it is assumed (A1) that graphs representing a causal structure
satisfy the Causal Markov Axiom, whereby all variables X are statistically in-
dependent of variables that are not effects of X, conditional on the direct causes
of X. Second, it is assumed (A2) that joint probability distributions for vari-
ables in a graph are faithful to the underlying graph; that is they follow from the
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Figure 1: Graph representing observationally equivalent causal structures in
which A must cause B

Causal Markov Axiom rather than peculiar values for the underlying structural
parameters.1 For example, we will not find two variables that are uncondition-
ally statistically independent, despite being adjacent in the underlying causal
graph.

The formal development of the logic underlying causal inference in the pres-
ence of latent variables is developed in Spirtes et al. (1999), and a subset of their
fast causal inference (FCI) algorithm that is relevant to us here is discussed in
Scheines (2005). Employing procedures that are appropriate for causal inference
in the presence of unobserved, but causally related, variables frees the applied
researcher from the onerous task of assembling observations of potentially large
numbers of random variables. We consider four variables, Z1, Z2, A, and B,
whose causal relationships are consistent with Figure 1. This figure is an ex-
ample of a partial ancestral graph (PAG), which represents a class of possible
causal graphs with identical independence relations among the observed vari-
ables. In a PAG, an edge such as Z1◦→A indicates that either Z1 causes A, or
they share a latent common cause, or both. Note that the edge between A and
B in Figure 1 embodies our alternative hypothesis, namely HA: A → B.

Specific independence relations are implied by this causal structure. Here,
we are concerned with the relevant set of independence relations that implies
(under A1 and A2, and the logic of the FCI algorithm) causal flow from A to
B. We can reject H0: A �→ B in favor of HA: A → B if, and only if, all of the
following conditions are satisfied:

1. A �⊥ B

2. A �⊥ Z1

3. A �⊥ Z2

4. B ⊥ Z1|A

5. B ⊥ Z2|A
1Spirtes et al. (2000) call this the Faithfulness assumption; Pearl (2000) calls this the

Stability assumption.
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6. Z1 ⊥ Z2

Here, ⊥ denotes independence, �⊥ denotes non-independence, and |A indicates
that independence is conditioned on the variable A.

In this arrangement, the observed variables Z1 and Z2 are providing natural
manipulation of A, or evidence of natural manipulation of A by latent variables.
Conditions two, three, and six convince us that we must have a subgraph in the
equivalence class Z1◦→A←◦Z2. If causal flow ran away from A towards either
Z1 or Z2, then (given conditions two and three) condition six would not hold.
Given manipulation of A by the instrumental variables Z1 and Z2 (or evidence
of manipulation), then different independence relationships among B and the
instrumental variables will follow under the null and alternative hypotheses.

Suppose the null hypothesis is true. Ignoring the degenerate case in which A

and B are causally unrelated (implying that condition one is not satisfied), we
therefore have A←◦B. Then we would have a partial causal structure consistent
with Z1◦→A←◦B. Here, we would have B �⊥ Z1|A rather than B ⊥ Z1|A. As an
intuitive example, suppose A indicates if a sidewalk is wet or not, Z1 indicates if
sprinklers were on recently, and B indicates if it rained recently.2 Then suppose
we know that it did not rain recently (we know B), yet we observe a wet sidewalk
(we also know A). Then we would conclude that the sprinklers were on recently
(we can infer the likely state of Z1). That is, B �⊥ Z1|A.

Note that two instrumental variables are needed because having but a single
instrument would potentially result in being unable to distinguish the direction
of causal flow between A and the other variables. The independence relations
implied by the causal structure Z1 → A → B are identical to independence
relations for Z1 ← A ← B. It is only the observation of two unconditionally
independent (with one another) instrumental variables that allows the inference
that causal flow runs from the instruments towards A, which facilitates the
inference of the direction of causal flow between A and B using conditions four
and five as we have just described.

The astute reader will notice that our conditions 1 through 5 correspond to
conditions required by a standard instrumental variables (IV) analysis, although
the specific statistical tests carried out would generally differ. Condition 1
ensures that there is an associate between A and B, conditions 2 and 3 ensure
instrument relevance, and conditions 4 and 5 ensure instrument exogeneity.
The primary purpose of IV estimation, however, is the consistent estimation of
the marginal effect on B of a unit change in A, where the direction of causal
flow (either from A to B or from the instrument(s) to A) has been assumed a

priori (generally with theoretical justification). While a non-zero association
between A on B discovered through IV estimation is sometimes interpreted as
proving A causes B, this is not possible in the absence of an assumption (often
implicit) regarding the direction of causal flow somewhere in the system. We
demonstrate in Appendix A that all requirements under IV methods can be
satisfied (including finding a non-zero association between A and B) even when
B causes A. In the absence any assumptions regarding the direction of causal

2We adapt this example from Pearl (2000).
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flow anywhere in the system, the formal causal inference literature and FCI
algorithm unambiguously insist on condition 6 to orient the edge between A and
B, as described above (Spirtes et al., 1999; Scheines, 2005). The requirement
for two unconditionally independent instruments (our condition 6) distinguishes
the method presented here from the standard IV approach.

