

The World's Largest Open Access Agricultural & Applied Economics Digital Library

## This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<a href="http://ageconsearch.umn.edu">http://ageconsearch.umn.edu</a>
<a href="mailto:aesearch@umn.edu">aesearch@umn.edu</a>

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

# Development of County Economy in Hubei Province Based on Factor Analysis

FENG Jian-zhong \* , HE Xian-ping

School of Information and Mathematics, Yangtze University, Jingzhou 434023, China

**Abstract** According to the 2008 *Statistics Bulletin of the National Economic and Social Development of Hubei Province*, factor analysis method is used to study on the development of county economy in Hubei Province. Result shows that there are great differences in the economic development and the development is imbalanced. The 76 counties (cities, districts) in Hubei Province are divided into three types of F > 1, 0 < F < 1 and F < 0, that is, areas with relatively developed county economy, areas with medium developed county economy and areas with less developed county economy. Finally, countermeasures to accelerate the development of county economy are put forward, such as adhering to the reform of market economy, developing private economy, speeding up the process of industrialization, making efforts to support leading enterprises, promoting the industrialized operation of agriculture, further attracting foreign investment, carrying out industrialization during the development of projects and enterprises, changing soft environment by measures, and promoting the development of county economy by innovation. **Key words** County economy, Factor analysis, Factor score, Hubei Province, China

Accurately evaluating the social and economic development of a county (city) and comprehensively analyzing and comparing the differences among counties (cities) are of great significance to the overall, healthy and sustainable development of county economy. Objective and accurate description of county economy is the premise and foundation for the research on county economy, as well as the policy making of development of county economy. Description of county development usually adopts the multi-factor comprehensive evaluation method[1]. However, there are two problems in the traditional multifactor comprehensive evaluation method. Firstly, traditional method, such as Delphi method and AHP method, has certain subjective randomness in the design of index weight. Secondly, although multi-index large sample can ensure a large amount of information, it increases the complexity of the evaluation to a certain extent. Factor analysis method in Multivariate Statistical Analysis can effectively overcome the problems in multi-factor comprehensive evaluation method, and carry out scientific and reasonable evaluation on the development level of county economy. With the implementation of the policy of "Central Rise" in China, county economy has developed rapidly in Hubei Province in recent years. According to the statistics, in the year 2008, growth rates of total output value, countyscale industrial growth and county revenue in 76 counties cities and districts (not including the Echeng District, Huarong District, and Liangzihu District) are all higher than those of the average levels of Hubei Province. Factor analysis method is used to analyze the development levels of county economy in Hubei Province in the year 2007, in order to determine the major factors affecting the development level of county economy, to find out the existing problems and to explore a new road for scientific and harmonious development.

## 1 Index selection, data source and research method

- **1.1 Index selection** Development level of county economy in Hubei Province should be correctly described, and a suitable index system should be established. Based on the summary of relevant research results, the index system is established by following the comprehensive, integrated, operational and representative principle<sup>[2]</sup>, which includes population  $X_1$ , GDP  $X_2$ , gross product of primary industry  $X_3$ , gross product of secondary industry  $X_4$ , fixed assets investment of the whole society  $X_5$ , general budgetary revenue of local governments  $X_6$ , taxes of various kinds  $X_7$ , per capita net income of rural residents  $X_8$ , cultivated area in common use  $X_9$ , grain yield  $X_{10}$ , total industrial output value  $X_{11}$ , total tax and profit  $X_{12}$ , total retail sales of consumer goods  $X_{13}$ , and per capita GDP  $X_{14}$ .
- **1.2 Data source** Data are from the 2008 Statistics Bulletin of the National Economic and Social Development of Hubei Province.
- **1.3 Research method** SPSS software and factor analysis method are used to analyze the development level of county economy in Hubei Province in the year 2007.
- 1.3.1 Basic principles of factor analysis. Factor analysis is a statistical method mainly researching on the internal structure of correlation matrix of raw data, and transforming multiple indices into a small amount of uncorrelated random variables which can not be observed (factors), so as to extract most of the information of original indices. When the structure of factor loading matrix is not simplified enough, factor rotation can be used to make factor have more distinct practical significance. At the same time, factor score function is used to carry out relevant evaluation and ranking of sample.

