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1 Introduction

Since any species is part of a complex ecological system that includes preys,

competitors and predators, modelling equilibrium dynamics with a single dif-

ferential equation fails to account for such ecological interdependence, and

can verisimilarly lead to wrong conclusions. The bulk of literature regard-

ing species competition with one accord points out that spillovers occurring

from one population to another might change crucially the optimal solution

involving such systems of interdependent species (see Neugebauer, 2005).

In contrast to the single species model, some of the most interesting and

important studies in this �eld basically involve the interactions between two

or more biological populations occupying close surroundings.1 A study on

competition among di¤erent populations must then focus on the extent to

which the living space of a species i is a¤ected by the presence of a competitor

j. Likewise, we may verify that the greater the competition among species,

the lower their biological equilibrium stock levels.

The �rst attempt to formalise the principle of competition among species

and its pessimistic consequence on the exploitation of natural resources is

due to Verhulst (1838), whose logistic equation became the basic law to ex-

plaining population growth over time.2 Although this equation is sometimes

1See, for example, Finno¤-Tschirhart (2003), Fleming-Alexander (2002), and
Tschirhart (2002).

2Theoretical bases of the reletionship between a slow down in population growth and
the lack of natural resources were formerly posited by Malthus at the end of the 18th
century.
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considered too simple for a complete analysis on population dynamics, it still

represents a central point in the �predator-prey�framework.

In this light, we present a model of competing species towards the same

resource, and focus on the di¤erent equilibrium solutions this interaction

might eventually lead to.

We consider two species bravely competing with each other for the food

available in their common environment, but while one species (bees) does

care about the environment she lives in, and makes all possible (and sustain-

able) actions necessary for survivability of the ecosystem; the other species

(locusts) is assumed to have no consideration of the natural belongings she is

endowed with, and behaves in exploiting as much as she can, thus free-riding

those natural resources bees have been so carefully and patiently managing

day by day (see, Grimaldi-Engel, 2005).

Finally, we ought to make a simple parable of today�s societies where

basically two type of agents coexist (compete) in the same environment, so

a¤ecting the natural resource management, given their peaceful or con�ictual

coexistence.

The rest of the paper is organised as follows. In section 2 we present

the biological features underlying the two species we are going to deal with:

bees and locusts. In section 3, we apply the Lotka-Volterra dynamics to

our competing-species community, and derive the possible outcomes, either

peaceful or con�ictual, that could possibly arise therefrom. Moreover, we

examine these results, and make a possible parable to explain current human
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behaviour towards natural resource use. The �nal section concludes, and a

subsequent Appendix provides all the necessary proofs.

2 The biology of species

2.1 Bee�s life

�Social creatures are such as have some one common object in

view; and this probably is not common to all creatures that are

gregarious. Such social creatures are man, the bee...� (Aristotle,

Book I, part 1, History of animals)

First Honeybees probably came to light in Tropical Africa at about 40

million years ago, as con�rmed by fossil records of amber deposits where

the ancestor bees have been eternally imprisoned. Later on, colonies of bees

appeared in data of Northern Europe and Asia. Although so far in time, bees

had already developed the same well-de�ned social behaviour that modern

bees pursue up till now.

Let us then have a look to what this particular structural system gives

rise to, and so try to infer some considerations about the development of

such species in the surrounding environment.3

Bees are used to form social aggregations commonly called hives. A typi-

cal small hive contains about 20,000 bees, and amongst these we distinguish

3For a complete survey on this �eld, see also Maeterlinck (1901).
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three kinds of characters: the Queen, the Drones, and the Workers.

The hive�s life has to follow some hierarchical rules to let dwellers coexist

peacefully and orderly. On the one hand, the Queen�s main job is to lay eggs

and let the colony be preserved and be furnished with new members within

the sustainable capacity of the hive itself. In this light, she dare to keep

control on new births, thus making workers uninterested in reproduction on

their own, by secreting a chemical essence, the pheromone, which is then

spread from body to body amongst the workers, starting with those being

assigned to tend the queen more closely.

Such a task leaves the queen no time to eat or �y around. A group

of �ve to ten handmaid workers provide her with food, each time she lays

about 20 eggs. These workers are given a special tight role in the hive�s

preservation, let us think of it as a Crown Council. In fact, they can depose

the queen whenever she stops making pheromone or laying eggs, and one of

her most recently laid eggs is immediately moved to a specially prepared cell

to produce a replacement queen.