We also note that one cannot prove that A causes B by artificially satisfying
condition 6 using two naturally dependent instruments. One may be tempted,
given two correlated instruments Z1 and Z2, to form an artificial instrument Z∗

2

that is the residuals from a regression of Z2 on Z1. We show in Appendix A
that using this revised system {A,B,Z1, Z

∗
2}, the remaining five conditions may

be satisfied for systems in which B causes A. Thus, instruments that naturally
satisfy condition 6 are required to reliably reject HA: A → B in favor of HA:
A → B.

3 Testing H0: A �→ B for linearly related, jointly
normal random variables

For the case of linearly related, jointly normal random variables, we can test H0:
A �→ B using Fisher’s z-test to evaluate the independence relations described in
Section 2. We adopt notation similar to that of BBH in this section. Assume
that there is an underlying causal structure among m random variables which
can be represented by a recursive structural equation model

Xn = Γ0 + Γ1Xn + �n (1)

where Xn is a m× 1 vector of covariates for observation n, including both the
observed variables A, B, Z1, and Z2, and m − 4 unobserved variables. �n is a
conformable vector of independent, normally distributed errors. Γ0 and Γ1 are
conformable parameter matrices, with non-zero elements of Γ1 corresponding to
edges present in a corresponding graph. For rows and columns of Γ1 indexed
by i and j, respectively, individual elements gij are zero for some ordering of
the variables, reflecting the assumption of no cycles. Variables with non-zero
elements in the ith row of Γ1Xn cause the ith variable in Xn, but the reverse is
not true.

For �n ∼ N (0,Σ), where Σ is diagonal and Γ0 = 0 without loss of generality,
we have X ∼ N (0, CΣC �) for C ≡ (I − Γ1)

−1. The unconditional population
correlation coefficient between variables i and j is

ρij =
σij√

σii
√
σjj

(2)

where σij is element i, j of CΣC �. The population partial correlation coefficient
between variables i and j, conditioned on a single variable k, is

ρij|k =
ρij − ρizρjz

�
1− ρ

2
iz

�
1− ρ

2
jz

(3)
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For a sample X1, ..., XN , where xin is the ith component of Xn, the correspond-
ing sample correlation coefficients are

rij =

�N
n=1xinxjn

��
N
n=1x

2
in

��
N
n=1x

2
jn

(4)

and
rij|k =

rij − rikrjk
�
1− r

2
ik

�
1− r

2
jk

(5)

respectively.
We can test the null hypotheses H0: ρij = 0 and H0: ρij|k = 0 using the

test statistics
zij =

1

2

√
N − 3 ln

�
|1 + rij |
|1− rij |

�
(6)

and

zij|k =
1

2

√
N − 4 ln

���1 + rij|k
��

��1− rij|k
��

�
(7)

respectively, where again k reflects only a single variable upon which we condi-
tion. Both zij and zij|k are, to a close approximation, distributed as standard
normal for small samples (Anderson, 2003).

Given our assumptions A1 and A2, A ⊥ B ⇐⇒ ρAB = 0, A �⊥ B ⇐⇒ ρAB �=
0 and B ⊥ Z1|A ⇐⇒ ρBZ1|A = 0 and so forth. This equivalence means that we
can test our overall hypothesis of H0: A �→ B by conducting six Fisher’s z-tests
corresponding to the six independence relations given in the previous section.
For this normal, linear case, the null hypothesis can be rejected if and only if
all of the following conditions hold.

1. ρAB �= 0

2. ρAZ1 �= 0

3. ρAZ2 �= 0

4. ρBZ1|A = 0

5. ρBZ2|A = 0

6. ρZ1Z2 = 0

Note that for conditions four through six, the burden of proof in the individual
z-tests runs counter to that which we would desire for our overall hypothesis
test: rejecting H0: A �→ B relies upon us failing to reject H0: ρBZ1|A = 0, H0:
ρBZ2|A = 0 and H0: ρZ1Z2|A = 0. This implies that the size and power of the
overall test of H0: A �→ B will not necessarily change monotonically as sample
size increases, as is the case with conventional statistical tests. Size and power
of the overall test will also interact in complex ways with the level of confidence
employed in the underlying z-tests.
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Figure 2: Graph representing equivalence class of causal structures under con-
ditions of deliberate investigation of a true H0: A �→ B.