Received: September 15, 2010 Accepted: November 25, 2010 Supported by the Natural Science Foundation of China (60873021/F0201). 
\* Corresponding author. E-mail: Jpucoolfjz2002@yahoo.com.cn

- **1.3.2** Basic steps of factor analysis. Mathematical model of factor analysis is  $X = AF + \varepsilon$ , where  $X = (X_1, X_2, \dots, X_p)'$  is original index,  $F = (F_1, F_2, \dots, F_m)'$  is the common factor of X, A is the factor loading matrix, and  $\varepsilon$  is the special factor. This research uses the method of principal component extraction, which can evaluate the importance degree of the ith common factor by variance contribution value  $\beta_i$ . Its procedure of factor analysis is as follows<sup>[3]</sup>.
  - (1) Carry out standardization of the raw data, denoted by X.
  - (2) Establish correlation coefficient matrix R.
- (3) Solve the characteristic equation  $|R-\lambda E|=0$ , calculate the eigenvalues and eigenvectors. When cumulative contribution rate is more than 85%, the original m indices are replaced by the first k principal components. Factor loading matrix A is calculated.
- (4) Conduct the maximum orthogonal rotation transformation of *A*.
  - (5) Name and explain the principal factor.

If sorting is needed, scores of principal components are calculated according to  $F_i = \alpha_i x$ . Taking contribution rate as the weight, score of comprehensive factor is calculated based on the weight of  $F_i$ .

#### 2 Result and analysis

**2.1 Factor analysis** Bartlett and KMO Tests on original data are carried out by statistical software SPSS17.  $0^{[4]}$ . Observed value of Bartlett Test is 1 878. 708, its corresponding probability is 0.000 < 0.050, indicating that there are significant

Table 2 Factor loading matrix after rotation

| Serial number number of factor | X₁<br>×10⁴ | $X_2$ $\times 10^8$ yuan | $X_3$ ×10 <sup>8</sup> yuan | $X_4$ ×10 <sup>8</sup> yuan | <i>X</i> ₅<br>Yuan | $X_6$ ×10 <sup>4</sup> yuan | $X_7$ ×10 <sup>4</sup> yuan | <i>X</i> <sub>8</sub><br>Yuan | $X_9$ ×10 <sup>3</sup> hm <sup>2</sup> | $X_{10} \times 10^4 \text{ t}$ | X <sub>11</sub><br>Yuan | <i>X</i> <sub>12</sub><br>×10⁴<br>yuan | <i>X</i> <sub>13</sub><br>×10⁴<br>yuan | X <sub>14</sub><br>Yuan |
|--------------------------------|------------|--------------------------|-----------------------------|-----------------------------|--------------------|-----------------------------|-----------------------------|-------------------------------|----------------------------------------|--------------------------------|-------------------------|----------------------------------------|----------------------------------------|-------------------------|
| 1                              | 0.397      | 0.694                    | 0.394                       | 0.807                       | 0.796              | 0.882                       | 0.899                       | 0.386                         | 0.095                                  | 0.010                          | 0.800                   | 0.816                                  | 0.608                                  | 0.499                   |
| 2                              | 0.879      | 0.601                    | 0.872                       | 0.391                       | 0.435              | 0.180                       | 0.080                       | 0.343                         | 0.946                                  | 0.949                          | 0.286                   | 0.124                                  | 0.692                                  | -0.129                  |
| 3                              | -0.154     | 0.344                    | 0.193                       | 0.346                       | 0.212              | 0.183                       | 0.186                       | 0.785                         | 0.043                                  | 0.162                          | 0.391                   | 0.285                                  | 0.222                                  | 0.822                   |

**2.2** Name and explanation of the factors Factor loading matrix after rotation shows that a factor only has large factor loading on several indices. Table 3 classifies the indices into three types and names the factors according to relevant professional knowledge.

The first principal factor has relatively great loads on GDP  $X_2$ , gross product of secondary industry  $X_4$ , fixed assets investment of the whole society  $X_5$ , general budgetary revenue of local governments  $X_6$ , taxes of various kinds  $X_7$ , total industrial output value  $X_{11}$ , and total tax and profit  $X_{12}$ . The first principal factor mainly reflects the overall level of economic development and the production scale of industry of counties (cities, districts). It is the main factor evaluating the development level of county economy. Therefore, it can be named as the comprehensive economic strength factor. The second principal factor has relatively great loads on population  $X_1$ , gross product of primary industry  $X_3$ , cultivated area in common use  $X_9$ , grain yield  $X_{10}$ , and total retail sales of consumer goods  $X_{13}$ . We call it rural development strength factor. The third principal factor

differences between correlation coefficient matrix and unit matrix. And the correlation among variables is significant. At the same time, KMO value is 0.814 > 0.800. According to the measurement standard put forward by Kaiser, it is suitable to use factor analysis.

Standardization of original data can eliminate the effects of different dimensions of indices on analysis result. Establish correlation coefficient matrix  $\boldsymbol{R}$  among indices, and calculate the eigenvalues and cumulative contribution rates. Table 1 reports the first three eigenvalues and their cumulative contribution rates.