In a bloodthirsty accession to the throne, the newly selected queen de-

stroys her mother, and then takes her mating �ight. This special wedding

follows a speci�c pattern: the virgin queen �ies to a selected area where hun-

dreds of drones are gathered in and wait to be chosen. Drones, like queens,

lack the body parts necessary to harvest nectar or pollen from �owers to feed

themselves. Drones also lack a stinger for self-defence. They are designed for

mating, and nothing else.
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Unfortunately, it is worth to clarify that no room is left in this society for

�outlawed�or �pitiful�expressions, in fact drones are tolerated in the hive

only for those periods when there is a possibility they mate with a queen,

mostly in spring and summer, but none in the winter. Cruelly, the workers

turn the drones out of the hive to starve to death.

On the other hand are Workers that, as implied by the name, do most of

the work necessary to the hive. For example, they secrete from the glands

on their abdomens the wax necessary to build up the grid of the honeycomb.

We are familiar with the shape of this comb containing hexagonal cells large

enough to hold newly developed workers or drones, as well as the necessary

amount of pollen or honey. In either case, when the cells are �lled up, a

worker put a cover to the cell and �nally seals whatever content inside.

Bees development occurs through a metamorphosis process. As a matter

of fact, three days after it is laid, the egg does change into a worm-like larva

which is feeded continuously for about four days; it goes then into a resting

stage (the pupa) for another few days, until the adult bee �nally emerges.

The complete process lasts for about three weeks depending on the season

and the class of bee.

As evidence of a �never-ending�busy life, young workers are immediately

enrolled in their duties, by tending larvae and using their new and strong

wings to help ventilate the hive. Elderly bees � wiser and stronger � are

instead mainly focused on cleaning out the old cells for reuse, and de�nitely

tend the queen or young drones, to let the hive reproduction be guaranteed.
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The second main task a worker is employed into does concern food provi-

sion. Depending on the season, the bee will then �y out of the hive and visit

�owers looking for nectar and pollen to be stored, or will stop upon trees for

gathering resin and make propolis to be used for sealing any cleft in the hive

walls.

Last but not least, workers have also to defend the hive with the sting they

are furnished with. However, in a tremendous act of self-sacri�ce, honeybees

do not survive to stinging the enemy. Conversely, honeybees are not likely

to use their one-life sting unless really provoked.4

2.1.1 Bees and the environment

To understand why bees are commonly viewed as �environmental-friendly�

agents, let us brie�y sum up what this liaison does really look like.

Indeed, across ages �owers have evolved to attract honeybees, whose car-

rying pollen from �ower to �ower allows plants�pollination and reproduction.

Competition among �owers is very hard. Their shape is di¤erent as are

their colors and fragrances to let the bees recognise the plant who rewards

them at most and make a repeated visit very likely to happen again. To this

4Remembering the famous fable �The bee and Jupiter� from Aesop: �A Bee from
Mount Hymettus, the queen of the hive, ascended to Olympus to present Jupiter some
honey fresh from her combs. Jupiter, delighted with the o¤ering of honey, promised to
give whatever she should ask. She therefore besought him, saying, �Give me, I pray thee,
a sting, that if any mortal shall approach to take my honey, I may kill him.� Jupiter was
much displeased, for he loved the race of man, but could not refuse the request because of
his promise. He thus answered the Bee: �You shall have your request, but it will be at the
peril of your own life. For if you use your sting, it shall remain in the wound you make,
and then you will die from the loss of it.�
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end, �owers reward bees with nectar and pollen. The nectar is converted to

glucose and fructose, by means of some digestive enzymes, lately taken to

the hive, and stored into cells for evaporation to make honey. On the other

hand, pollen is transferred from �ower to �ower as soon as the bee cleans its

legs whenever reaching a new di¤erent plant. In this way, �owers never lack

su¢ cient pollination. Not surprisingly, this mutualistic relationship between

�owers and bees has been observed for millions of years and both bee and

plant have bene�ced from it.

Many studies have also quarrelled about the ability of bees to communi-

cate their �oral �ndings. Empirical studies have shown that whenever a bee

returns from a place plenty of �owers, that is also rich of producing nectar,

she starts a particular dance on top of the hive. The type of movements she

makes � the orientation, and the frequency of wing vibrations � suggest to

any other bee the direction and the distance of such a mass of �owers from

the hive.