4 Monte Carlo simulations
To evaluate the empirical size and power of the the overall test of H0: A �→ B,
we generate large numbers of random systems in which the null hypothesis is
true and false, respectively, and observe the frequency with which the hypoth-
esis is rejected. In the following two subsections, we individually describe for
size and power simulations the generation of the random data sets, simulation
procedures, and results.

4.1 Size
For size simulations, we generate a large number random data sets using ran-
domly drawn causal structures in which the null hypothesis is true under likely
conditions associated with deliberate investigation of a specific causal hypoth-
esis.3 Although there exists an infinite number of possible causal structures
among our four observed variables and an infinite number of unobserved vari-
ables, many of these causal structures are uninteresting because they would not
be encountered by an informed, deliberate investigator. The degenerate case
where A ⊥ B is unlikely to attract the attention of a researcher, and we do not
consider this portion of the space of all potential causal structures. We further
assume that the expert researcher will select IVs that are appropriate for the
overall test. We therefore ignore the portions of the model space in which any
of the following conditions are true: the IVs are directly causally related to B,
the IVs are unrelated to A, or the IVs are unconditionally correspond with one
another.

Given these constraints, we draw random causal structures from the equiv-
alence class portrayed in Figure 2. Each edge depicted in Figure 2 has three
possible states. Between the variables A and B for example, B can cause A

in the absence of a latent common cause, B can directly cause A with a latent
common cause also being present, or B and A are causally related only by a la-
tent common cause. This implies 33 = 27 possible causal structures from which

3Note that the results presented here are not applicable for inference in exploratory, algo-
rithmic investigations of causal structures among large numbers of random variables.

7



we draw. We denote a latent common cause of A and B as LAB , and common
causes of the other relevant variable pairs similarly.

Each simulation begins with the selection of parameters d0 and d1 that will
govern the random generation of structural parameters in equation 1. Without
loss of generality, we assume Γ0 is a zero vector for all systems. Each of the
relevant elements of Γ1 for a given causal structure is set at a level to corre-
sponding to a correlation coefficient that is randomly drawn from a U (d0, d1)
distribution.4 Note that Xn contains values not only for the observed variables
A, B, Z1, and Z2, but also for unobserved variables LAB , LAZ1 , and LAZ2 .
Accordingly, some elements of Γ1 reflect causal flow from the latent variables
to the observed variables. Following Demiralp and Hoover (2003) and Bryant
et al. (2009), we consider three expected signal strengths for randomly gener-
ated systems. We set the duple (d0, d1) to (0.01, 0.49), (0.25, 0.75), and (0.51,
0.99) to reflect low, medium, and high signal strengths in the simulations that
follow.

For each signal strength specification, for each significance level α in the un-
derlying z-tests in the set {0.05, 0.10, 0.15, 0.20, 0.25}, and for numbers of obser-
vations N (in the randomly generated data sets) in the set {50, 150, . . . , 1000},
we conduct 10,000 trials. An individual trial consists of the following steps.

1. A random causal structure is drawn from the 27 causal structures in the
equivalence class depicted in Figure 2

2. Γ1 in equation (1) is randomly parametrized as described above, using the
specified (d0, d1)

3. A random data set containing N observations is generated. For each
observation n

(a) The seven elements of �n are drawn independently from a standard
normal distribution

(b) Equation 1 is solved for X
�
n = [A,B,Z1, Z2, LAB , LAZ1 , LAZ2 ]n

4. The test of H0: A �→ B described in Section 3 is applied using the N

values for the observed variables A, B, Z1, and Z2 generated in step 3

5. The results of the test are recorded

Results of the size simulations are presented in Table 1, and graphically in Figure
3. Several aspects of these results are interesting. The results suggest that the
overall test has reasonable size properties across all expected signal strengths,
all considered values for α, and all considered sample sizes, with type I errors
occurring in less than 15% of trials in call cases. Perhaps unsurprisingly, fewer

4The assigned structural coefficients correspond to the randomly drawn correlation coef-
ficients supposing that one variable is the sole cause, in sense of equation 1, of the other

variable. Thus the structural coefficients gij are given by gij =
�
ρ−2
ij − 1

�1/2
, where ρij is

generated randomly.
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type I errors generally occur as signal strength increases. For a strong signal
strength, the proportion of type I errors falls as the number of observations rises.
This is not always the case for the medium signal strength, however, where for
lower values of α the proportion of rejections initially rises as N increases. As
discussed in section 3, this is due to the fact that the burden of proof in half
of the six individual z-tests runs counter to that desired for the overall test of
H0: A �→ B. This effect is even more pronounced for the weak signal strength
cases, wherein size tends to rise for all values of α until about 700 observations
are employed.