Table 1 Eigenvalues and contribution rates of correlation coefficient matrix

| Serial<br>number | Eigenvalue | Contribution rate // % | Cumulative contrib-<br>tion rate // % |
|------------------|------------|------------------------|---------------------------------------|
| 1                | 9.186      | 65.613                 | 65.613                                |
| 2                | 2.567      | 18.334                 | 83.947                                |
| 3                | 0.794      | 5.674                  | 89.621                                |

Table 1 shows that the first three eigenvalues and their cumulative contribution rates have reached 89.621%, with the information loss of only 10.35%. The first three eigenvalues are selected to establish factor loading matrix. Since the structure of initial factor loading matrix is not simple enough, the meaning of each factor is not prominent. Therefore, the maximum orthogonal rotation transformation is carried out to obtain a factor loading matrix after rotation (Table 2).

has relatively great loads on per capita net income of rural residents  $X_8$ , and per capita GDP  $X_{14}$ , reflecting the per capita economic scale and the wealth degree of residents in counties (cities, districts). Therefore, we call it living standard factor of residents.

**2.3 Comprehensive score and ranking** After orthogonal rotation, score of factor is calculated by regression method. Proportion of variance contribution rates of factors in total variance contribution rate is taken as the weight in order to calculate and rank the comprehensive scores of the three principal factors of counties (cities, districts). Comprehensive score only represents the relative differences of economic development among counties (cities, districts) under the indices constructed. Greater value means stronger comprehensive economic strength, and vice versa. Hence, its equation is

 $F = 0.732 \ 1F_1 + 0.204 \ 6F_2 + 0.063 \ 3F_3$ 

Economic strength of 76 counties (cities, districts) in Hubei Province is calculated in the year 2008. Table 3 reports the calculation results of the part of the counties (cities, districts).

Table 3 Comprehensive score and ranking of 76 counties (cities and districts) in Hubei Province in the year 2008

| Danier            | F <sub>1</sub> |      | F <sub>2</sub> |      | F <sub>3</sub> |      | $\overline{F_4}$    |      |
|-------------------|----------------|------|----------------|------|----------------|------|---------------------|------|
| Region            | Score          | Rank | Score          | Rank | Score          | Rank | Comprehensive score | Rank |
| Qianjiang City    | 3.383 31       | 1    | 0.184 16       | 24   | 0.089 45       | 33   | 2.520 263           | 1    |
| Daye City         | 3.041 99       | 2    | -0.577 22      | 54   | -0.250 21      | 43   | 2.093 103           | 2    |
| Jiangxia District | 2.572 85       | 3    | -0.50924       | 52   | 1.014 41       | 13   | 1.843 605           | 3    |
| Xiantao City      | 1.863 76       | 4    | 2.019 69       | 6    | 0.217 64       | 29   | 1.791 464           | 4    |
| Zengdu District   | 1.326 68       | 11   | 2.663 22       | 2    | -0.171 82      | 42   | 1.505 281           | 5    |
| Huangpo District  | 1.829 45       | 5    | 0.762 62       | 12   | -0.382 9       | 47   | 1.471 135           | 6    |
| Hanchuan City     | 1.569 18       | 8    | 0.718 36       | 14   | -0.0885        | 41   | 1.290 171           | 7    |
| Tianmen City      | 1.132 34       | 12   | 2.406 58       | 4    | -0.574 99      | 52   | 1.284 976           | 8    |
| Xinzhou District  | 1.634 72       | 7    | 0.363 56       | 21   | -0.083 62      | 40   | 1.265 87            | 9    |
| Xiaonan District  | 1.651 67       | 6    | -0.368 83      | 44   | -1.201 38      | 70   | 1.057 678           | 10   |
| Yiling District   | 1.535 34       | 9    | -0.966 12      | 66   | 0.940 61       | 16   | 0.985 895           | 11   |
| Yidu City         | 1.356 92       | 10   | -1.405 17      | 75   | 1.801 82       | 3    | 0.819 959           | 12   |
| Caidian District  | 1.102 78       | 13   | -1.083 96      | 71   | 1.561 47       | 6    | 0.684 408           | 13   |
| Enshi City        | 1.068 64       | 14   | -0.231 92      | 38   | -2.021 19      | 76   | 0.606 959           | 14   |
| Yangxin County    | 0.556 11       | 16   | 0.293          | 22   | -0.858 12      | 59   | 0.412 757           | 15   |
| Zhijiang City     | 0.472 32       | 17   | -0.226 82      | 37   | 1.748 05       | 4    | 0.410 03            | 16   |
| Danjiangkou City  | 0.840 67       | 15   | -1.099 08      | 72   | -0.447 18      | 48   | 0.362 276           | 17   |
| Zhongxiang City   | -0.051 53      | 26   | 1.643 25       | 7    | 0.832 02       | 17   | 0.351 151           | 18   |
| Guangshui City    | 0.298 95       | 20   | 0.547 49       | 17   | -0.050 71      | 37   | 0.327 668           | 19   |
| :                 | :              | :    | :              | :    | :              | :    | <b>:</b>            | ÷    |
| Zhuxi County      | -0.620 76      | 60   | -0.631 00      | 56   | -0.842 05      | 58   | -0.636 86           | 67   |
| Xianfeng County   | -0.600 5       | 58   | -0.662 88      | 58   | -0.998 12      | 64   | -0.638 43           | 68   |
| Chongyang County  | -0.780 76      | 68   | -0.428 17      | 46   | 0.018 93       | 34   | -0.658 00           | 69   |
| Xuanen County     | -0.625 4       | 61   | -0.690 62      | 60   | -0.987 29      | 63   | -0.661 65           | 70   |
| Hefeng County     | -0.594 16      | 57   | -1.025 89      | 70   | -0.541 92      | 50   | -0.679 19           | 71   |
| Nanzhang County   | -1.020 56      | 72   | 0.182 07       | 25   | 0.229 65       | 28   | -0.695 36           | 72   |
| Wufeng County     | -0.723 01      | 66   | -1.004 27      | 68   | -0.312 05      | 45   | -0.754 54           | 73   |
| Shayang County    | -1.449 34      | 75   | 1.034 24       | 10   | 1.365 56       | 10   | -0.763 02           | 74   |
| Shennongjia       | -0.777 67      | 67   | -1.409 76      | 76   | 0.135 16       | 31   | -0.849 21           | 75   |
| Jiangling County  | -1.387 49      | 74   | -0.001 42      | 31   | 0.463 39       | 23   | -0.986 74           | 76   |