Very broadly, extending to the human species, we may think of a society

which behaves sustainably when deciding about the amount of resources to

be harvested, and let future generations satisfy their needs as much as they

currently do themselves.

2.2 Locust�s life

�A nation has invaded my land, powerful and without number;

it has the teeth of a lion, the fangs of a lioness...� (Joel,1:1-2:27
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The Bible)

Grasshopper is the name given to a very broad group of insects. All

members of this group are particularly characterised by crunching mouths,

strong wings for crossing long distances, and powerful legs for high jump-

ing. Amongst these we are mainly interested in locusts, the more plaguing

insects of the group, and so perceived as a terrible threat to the human

livelihood. Particularly, locusts di¤er from grasshoppers in their ability to

swarm. Moreover, locusts are basically considered solitary insects, although

some circumstances (e.g., the lack of food due to increasing population den-

sity) might facilitate a swarming behaviour. Basically, when young locusts

concentrate in the same area, their wings will touch each other constantly,

until they closely crowd together. This learning behaviour may last for about

four hours. In this gregarious phase, with about 20,000 members per square

meter, they do march together eating up every green �eld in their path.5

Grasshoppers�evolution takes three stages: egg, hopper (nymph), adult.

Brie�y, eggs might be laid by a single female grasshopper every two or four

days, and under favourable climate conditions she can produce on average

more than 250 eggs in her whole lifetime. It is then theoretically possible

that each generation multiplies of about one hundred times. Fortunately,

Nature makes this dreadful event very unlikely to occur, as eggpods (laid

in the ground) are exposed to many risks, such as climatic conditions (e.g.,

5Reports of locust invasions especially in North-Africa go back to the 9th century A.D.,
though precise records have only been collected from the 1990s.
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dry weather and water �oods) or rather predation contingencies.6 Eggs are

usually laid in deep hollows of about 100mm in the soil. Soon after the clutch

is made, the hole is immediately �lled with a secreted slavering substance

that keeps the eggbed su¢ ciently warm. Consequently, under these ideal

conditions eggs hatch in 2-3 weeks, although time varies from species to

species.

During the second evolutionary phase of new-born locusts (nymphs or

hoppers), their size is pretty small, they are sexually immature, and above

all they are �ightless. Finally, a growth stage will be completed soon after

14 days, once maturity is �nally reached.

As for locusts environmental unfriendly behaviour, we must note that

green vegetation and humidity are necessary for breeding. When they lack

both, adults can form dense aggregations of hoppers, called bands, and �y

across countries in densities up to 5000 per m2. Under the right climatic

conditions, that is usually when rainfalls arise, locusts can cover long dis-

tances following the weather fronts, thus invading vast squared kilometers of

country-side.7 Migration is then a survival strategy. When a place with rich

green vegetation and constant rain for breeding is found, these locusts repro-

duce very rapidly and a plague is very likely to occur. Just to make things

clear, in 1958 Ethiopia lost about 170,000 tons of harvest due to the tremen-

dous locusts�swarm, that is roughly the exact amount of grain necessary to

6Predators like �ies, beetles, or rather ants and birds feed on locusts� eggpods very
pleasently.

7For example, Australian locusts might cover up to 500km in a night.
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feed that population for a year.

A plaguing band of locusts can contain even a billion insects, devouring

around 20 tons of vegetation a-day. If this happens, although all crops can

be a potential prey, summer crops are highly at risk. Leaves, �owers, fruit,

and seeds might all enter their devastating diet.

We can easily associate locusts behaviour to those members of the mankind,

quite sel�sh perhaps in their decision making towards resource extraction

and over-exploitation, and with no care of the possible consequences could

possibly arise therefrom. It is indeed a sort of anarchic society, without any

binding management rule to guarantee the same disposal of natural resources

to those generations coming afterwards.

3 Ecosystem behaviour of competing species:

Lotka-Volterra dynamics

The classical model of �predator-prey�interacting species was developed in

the 1920s by the Italian mathematician Vito Volterra (1860-1940) in order

to explain the recurrent alteration observed in the shark and food-�sh pop-

ulations in the Adriatic Sea (see also Berryman, 1992).8

In this model-type framework, choosing the proper functional form to

describe a growing population is at least as important as determining the

8Basically, the �rst studies on this �elds can be ascribed to Lotka�s Elements of Physical
Biology (1925).
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right parameter values to express the underlying biology of each species being

considered.