For the applied researcher with numerous observations, say 150 or more, who
conservatively assumes that her data embody a weak expected signal strength,
these size results suggest the specification of a relatively large value for α in
the individual z-tests. This facilitates probabilities of type I errors in the 0.10
neighborhood, rather than the 0.15 neighborhood. This decision may be influ-
enced however, by consideration of the influence of α on the expected power of
the test.

4.2 Power
We conduct two types of power simulations. In both cases, the steps involved
are identical to those for the size simulations, with the exception of the sets of
causal structures from which we draw. Obviously, we now simulate data using
causal structures in which H0 is false. Similar to the size simulations, both types
of power simulations assume conditions of deliberate and skilled investigation of
H0: A �→ B. We therefore again do not employ many possible causal structures
in which H0 is false, but instruments are poorly selected.

The first set of power simulations assumes ideal conditions for inference.
We assume that appropriate instruments are selected, that there is in fact an
association between A and B, and that there are no latent variables present.
Simulated systems are therefore based on the single causal structure shown in
Figure 4. Simulations are again conducted for three expected signal strengths
and various sample sizes and nominal sizes for underlying z-test . The pro-
portions of trials in which we correctly reject H0 are shown in Table 2, and
graphically in Figure 5.

These results reveal that we are unlikely to reject a false null with small
numbers of observations and a low signal strength, but improvements in either of
these dimensions rapidly improves power. In almost all situations, specification
of lower levels for the nominal size α in the underlying z-tests substantially
improves power in the overall test of H0: A �→ B. This unfortunately is at odds
with the size-based considerations for the specification of α that we presented in
the previous subsection. However we have yet to consider the effects on power
that might be caused by latent variables.

The second set of power simulations again assumes that instruments are
well-selected, and that there is in fact a correspondence between A and B, but
we now admit the possibility of latent variables. In these simulations, we draw
from a set of causal structures that includes the nine that are consistent with
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Figure 4: Causal structure in which H0: A �→ B is false and no latent variables
are present.

the PAG in Figure 1, and nine that are consistent with Figure 6. We draw from
these 18 causal structures with equal probability. Results are presented in Table
3, and graphically in Figure 7.

A pattern similar to that of the ideal conditions power simulations is seen,
albeit at lower levels overall. For many configurations of simulation parameters,
the probability of rejecting a false H0 goes down by 0.20 or more relative to the
no latent variable simulations, indicating the advisability of selecting instru-
ments that are directly causally related to A to the extent possible. We again
note that for all but the lowest numbers of observations, power is increased,
often substantially, by lowering the nominal size employed in the underlying
z-tests.

Overall, for most numbers of observations, a substantial increase in power
can be achieved by specifying a lower level of α at the expense of a modest
deterioration of size in the overall test. This is portrayed graphically for the
low signal strength case (for selected numbers of observations) in Figure 8. We
therefore recommend that a low nominal size of α = 0.05 or 0.10 be employed
in the underlying z-tests, unless a researcher is extremely keen to avoid a type
I error in the overall test.

5 Application
Gibson and Mace (2006) report significant increases in both the birth rate and
childhood malnutrition in the Arsi area of Southern Ethiopia following improve-
ments to the water infrastructure. They theorize the following causal flow under-
lies these associations: improved water access greatly reduced women’s energetic
expenditure on water collection and transport, resulting in increased fertility and
greater scarcity of resources within households, ultimately resulting in increased
childhood malnutrition. In this application, we seek to formally test the second
half of this causal mechanism, namely that an increase in the birth rate (by
whatever means) will cause an increase in malnutrition. Correct understand-
ing of the causal mechanisms involved will facilitate improved policy. Gibson
and Mace argue, based on their results, that to avoid increases in childhood
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Figure 6: Class of causal structures in which H0: A �→ B is false and one or
more latent variables are present.

malnutrition, labor saving technological aid should include a family planning
component. This policy recommendation is well-advised based on their hypoth-
esized causal mechanism. If, however, the increase in childhood malnutrition
that they document was not mediated by the increase in the birth rate, their
policy recommendation would fail to prevent future increases in malnutrition.

We study late-1990’s to mid-2000’s cross section data on malnutrition, liter-
acy, income distribution and birth rates from 110 countries. Data are from the
World Bank Development Indicators and the CIA World Factbook. The coun-
tries studied are listed in Table B.1. Several “developed” countries are not on
our list. This omission includes countries from Western Europe, North America
and the Pacific-rim; the reason for exclusion is that the malnutrition numbers
are not provided for many “developed” countries; e.g. United Kingdom, Canada,
France, Japan, etc.