2.4 Discussion on the analysis result of factor According to the result of factor loading, counties (cities, districts) in Hubei Province have made great progress in economic development and in improving the living standard of people. Comprehensive economic strength factor has become the primary factor of economic differences among counties (cities, districts). However, special attention should be paid to the rural infrastructure construction and the improvement of per capita income in order to achieve the all-round development.

As for the comprehensive economic strength factor  $F_1$ , there are great differences among the 76 counties (cities, districts) in Hubei Province. The maximum value of Qianjiang City and the minimum value of Jianli County have a difference of 4.9 points. Moreover, only 22 counties (cities, districts) are above 0, such as Qianjiang City, Daye City, Jiangxia District, Xiantao City, Huangpo District, Xiaonan District, Xinzhou District, Hanchuan City, Yiling District, Yidu City, Zengdu District and Tianmen City. Scores of the rest counties (cities, districts) are all below 0, which coincides with the actual situation of the economic development levels of counties (cities, districts) in Hubei Province. This indicates that most of the counties (cities, districts) are below the average economic development level of Hubei Province. Counties (cities, districts) with relatively sound development have unique geographic advantages. Some belong to the prefecture of provincial capital Wuhan, such as Jiangxia District, Huangpo District and Xinzhou District. Some are directly under the jurisdiction of Hubei Province, such as Xiantao City, Qianjiang City and Tianmen City. They have significant location advantages and take the top place in the development of county economy in Hubei Province.

As for the rural development strength factor  $F_2$ , Jianli County takes the first place, with its score of 3.503 67, which is mainly due to its largest cultivated land area (171.54 thousand hectares) and greatest grain output (1 060.3 thousand tons). Scores of 30 counties (cities, districts) are above 0, such as Jianli County, Zengdu District, Zaoyang City, Tianmen City, Xiangyang District and Xiantao City. This indicates that most counties (cities, districts) in Hubei Province have good basis for agricultural production, having huge potential for agricultural industrialization. However, there is weak interaction between the primary and secondary industries and the industrialization degree is relatively low. Besides, a lot of counties and cities in northwestern Hubei have relatively low scores, indicating that the agricultural development is relatively backward. Therefore, it is necessary to improve their degree of agricultural modernization, and to promote the new countryside construction in these areas. As for the living standard factor of residents  $F_3$ , scores of Dongbao District, Dangyang City, Yidu City, Zhijiang City and Caidian District are high, showing that theses areas have relatively high living standard and more disposable consumption expenditures. During the development in the future, the rational and healthy consumption of residents should be paid attention in order to promote the economic development.