Traditional studies concerned with population management basically rely

upon single-species models, thus making the analysis simpler and leaving

more space to exogenous, and not explained, in�uences. However, current

research is paying more and more attention to the possible outcome arising

from interactions amongst di¤erent species (see, for example, Barbier 2001).

A seminal work in this �eld is due to Flaaten (1991), still controversial

nonetheless because of its conclusions that �sea mammals should be heavily

depleted to increase the surplus production of �sh resources for man�. In this

light, the Norwegian government has found a possible economic justi�cation

against the international moratorium on whales hunting.9

In addition, it is meaningful to remind the biological concepts underlying

the particular forms taken by the so-called �predator-prey�models. Clearly,

the more complex applied studies in population dynamics usually employ

still complex nonlinear functions, though containing an immense amount of

information about the species being considered. Finally, the particular form

assigned to these functions may serve to better understanding the particular

species�interaction we are going to deal with.10

To begin with, we must properly de�ne a function for the growth of

9Conversely, a similar dispute concerns the problem of abundant krill created in Antarc-
tic Sea because of the disappearance of its major predator: the whales (see, Nicol and de
la Mare, 1993).
10See Castilho-Srinivasu (2005), Conrad-Salas (1993), and Tu-Wilman (1992).
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each population, which might eventually slow down due to congestion of

individuals of the same species living the same area. Secondly, we ought to

focus on possible interactions between one species with the others, that is

species evolve di¤erently when coming into contact with other individuals to

contrast their living activities. Not surprisingly, it might be also the case that

individuals do not interfere with one another, or rather connections are not so

strong as to a¤ect their population dynamics. Such a situation is commonly

described in the literature as a laissez-faire behaviour (see, Caughley and

Lawton, 1976). On the contrary, species may interact so di¤erently as to

a¤ect each population growth in a number of di¤erent ways (see, Yodzis

1994). For example,

1. they may compete either for food, reproduction or dwellings;

2. they may eat one another (i.e., strong adults that feed upon defenceless

young members);

In any case, these forms of interference, in which a species hampers an-

other, could be easily reversed, as the case of individual predators that may

facilitate other predators�feeding activities.11

A question of particular interest arises if we assume a population to sur-

vive when all the competitors are extinct. Formally, this is re�ected by the

shape of the surviving species isocline to be de�nite when every other species

11Models that consider how the biology of feeding may a¤ect their functional forms
were largely developed during the 1960s. See, for example, Holling (1965), Ivlev (1961),
Takahashi (1964).
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does collapse to zero. In our case, the neighbourhood of the intersection

point may represent the number of locusts that is consistent with an at least

very small growth of bees population.12

To conclude, it is worth noting that biological peculiarities among species

may a¤ect the functional form taken by predator-prey models, but it remains

still di¢ cult to determine which function is to be chosen for the populations

we are interested in. We need then to carefully delineate the biology of

our species as to identify the more appropriate functional forms, and thus

correctly understand the model we are going to build up.

3.1 Bees and locusts dynamics

Let assume competition between bee and locust populations be generally

described by the following autonomous system of di¤erential equations

8><>: _x = f(x) +B(x; y)

_y = g(y) + L(x; y)

where x and y represent the densities (more properly, the number or bio-

mass) of locusts and bees, respectively. Moreover, f(x) and g(y) stand for

the growth rate functions of each population evolving with no contact with

the competitor; whereas the so-called functional response terms B(x; y) and

12The risk is to build a bioeconomic model where predators are extremely stout: they
can survive although prey populations are pretty small. This is itself biologically absurd,
and warns about the lack of these models at very small densities (see, for example, Hassell-
Varley, 1969).

15



L(x; y) represent the e¤ects on each population due to a possible interaction

between our two species. To make a deepen investigation, let us give the

system the following explicit form

8><>: _x = ax� bx2 + [x(y + c)]�

_y = dye��y � �yex2
(1)

where

1. f(x) = ax� bx2 depicts the evolution of locusts according to the usual

logistic form found in population dynamics, that is the number of mem-

bers does grow rapidly in a �rst stage until a slow down then necessarily

occurs because of congestion problems (see, Clark, 1976).