Malnourishment Prevalence (MAL), height for age, is reported in The
World Bank Development Indicators tables for the 110 countries stud-
ied here. The two countries for which malnourishment data are reported,
but that are not included in our analysis are Eritrea, for which we have no
Gini coefficient, and Myanmar, for which we have no literacy rate. This
measure is not available for each country on a continuous basis (malnu-
trition numbers are reported periodically for most countries). We used
observations for the year 2006 or as close to 2006 as possible. These num-
bers appear to not vary greatly from year to year where continuous data
are available. For example, the Romanian rate for 2000 was 13%, for 2001
it was 14%, and for 2002 it was 13%; nevertheless, we used the measure
closest to 2006 which was 13%.

Birth Rate (BR). This measure is the number of live births occurring during
the year 2006, per 1,000 population estimated at mid-year. The number is
given for the year 2006 for each country in The World Bank Development
Indicators tables.
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Figure 8: Size versus power for a test of H0: A �→ B, assuming a low signal
strength
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Literacy Rate (LIT ). Here we use the numbers reported in the CIA World
Fact Book tables as a measure of the percentage of people ages 15 and older
that cannot, with understanding, read and write a short straightforward
declaration on their daily life. Literacy rates are generally measured in
the late-1990’s or early-2000’s.

Gini Index (GINI). This is a measure of income inequality, with zero indi-
cating complete equality and 100 indicating complete inequality. These
numbers are predominantly the UN measured Gini indices; where such
numbers are not available we substituted the Global Peace Index Gini
numbers, or if these numbers are not available we substituted CIA World
Fact Book indices. Numbers used for each country are indicated in the
note to Table B.1. Numbers are generally from mid-2000’s measurements;
although numbers on Algeria, Botswana, Burundi, Central African Re-
public, The Gambia, Guyana, Lesotho, Niger, and Sierra Leone pre-date
2000.

The test described in Section 3 and the FCI algorithm assume normally dis-
tributed data. From Table 4 we see that possible skewness exist for GINI

(positive) and LIT (negative). MAL and BR show some evidence of excess
kurtosis. Accordingly, the results presented below should be viewed as an ap-
proximation on the underlying rejection probabilities.

We use these data to apply the test described in Section 3 to the hypothesis
that birth rate does not cause malnutrition (H0: BR �→ MAL), with an alter-
native hypothesis that birth rate is a cause of malnutrition (HA: BR → MAL).
Results of the individual underlying z-tests are presented in Table 5. Using the
levels of significance in these underlying tests that we advocate in the previous
section, we reject H0: BR �→ MAL, as all six conditions are satisfied. Referring
to Table 1, we see that we expect the probability that this rejection reflects
a type I error is ≤ 0.115 (the maximum entry across all three expected signal
strengths in the 100 observations row and the α = 0.05 and α = 0.10 columns).

We can also describe the treatment of these data by the FCI algorithm to
demonstrate a concordance with our test result. The lower triangular elements
of the correlation matrix associated the data given in Table B.1 are the inputs
into the FCI algorithm for calculation of correlation and partial correlations and
associated test statistics to infer causal structure. This matrix is

ρ =





1.00
0.20 1.00
0.36 0.78 1.00
−0.15 −0.67 −0.78 1.00





GINI

MAL

BR

LIT

(8)

Figure 9 gives the graphical pattern generated by the FCI algorithm using
a p-value of 10% for underlying z-tests (as recommend by Spirtes, Glymour
and Scheines 2000; the graphical structure at 5% is the same as that given
here). Note that the PAG in this figure embodies our alternative hypothesis
(HA: BR → MAL). The edge between LIT and GINI is removed by zero
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Figure 9: Graphical pattern on Gini index, literacy rate, birth rate, and malnu-
trition rate from 110 countries, late 1990’s through mid 2000’s data (described
in Table B.1). This is the output of the FCI algorithm from the TETRAD
project associated with the Philosophy Department at Carnegie Mellon Uni-
versity. A 10% significance level is used for edge removal as recommended in
Spirtes et al. (2000). No prior “knowledge” (causal ordering) was used to find
this graph structure with the FCI.

order conditioning, as the p-value on the correlation between GINI and LIT is
greater than 0.11, thus the null hypothesis that the partial correlation between
GINI and LIT is zero is not rejected. Similar hypotheses on all other zero-
order correlations (between LIT and MAL, between LIT and BR, between
GINI and MAL, between GINI and BR and between BR and MAL) are
rejected. Additional higher-order conditioning results in failing to reject the
null hypothesis of vanishing partial correlations (that the partial correlations
equal zero) between MAL and LIT given BR (the partial correlation is -0.16,
with a p-value of 0.10+), and the partial correlation between GINI and MAL

given BR (the partial correlation is -0.14 with a p-value of 0.15).
Accordingly, any information that emanates from LIT (or a latent which

moves LIT ) passes through BR in its flow to MAL. Similarly, GINI infor-
mation (or associated latents) flows through BR before reaching MAL. FCI
cannot reject possible latents between LIT and BR and between GINI and
BR. But it can reject that a latent lies between BR and MAL. If a latent did
in fact connect BR and MAL, the partial correlation between MAL and GINI

given BR or between LIT and MAL given BR would be non-zero (and they
are not at p-values at or below 0.10).