According to the score of comprehensive score F, there are only 28 counties (cities, districts) exceeding 0. A total of

63.2% counties (cities, districts) are below the average level of Hubei Province, showing that there are great differences in the economic development and the development is imbalanced. According to the rank of F, the 76 counties (cities, districts) are divided into three types. The first type is F > 1, including Qianjiang City, Daye City, Jiangxia District, Xiantao City, Zengdu District, Huangpo District, Hanchuan City, Tianmen City, Xinzhou District, Xiaonan District. They belong to areas with relatively developed county economy; and their comprehensive scores of economic development are far higher than other regions. The second type is 0 < F < 1, including Yiling District, Yidu District, Caidian District, Enshi City, Yangxin County, Zhijiang City, Danjiangkou City, Zhongxiang City, and Guangshui City. They belong to areas with medium developed county economy. The third type is F < 0, including the rest of 48 counties (cities, districts). They belong to areas with less developed county economy.

#### 3 Countermeasures

County economy is not equal to economy at county level. It is a modern regional economy with regional characteristics. Development of county economy should be planned from the aspects of building modern industrial system, promoting the industry and agricultural complementation, and enhancing the coordinated development of regional economy. Affected by the strategic arrangements and policies, county economy in Hubei Province has achieved rapid development with great contribution, dynamic strength, and good economic returns. However, it also has some disadvantages, such as imbalanced development, poor comprehensive quality and inferior economic struc-

ture, which are also the major factors for the backward development of county economy in Hubei Province. Therefore, during accelerating the development of county economy, a good job should be done mainly in the following aspects: adhering to the reform of market economy, developing private economy, speed up the process of industrialization, making efforts to support leading enterprises, promoting the industrialized operation of agriculture, further attracting foreign investment, carrying out industrialization during the development of projects and enterprises, changing soft environment by measures, and promoting the development of county economy by innovation. During the economic development in the future, counties (cities, districts) should adopt development strategies according to their own characteristics and promote the harmonious and healthy development of economy and society.

#### References

- [1] FU QZ. Comprehensive evaluation of economic development level of counties of Anhui Province based on principal component analysis method [J]. Economic Research Guide, 2007(12): 148 – 150. (in Chinese).
- [2] DAI LS, YANG GC. Empirical research on rural modernization in China [J]. Application of Statistics and Management, 2007, 26(5): 841 –846. (in Chinese).
- [3] WANG QF, DANG YG, WANG LM. Study on county economy based on factor and cluster analysis with 18 counties in Henan Province as examples [J]. Application of Statistics and Management, 2009, 28(3): 495-501. (in Chinese).
- [4] GAO XB, DONG HQ. Data analysis and the application of SPSS [M]. Beijing: Tsinghua University Press, 2007: 345 –350. (in Chinese).

(From page 47)

### 3.2 Expanding the developing channel of non-agricultural economy and attracting the rural surplus labors

The non-agricultural income is an important income source. The higher regression coefficient of the gross value of the nonagricultural industry in the model indicates that it has great positive influence on the net income of farmers. So the government should strengthen the support on improving the nonagricultural income of farmers and it can be realized by transferring the rural surplus labors. Firstly, the geographic advantages of adjacent to Beijing and Tianjin and the Bohai Economic Circle should be fully displayed. In addition, the government should develop the production and deep processing of the distinctive agricultural products as well as to encourage developing the agricultural enterprises to absorb more rural surplus labor. Secondly, the government should strengthen the guidance on agricultural enterprises by establishing a perfect rural labor market and training farmers to increase their working skills. Moreover, the export and shift of surplus labor between regions and countries is a good choice to promote the employment rate of the farmers.

3.3 Increasing the local financial expenditure and expanding the developmental space of agricultures The favorable environmental and financial support policy is the ba-

sis for farmers' income increase. The government should increase the financial support, lessen the burden of farmers and provide certain preferential policies. For example, the government should provide financial support and loose loan policy to set up more township enterprises. Secondly, the government should increase the fund input to improve the infrastructure construction and ensure the sustainable development of the primary industry, which will provide a favorable space to improve the income of farmers. For example, more money should be invested to construct the mountain roads so as to transfer the agricultural by products and the internet should be generalized for farmers to know more about the market demand and adjust the production plan. Finally, we should try to apply for the national financial subsidies to increase the total financial expenditure. Chinese government attaches great importance to three agricultural problems concerning agriculture. countryside and peasants. Hebei Province should take this opportunity to positively win over the financial subsidies provided by the nation to develop the rural economy.

#### References

[1] XU L. Use the principal components and regression analysis in SPSS [J]. Journal of Ningbo Polytechnic, 2006, 10(2):67 - 69. (in Chinese).