2. B(x; y) = [x(y + c)]� shows the e¤ect on locust population due to any

interaction with bees. We assume this e¤ect to be positive since locusts

surely bene�t from bees that live close, as they might pollinate �owers

and help plants�reproduction, allowing �elds to blooming grow up. If

bees are then present, locusts are sure to �nd abundant food to be

harvested (see, Shigesada-Kawasaki, 1997).

While a and b basically serve at parametrising the growth rate of a locust

population in the absence of bees; parameter c 2 [0; 1] in the interaction

function additionally shows that a population growth might react to some

external e¤ects other than biology and competition with other species. We

assume henceforth these e¤ects to be always positive (c > 0). It is the case,
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for example, of natural rainfalls for we noticed before they facilitate locusts�

breeding, and so make an increase in population very likely to occur.13 Fi-

nally, the power � 2 (0; 1) is a parameter of scale, which points out the

magnitude of such interaction.14

3. On the other hand, g(y) = dye��y describes the evolution of bees in

the absence of locusts in the surrounding environment, being d a mea-

sure for the rate at which bees grow when living free of contacts with

any other competing species. Speci�cally, we assume this function to

look di¤erently from the logistic-shaped one, since a reduction in the

hive�s population is more likely to be observed. For example, drones

are usually kicked-out of the hive when unnecessary, or rather new

queens eventually leave the hive with a cohort when congestion does

occur. To this end, notwithstanding the harmonious a¤air bees have

established with the environment they live in, we introduce a parame-

ter � 2 [0; 1] to capture for any potential exogenous e¤ect that may

a¤ect a beehive�s life.15 Basically, we take � as a measure for human

intervention (regulation) to keep the hive�s reproduction be maintained

13Constraining c to be positive can also depict the case of a parasite getting used to new
pesticides, thus letting population to grow anyway.
14We either assume an interaction always to occur (� > 0), or rather to a¤ect the

growth function less than proportionally (� < 1); for the remaining parameter space
(� > 1) is of no biological signi�cance, and population densities may become negative. On
the contrary, � = 1 simply drives us back to the linear interaction e¤ect noticed in the
basic Lotka-Volterra framework.
15Let consider, for example, the bene�t do bees receive for man building up a new hive

where the exceeding members might hopefully move in, to avoid the colony leave his �eld
instead.
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within its carrying capacity.16 Henceforth, we will assume that locusts

take advantage (i.e., free-ride) of any natural/external e¤ect more than

actually bees do themselves, so � 6 c.

4. Moreover, interaction with locusts devastating population will produce

(undoubtedly) some tremendous negative e¤ects, thus reducing bees

population. Flowers being destroyed will force the hive to move aside

in search of new �elds to gather in. This situation can be synthesised

by the following reaction function that describes the response of a bee

population to the presence of a locust one, L(x; y) = ��yex2. We

already assumed that the presence of bees allows locusts to grow very

rapidly, let us say a plague occurs at an exponential rate, ex
2
. As

a consequence, bees population will decrease very rapidly, being � 2

[0; 1] a measure for the magnitude of this interaction, or rather the

percentage of bees�reduction due to a noxious swarm of locusts.

The main question we want to answer to is then: �what the community

equilibrium does �nally look like?�

Our scope is consequently to observe how this society evolves when an

interaction among competing species takes place. The rest of this paper will

then point out the two possible outcomes of our dynamic system, and so �

moving to a real world � try to infer some peculiar consequences of mankind

competition towards the natural resource use. Brie�y, we are considering two

16In this light, the more a man intervenes. the higher is �. Consequently, the lower the
bees�growth rate, the less congested (and the more productive) the hive itself.
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kind of men: those interested in environmental protection (bee-man) and

those who are not (locust-man), living close in a small area where whatever

behaviour might a¤ect one another�s. The former are also supposed to form

a bigger aggregation than the latter, even though interacting consequences

are not so immediate and need a deepen investigation (see Stroebele-Wacker,

1995).

Remark 1 When bees and locusts compete towards the same natural re-

source, the social equilibrium is unique (and peaceful coexistence arises) if,

and only if, no species ever faces the danger of extinction.