Our formal causal analysis therefore supports the causal mechanisms hy-
pothesized by Gibson and Mace. As an increased birth rate causes increased
childhood malnutrition, policy makers should take care to avoid directly or in-
directly increasing the birth rate with any planned aid intervention. Moreover,
they could successfully reduce childhood malnutrition by actively reducing the
birth rate.

6 Conclusions
We have described a means of rejecting a null hypothesis concerning observed,
but not deliberately manipulated, variables of the form H0: A �→ B in favor of an
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alternative hypothesis HA: A → B, even given the possibility of causally related
unobserved variables. Rejection of such an H0 relies upon the availability of two
observed and appropriately related instrumental variables. The overall test is
operational in the linear, jointly normal case using several underlying Fisher’s
z-tests of correlation among the observed variables, and we have characterized
the confidence with which we can reject H0: A �→ B. This work is a natural
complement to the that of BBH who characterized the conviction with which
one might reject a null hypothesis of the form H0: A → B.

The test has attractive size properties. While the researcher will have limited
control over the confidence level in this test, simulation results suggest that
rejections of H0: A �→ B occur at the 15% level or less. The power of the test
is quite limited if there are but few observations available and the strength of
correspondence among the variables is weak. The power of the test is generally
improved by 1) larger numbers of observations, 2) improved correspondence
between observed variables, and 3) specification of a fairly stringent threshold
for rejection (α) in the underlying correlation tests. Changes in the power and
size of the test are not monotonic as these factors change, however, because the
the burdens of proof in the half of the underlying z-tests are opposite of that
desired for the overall test. The above-mentioned factors therefore interact in
complex ways to determine the size and power of the overall test. The careful
selection of the best available instrumental variables Z1 and Z2 to employ, given
expert knowledge of a particular problem domain, will be the primary challenge
faced by an applied researcher.

We demonstrate the method by testing a hypothesis that the birth rate is a
cause of childhood malnourishment using a cross section of data for 110 coun-
tries. We do not reject this hypothesis, with the implication that developmental
aid interventions should be carefully designed to avoid directly or indirectly
increasing birth rates.
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Table 4: Descriptive statistics on measures of Gini index (GINI), malnutrition
(MAL), birth rate (BR), and literacy rate (LIT ) for late 1990’s through mid
2000’s data.

Mean Skewness Excess Kurtosis
Variable (significance) (significance) (significance)
GINI 43.49 0.434 -0.42

(0.00) (0.07) (0.38)
MAL 29.44 0.06 -1.03

(0.00) (0.79) (0.03)
BR 26.92 0.24 -0.96

(0.00) (0.30) (0.05)
LIT 75.25 -0.71 -0.62

(0.00) (0.00) (0.20)

Table 5: Test of H0: birth rate (BR) �→ malnutrition (MAL), using Gini index
(GINI) and literacy (LIT ) as test instruments.

Sample Conclusion
Hypothesis Correlation z-statistic p-value (α = 0.10)

H0: ρBR,MAL �= 0 0.781 10.838 0.000 Reject
H0: ρBR,GINI �= 0 0.362 3.924 0.000 Reject
H0: ρBR,LIT �= 0 -0.776 -10.706 0.000 Reject

H0: ρMAL,GINI|BR = 0 -0.139 -1.445 0.148 Do not reject
H0: ρMAL,LIT |BR = 0 -0.157 -1.631 0.103 Do not reject
H0: ρGINI,LIT = 0 -0.154 -1.607 0.108 Do not reject
H0: BR �→ MAL Reject
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Appendix A: Demonstrations of conditions that
cannot prove causality
In this appendix, we demonstrate that conditions required by standard IV es-
timation may be satisfied in linear systems, including finding a significant co-
efficient in the second stage regression, when the regressor in the second stage
regression is actually the cause of the regressand. This counter-example shows
that satisfaction of the conditions required by standard IV estimation does not
prove that the regressand in the second stage equation is the cause of the re-
gressor.

To consistently estimate under the putative effect of A on B using instru-
ments Z1 and Z2, a first stage regression of the form

A = π1Z1 + π2Z2 + v

is estimated, and the predicted values from this regression are employed in a
second stage regression

B = βÂ+ u

The conditions required for a consistently estimated, non-zero “causal” effect of
A on B (β) are judgements that

i. β �= 0 (a non-zero “causal” effect)

ii. π1 �= 0 (Z1 is a relevant instrument)

iii. π2 �= 0 (Z2 is a relevant instrument)

iv. E (Z1u) = 0 (B and Z1 are not correlated after conditioning on A)

v. E (Z2u) = 0 (B and Z2 are not correlated after conditioning on A)

For linear systems, these conditions correspond to conditions 1 through 5 pre-
sented in Section 2. There is no condition for IV estimation corresponding to
our condition 6.

Suppose that there is a recursive linear system where B is the sole cause
of A, and A is the sole cause of both Z1 and Z2. Without loss of generality,
we assume structural coefficients of zero for constants and unity for variable
coefficients. We therefore have

B =�B (A.1)
A =B + �A = �A + �B (A.2)
Z1 =A+ �Z1 = �A + �B + �Z1 (A.3)
Z2 =A+ �Z2 = �A + �B + �Z2 (A.4)

with E (�i) = 0 and var (�i) = σ
2
i < ∞ for i ∈ {A,B,Z1, Z2}, and cov (�i, �j) = 0

for i �= j. The population first moments for the first stage coefficients are
�

π̄1

π̄2

�
= D

�
σ
2
Z2

σ
2
Z1

�
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where
D =
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2
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2
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2
B + σ

2
Z1) (σ
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2
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These moments are greater than zero and conditions ii and iii are therefore
satisfied. Using

Â = π̄1Z1 + π̄2Z2

the population first moment for the second stage coefficient is

β̄ =
cov(Â, B)

var(Â)
=

σ
2
B (π̄1 + π̄2)
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and condition i is therefore satisfied. The second stage residuals are

û = B − Âβ̄

and we can check conditions iv (and v analogously) by

E (ûZ1) = E
�
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All conditions for IV are satisfied, despite causality running from the second
stage regressor to the regressand. Clearly, the second stage coefficient in a
IV exercise can only be considered a causal effect of A on B given a correct
assumption that any causality between A and B flows from the former to the
latter, or that causality flows from the instruments to A.

We also demonstrate, using this same linear system (equations A.1 through
A.4), that artificial satisfaction of our condition 6 using two naturally correlated
instruments runs the risk rejecting a true H0: A �→ B. Suppose one forms an
alternative instrument Z

∗
2 as the residuals from the regression of Z2 on to Z1:

Z
∗
2 = Z2 − Z1γ̂

= (1− γ̂) �A + (1− γ̂) �A + �Z1 − γ̂�Z2

where γ̂ is the fitted coefficient. For the altered system {A,B,Z1, Z
∗
2}, condition

6 is artificially satisfied. Conditions 1, 2, and 3 are obviously satisfied for this
system. Under linearity, condition 4 implies that the covariance between B and
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Z1, conditioned on A is zero. This is

E
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and therefore condition 4 is satisfied. Condition 5 is evaluated similarly.
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Thus all six conditions are satisfied even though H0: A �→ B is true for this
system and HA: A → B is false. Naturally independent instruments Z1 and Z2

are required to prove that A causes B.
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Appendix B: Data used in example

Table B.1: Data and Sources

Country GINI
5

MAL
6

BR
7

LIT
8

Afghanistan 60 59 48 28.1
Albania 31.1 27 14 98.7
Algeria 35.3 23 21 69.9
Angola 62 51 44 67.4

Argentina 51.3 8 17 97.2
Armenia 33.8 18 15 99.4

Azerbaijan 36.5 27 18 98.8
Bangladesh 33.4 43 23 47.9

Belarus 29.7 4 10 99.6
Belize 49.2 22 26 76.9
Benin 36.5 45 40 34.7

Bhutan 32 48 23 47
Bolivia 60.1 32 28 86.7

Bosnia and Herz 26.2 12 9 96.7
Botswana 60.5 29 25 81.2

Brazil 57 7 17 88.6
Bulgaria 29.2 9 10 98.2

Burkina Faso 39.5 44 47 21.8
Burundi 42.4 63 35 59.3

Cambodia 41.7 40 25 73.6
Cameroon 44.6 36 38 67.9

C. African Republic 61.3 45 37 48.6

5Gini Index data are taken from Wikipedia (http://en.wikipedia.org/wiki/
List_of_countries_by_income_equality). All Gini numbers are UN measurements,
except for numbers on: Afghanistan, Angola, Belize, Chad, Democratic Republic of Congo,
Congo, Equatorial Guinea, Gabon, Guyana, Iraq, North Korea, Lebanon, Libya, Oman,
Saudi Arabia, Somalia, Sudan, and Syria, which are Global Peace Index numbers. GINI
observations for Guyana, Serbia, and Timor-Leste are from the CIA World Factbook.
Accessed December 22, 2010.

6Malnutrition Prevalence, height for age, % of children under 5, are from the World Bank
(http://ddp-ext.worldbank.org/ext/DDPQQ/showReport.do?method=showReport). Obser-
vations are for the closest available year to 2006. Accessed December 20, 2010.