Trying to formalise what we stated before, let us check for the stability

properties of our dynamic system (1) by means of the following Jacobian

matrix, evaluated at the steady state (�x; �y)

J(�x;�y) =

264 @ _x
@x

@ _x
@y

@ _y
@x

@ _y
@y

375
Let us then de�ne @ _x

@x
and @ _y

@y
as a potential inhibition impact of each pop-

ulation on its own growth. It can be also thought as a sort of intraspeci�c

congestion e¤ect, probably due to any scarcity of food or space. In our com-

munity, too many locusts in the �eld or too many bees into the hive. In

this light, we assumed hereinbefore that congestion problems are more likely

to a¤ect bees than locusts, for a colony of bees has a growing upper-bound

in the dimension of the hive, thus letting exceeding members to eventually
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leave the community for good (@ _y
@y
< 0); whereas locusts have more country-

side at disposal to gather in, being the sign of this e¤ect somewhat doubtful

(@ _x
@x
? 0). Nevertheless, we can easily assume this inhibition e¤ect to be more

detrimental to bees than locusts, that is in absolute terms @ _y
@y
> @ _x

@x
. On the

other hand, the cross-diagonal elements
�
@ _y
@x
and @ _x

@y

�
do simply measure an

existing interspeci�c competition (interaction) among species. As we noticed

in the previous section, locusts are indeed supposed to bene�t from bees

presence
�
@ _x
@y
> 0

�
, whereas the same is not conversely for bees

�
@ _y
@x
< 0

�
.

Just to give a �avour of what the system might eventually look like, let us

now try to calibrate the model, and assign the appropriate parameter values

by means of the biological information we have previously derived.

To make the analysis simpler, let assume a beehive colony located on a

square meter �eld, with a small community of incoming (thus still solitary)

locusts living in there. Yet we consider an horizon of two-weeks time, well

enough for eggs of both species to hatch up. We assume around 300 bees

to populate a medium-sized hive. Since we consider a type of European

bees (Apis Mellifera), whose reproduction capacity is around 2,500 new-born

fortnightly, we are therefore likely to observe the colony of about eight times

more crowded then on its arrival (hence, d = 8). Moreover, we expect these

bees to be highly negatively a¤ected by a swarm invasion, what makes their

population to collapse dramatically, let us say around 40%, in other words

the magnitude of their interaction to be � = 4
10
. As for locusts population, we

assume the �rst colony of dwelling locusts be composed of 10 units, whereas
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its carrying capacity be estimated around 20 units per square meter (thus,

b = 0:1). On the other hand, we imagine the case where locusts population is

overshooting, and rises at an explosive growth rate, a = 200%.17 If that is the

way things are, a plague is very likely to occur in few days. As noted before,

any external e¤ect is somehow going to a¤ect our dwelling populations. In

fact, either we assume any small human activity taking care of a beehive to

make the colony on about the 25% more productive (� = 1
4
); or we might

expect a rainfall (or whatever natural event) to occur and let locusts breeding

be favoured at most (c = 1). Finally, interaction with bees is supposed to

a¤ect locusts at the rate � = 1
2
.

Under these circumstances, the autonomous system (1) describing our

species competition consequently becomes

8><>: _x = 2x� 1
10
x2 +

p
x(y + 1)

_y = 8ye�
1
4
y � 4

10
yex

2
(2)

And since we assume environmental-damaging agents to be always present,

that is x > 0, the system is therefore characterised by two possible outcomes:

either do both species coexist harmoniously (xp; yp), or internecine con�icts

blow up, thus letting one species to survive, and the other to become locally

extinct (xs; 0). The rest of this section is devoted to clearly understand this

two possible solutions.

17Deriving from the standard logistic model the carrying capacity (k) of our population,
this implies k = a

b .
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3.2 Peaceful coexistence

Firstly, we assume a locust population to be pretty small, with no conges-

tion problems arising. Indeed, as we noticed above, hoppers will keep their

solitary bahaviour intact, and no plaguing swarms do happen. On the other

hand, bees will not dramatically su¤er from interaction with these new neigh-

bours, given their scanty amount; and though bee population might slightly

decrease anyway, a peaceful coexistence is �nally possible.

Graphically, the two isoclines will intersect in a point where a determinate

equilibrium is achieved, and a stable focus is therefore obtained, as it is shown

in the phase-portrait depicted in Figure 1.

x

y

E

+
-

+ -

0=x&

0=y&

Figure 1: Peaceful coexistence
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It can be the case of an economy where those members against en-

vironmental protection laws are quite tri�ing compared with interacting

environmental-friendly agents.

Unfortunately, this is just a knife-edge solution, mainly depending on the

value being assigned to the externality parameter, �. In fact, the higher any

human intervention to protect bees� existence, the less stable the optimal

solution, and the more con�ictual the social outcome �nally achieved. A

possible interpretation we may provide in this light is that the more any ex-

ternal agent (extensively, an international authority) intervenes to correct for

market failures, and guarantee the environmental-friendly agents, the more

willing are eventual �predators�to free-ride those natural resources the com-

petitors have been so carefully taking care of. Mathematically written, the

closer gets parameter � to c (i.e., both species identically bene�t from nat-

ural/external events) the more likely the social outcome is to become unstable

instead, and no possible species coexistence could be achieved anyhow, as it
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is shown in the following Figure 2 (where � = c = 1),

x

y

E

+ -

+-

0=x&

0=y&

Figure 2: Unstable coexistence

which indeed describes an unstable saddle equilibrium.

3.3 Survival of a single species

Conversely, we may observe the case where things change to the worst. Lo-

cust population is dangerously increasing, swarming outbreaks are going to

blow up, and a plague �nally does occur. The upset caused by these bands

keeps the established social order in suspense, until the hive does �nally col-

lapse. The dynamics originated by this interaction depicts a stable node

equilibrium, as locusts might survive though having gotten rid of any com-
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petitor. Basically, we may derive in Figure 3 that

y

E

+
-

+ -

0=≡ yx &

0=x&

Figure 3: Survival of a single species

E(xs; 0) is a stable equilibrium point. It is the common case of a laissez-

faire situation, where a population is living free of competition on the use of

natural resources and easily blowing above its limits. Apparently, a stable

solution can be reached even if no one does care about the surrounding

environment. However, Nature has raised some self-defence barriers to avoid

complete disruption. Hence, locusts will never be allowed to grow beyond

their carrying capacity any further. If this temporarily happens then they

will be driven back again to the equilibrium point, E.18

18Mathematical solvability of system (2), with bees population collapsing to zero (y = 0),
needs locusts population density to be higher than 20 members (x > 20). Therefore, any
other solution below this threshold is considered here of no biological signi�cance.
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This outcome basically con�rms the so-called �competitive exclusion prin-

ciple�, �rstly formulated by Grinnell (1904), according to which �... two

species of approximately the same food habits are not likely to remain long

evenly balanced in numbers in the same region.� That is to say, the in-

vader will crowd out the resident population until its complete extinction

be reached.

It can be simply the case when skepticism about environmental protec-

tion is very high. In our society, agents that care about the environment

are none, and foolish exploitation of natural resources has been carried on.

Nevertheless, stability is achieved as Man and Nature have necessarily found

a new deal to carry on their future life together on the Earth.19

4 Conclusions

Bees or locusts, to whom shall we identify ourselves with? By means of a

competing species model, and the evolutionary dynamic rules described by

the Lotka-Volterra equations, we characterised a community where bees and

locusts are dwelling in, and fratricidally compete for their common environ-

ment. We assumed therefore these two populations to di¤erently approach

the management of the goods they are endowed with. Besides bees are sup-

posed to be environmental-friendly agents, locusts are not; the latter mainly

19This is, for example, what probably did happen after the Ice Age when, even if some
species did not survive that great event, some others did modify their living conditions,
through adamptation to the new course of events.
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free-riding those natural resources the former have been so patiently taking

care of. Basically, our scope was to point out under what circumstances a

peaceful coexistence among species might nonetheless be possible.

In this light, we noticed that a peaceful outcome is very uncertain to

be achieved, being unstable equilibria more likely to happen instead. Even

worst might be the case where only one population does survive, whereas

the competitor is forced to an unavoidable decline and, ultimately, to an

irreparable extinction.

Bearing the aforementioned microcosm story in mind, we took advantage

of this parable to better explaining our real world evolution. It is in fact

easily possible to share the mankind in those agents who care about the en-

vironment they live in, and those who conversely do not. While the former do

manage sustainably the natural resources, acting the way future generations

will enjoy the same welfare; the latter neither do care about how their foolish

dissipation of the environment, nor do consider how might they negatively

a¤ect those members coming afterwards, and just behave at preserving their

momentaneous, but still too high, standard of living.