7Birth Rate data are crude numbers of births per 1000 pop-
ulation for the year 2006 from the World Bank: (http://ddp-
ext.worldbank.org/ext/DDPQQ/showReport.do?method=showReport). Accessed January 3,
2011.

8Literacy rates are from the CIA World Factbook: percent of population 15
and over who can read and write: (https://www.cia.gov/library/publications/the-world-
factbook/fields/2103.html; Accessed December 27, 2010). The World Factbook numbers are
similar, but not identical, to World Bank numbers measured more recently (but only spo-
radically) for several countries; e.g. our World Factbook numbers for India, Swaziland and
Thailand are 61%, 81.6% and 92.6, respectively. World Bank numbers are 63% for India for
the year 2006, 86% for Swaziland (2008) and 94% for Thailand (2005). As this latter data set
is not measured for all countries in our study, we resort to the Factbook numbers.
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Chad 52.3 45 47 25.7
Chile 54.9 2 15 95.7
China 46.9 22 12 91.6

Columbia 58.6 16 21 90.4
Dem Rep of Congo 55 46 46 67.2

Congo 56.2 31 35 83.8
Cote d’Ivoire 44.6 40 36 48.7

Czech Republic 25.4 3 10 99
Dominican Repub. 51.6 10 23 87

Ecuador 53.6 29 22 91
Egypt 34.4 31 25 71.4

El Salvador 52.4 25 20 81.1
Equatorial Guinea 65 35 38 87

Ethiopia 30 51 39 42.7
Gabon 60 26 28 63.2

The Gambia 50.2 28 38 40.1
Georgia 40.4 15 12 100
Germany 28.3 1 8 99
Ghana 40.8 28 33 57.9

Guatemala 55.1 54 34 69.1
Guinea 38.6 39 40 29.5

Guinea-Bissau 47 48 42 42.4
Guyana 43.2 18 19 91.8
Haiti 59.2 30 28 52.9

Honduras 53.8 30 28 80
India 36.8 48 24 61

Indonesia 34.3 40 19 90.4
Iraq 42 28 32 74.1

Jamaica 45.5 4 17 87.9
Jordan 38.8 12 26 89.9

Kazakhstan 33.9 18 20 99.5
Kenya 42.5 36 39 85.1

North Korea 31 45 14 99
Kyrgyzstan 30.3 18 23 98.7

Laos 34.6 48 28 73
Lebanon 45 16 16 87.4
Lesotho 63.2 45 30 84.8
Liberia 52.6 39 39 57.5
Libya 36 21 24 82.6

Macedonia 39 12 11 96.1
Madagascar 47.5 53 37 68.9

Malawi 39 53 41 62.7
Mali 40.1 38 43 46.4

Mauritania 39 29 34 51.2
Mexico 46.1 16 19 86.1
Moldova 33.2 11 12 99.1
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Mongolia 32.8 28 19 97.8
Morocco 39.5 23 21 52.3

Mozambique 47.3 47 41 47.8
Namibia 74.3 30 28 85
Nepal 47.2 49 27 48.6

Nicaragua 43.1 19 25 67.5
Niger 50.5 55 54 28.7

Nigeria 43.7 43 41 68
Oman 32 13 22 81.4

Pakistan 30.6 42 31 49.9
Panama 56.1 22 21 91.9
Paraguay 58.4 18 25 94

Peru 52 30 22 92.9
Philippines 44.5 28 25 92.6
Romania 31 13 10 97.3
Rwanda 46.8 52 41 70.4

Saudi Arabia 32 9 24 78.8
Senegal 41.3 20 39 39.3
Serbia 26 8 10 96.4

Sierra Leon 62.9 47 41 35.1
Singapore 42.5 4 10 92.5
Somalia 30 42 45 37.8

Sri Lanka 40.2 17 19 90.7
Sudan 51 38 32 61.1

Swaziland 50.4 30 31 81.6
Syria 42 29 29 79.6

Tajikistan 32.6 33 28 99.5
Tanzania 34.6 44 42 69.4
Thailand 42 16 15 92.6

Timor-Leste 38 56 40 58.6
Trinidad & Tobago 38.9 5 15 98.6

Tunisia 39.8 9 17 74.3
Turkey 43.6 16 19 87.4
Uganda 45.7 39 47 66.8
Ukraine 28.1 23 10 99.4

United States 40.8 4 14 99
Uruguay 44.9 14 15 98

Uzbekistan 36.8 20 21 99.3
Vietnam 34.4 36 18 90.3
Yemen 33.4 58 37 50.2
Zambia 50.8 46 44 86.8

Zimbabwe 50.1 36 30 90.7
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