This paper has also pointed out that any exogenous intervention, made

by any force outside the community (e.g., Nature), can be of particular sig-

ni�cance to properly determine the �nal social outcome. To this end, we no-

ticed that, if a certain threshold is passed, any external intervention to favour

those environmental-friendly agents, is anything but causing an increase in

internecine species competition. Extensively, if an external intervention (ei-
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ther due to a single government, or an international authority) to protect the

environment is carried on, we might expect a free-riding behaviour to blow

up, as �predators�have now more natural resources to feed upon.

On the other hand, if concentration of predators is too high, emulation

among members will increase as well, such that nobody is therefore willing to

take care of the environment he lives in anymore. Paraphrasing Gresham�s

Law, �the bad predator drives out the good competitor�.

To conclude, nowadays our societies are indeed composed of members that

di¤erently approach the use of the natural resources they deal with. Never-

theless, a peaceful coexistence among these members can be achieved if, and

only if, no exogenous intervention is such to arouse that anti-social behaviour

that is mankind sometimes capable of, either leading to over-exploitation of

any available natural resource, or ultimate extinction of any form of sound

competition.
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Appendix

Given the autonomous system (1) describing the evolution of our competing

populations, we derive the associated Jacobian matrix

J =

264 a11 a12

a21 a22

375 (A.1)

where

1. a11 = @ _x
@x
= a� 2bx+ �x��1(y + c)�

2. a12 = @ _x
@y
= �x�(y + c)��1

3. a21 =
@ _y
@x
= �2�xyex2

4. a22 =
@ _y
@y
= d(1� �y)e��y � �ex2

And then check for dynamic stability of the system by studying the sign

of the associated trace (trJ) and determinant (DetJ), at the steady state

values (�x; �y).

On the one hand, since

trJ = a11 + a22 (A.2)

the sign of the trace gives us some useful information about a congestion prob-

lem which might a¤ect each population�s growth. Therefore, the species that

su¤ers the most the congestion due to its members over-crowding evolution
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(ja11j ? ja22j), is �nally going to in�uence the sign of the trace (jtrJ j ? 0).

On the other hand, the sign of the determinant

DetJ = a11a22 � a12a21 (A.3)

points out the magnitude of competition among our species. Formally, if

ja12a21j > ja11a22j then any interaction amongst our competing dwellers is

going to a¤ect each population growth more than it biologically grows itself.

To specify the analysis, let us calibrate the model by assigning the afore-

mentioned parameter values derived from the biology of such species

a b c � d � �

2 1
10

1 1
2

8 4
10

1
4

(A.4)

thus obtaining the system (2), with the associated steady-state values (xp =

1:42, and yp = 3:93), and the following explicit form of the Jacobian

J(1:42;3:93) =

264 2:65 0:27

�33:65 �2:96

375 (A.5)

with

trJ = �0:31 < 0 (A.6)

DetJ = 1:25 > 0
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that is, equilibrium is unique, and the system describes a stable focus. Com-

petition is small enough compared with inhibition, thus the two species can

and do coexist.

On the contrary, we want to prove that an increase in parameter �, neces-

sarily drives the system to an unstable outcome. In fact, by assuming � = 1,

the steady state values now become xp = 0:88, and yp = 2:23). The Jacobian

matrix at the steady-state is therefore

J(0:88;2:23) =

264 2:78 0:26

�3:41 �1:93

375 (A.7)

and then

trJ = 0:85 > 0 (A.8)

DetJ = �4:48 < 0

that is, the system is not stable, and a saddle path equilibrium is achieved.

Competition is then too large in comparison with inhibition, and the two

species will not steadily coexist together.

Conversely, solution to our system may lead to the case where one species

survives and the other becomes locally extinct, at the point (xs = 22:16, ys =

0). In our society, bees are going to disappear meanwhile locusts population
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is overshooting. The Jacobian matrix therefore becomes

J(22:16;0) =

264 �2:32 2:35

0 �7:43 � 10212

375 (A.9)

and consequently

trJ = �7:43 � 10212 < 0 (A.10)

DetJ = 1:72 � 10213 > 0

that is, the system is now stuck at a point where a stable node is dynamically

described. Unfortunately competition is no more possible, and one species

gets rid of the other. In this case, the two population cannot coexist, nat-

ural resources are over-exploited, and no room is left for any environmental-

friendly competitior.
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