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Modeling Yield Risk Under Technological Change : Dynamic Yield Distributions and the U.S. Crop 
Insurance Program 

 

Résumé: L’objectif de cette étude est d’évaluer et de modéliser le risque sur le rendement 
de produits agricole aux États-Unis. Nous sommes particulièrement préoccupés par la 
nature non-stationnaire des distributions des rendements qui découle des changements 
technologiques et dans les conditions environnementales.  L’évaluation précise du risque 
dépend de notre capacité à modéliser des distributions.  Ceci représente un défi de tailler 
puisque les distributions des rendements changent dans le temps pour presque toutes les 
cultures.  Une approche populaire à deux étapes modélise la tendance des rendements dans 
un premier temps et utilise les résidus comme des observations qui sont ensuite analysés 
par des méthodes paramétriques ou non-paramétriques. Nous proposons une approche 
paramétrique alternative qui permet aux distributions de changer dans le temps. Différents 
critères de sélection de modèles sont appliqués et confirment la supériorité de l’approche 
proposée par rapport aux modèles traditionnels. 

Mots-clés : Assurance récolte, comparaisons de modèles, distributions variables dans le 
temps.        
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Modeling Yield Risk Under Technological Change: Dynamic 
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Abstract 

 

 

The objective of this study is to evaluate and model the yield risk associated with major 

agricultural commodities in the U.S. We are particularly concerned with the nonstationary nature 

of the yield distribution, which primarily arises because of technological progress and changing 

environmental conditions. Precise risk assessment depends on the accuracy of modeling this 

distribution. This problem becomes more challenging as the yield distribution changes over time, 

a condition that holds for nearly all major crops. A common approach to this problem is based on 

a two-stage method in which the yield is first detrended and then the estimated residuals are 

treated as observed data and modeled using various parametric or nonparametric methods. We 

propose an alternative parametric model that allows the moments of the yield distributions to 

change with time. Several model selection techniques suggest that the proposed time-varying 

model outperforms more conventional models in terms of in-sample goodness-of-fit, 

out-of-sample predictive power and the prediction accuracy of insurance premium rates. 
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 Modeling Yield Risk Under Technological Change: Dynamic 

Yield Distributions and the U.S. Crop Insurance Program 

  

 

 The Federal Crop Insurance program represents an important component of U.S. 

agricultural policy and is intended to protect farmers from yield and revenue risk. Accurate 

modeling of crop yield distributions is essential for the proper design of crop insurance contracts 

and to the maintenance of an actuarially sound insurance program. Historical agricultural yield 

data suggest a strong upward trend in crop yields (figure 1(a)). Advances in technology, 

germplasm, breeding techniques, the development of new hybrids and changes in environmental 

factors may significantly affect the distributions of crop yields. These changes can complicate 

efforts to accurately model yield distributions using data observed over time. 

Many studies have attempted to determine the distributional model and estimation 

methods that best characterize crop yield distributions. Modeling approaches in the current 

literature range from non-parametric (Goodwin and Ker, 1998) to parametric methods based on 

the assumption that crop yields are independently and identically distributed. The parametric 

approach of modeling yields usually involves selection and specification of candidate 

distribution families, parameter estimation and goodness-of-fit assessments. Among others, the 

Beta distribution is popularly used in practice due to its flexibility and ability to represent the 

skewness typically associated with crop yield distributions. The notion of a conditional Beta 

distribution for yields was introduced by Nelson and Preckel (1989). Other popular candidates 

used in the literature include the lognormal distribution (Day, 1965), the Normal distribution 

(Just and Weninger, 1999), the Weibull distribution (Chen and Miranda, 2004) and the Logistic 

distribution (Sherrick et al., 2004). Evidence of non-normal yields has been presented by a 



number of authors, including Taylor (1990), Ramirez (1997) and Ramirez, Misra, and Field 

(2003). 

In many cases, agricultural yields display a strong upward trend over time and the 

deviations from trend (residuals) frequently display heteroscedasticity (see figure 1(a)) and thus 

violating the assumption that yields are identically distributed. A very common approach to 

modeling yield risk using time-series data has been to first detrend the time series data and then 

estimate the yield distribution using the detrended yield data, thereby treating the estimated, 

detrended yields as “observed” data. These approaches are often referred to as “two stage” 

methods; the first stage fits a trend model to the data while the second stage uses the detrended 

data to model the distribution. Examples of such two-stage detrending procedures can be found 

in, among others, Miranda and Glauber (1997), Swinton and King (1991), and Atwood, Shaik, 

and Watts (2003). 

In this two-stage method, it is crucial to determine the correct functional form of the 

regression representing trend in the first stage and then to establish the correct distributional 

properties of the detrended data, including such characteristics as skewness, kurtosis, and 

heteroscedasticity. However, it has been recognized that the resulting estimated residuals, 

representing the detrended yields, are subject to the estimation uncertainty associated with 

sampling variability in the first stage estimates of trend and thus may not necessarily provide an 

accurate representation of the actual yield distribution. Although any biases induced at the 

first-stage asymptotically approach zero when the correct functional form is used in the 

regression and errors are homoscedastic, the uncertainty induced at the first stage, if not 

accounted for in the second stage estimates of the yield distribution, will lead to inaccurate 

estimation of the variance in the final estimates. The magnitude of this effect can be large 



especially when the errors are heteroscedastic (Robinson (1987)) and thus can potentially induce 

significant adverse selection into an insurance program if ignored. 

This standard two-stage method has been one of the most popular approaches to 

removing time trends and modeling the distribution of crop yields. A similar two-stage method is 

used to rate the Group Risk (GRP) and Gross Revenue Insurance (GRIP) programs, though this 

method does address the potential for heteroscedasticity. However, it is possible to account for 

the uncertainties associated with the first stage estimates and adequately represent characteristics 

of the yield distribution (such as deterministic trends and heteroscedasticity) by applying an 

alternative simultaneous estimation method. We propose a likelihood based estimation method 

that simultaneously estimates the trend (conditional mean) and higher order conditional moments 

of the yield density by using a flexible class of parametric distributions. We also provide a set of 

model validation tools that enables a researcher to test the validity of the proposed class of 

distributions in approximating the true underlying data generation mechanism. 

The method, along with its validation measures proposed here, allows one to measure 

conditional yield risk in a dynamic setting and thereby calculate premium rates for crop 

insurance contracts in a more accurate and systematic way. Our method essentially models the 

first four conditional moments of the distribution simultaneously by allowing location, scale, 

skewness and kutosis parameters of the specific distributional family to evolve over time, 

whereas the more common two-stage method usually allows one to model only the location 

(conditional mean) and sometimes the scale (conditional variance) to reflect changes over time. 

A more complete and coherent picture of technological progress and the consequential changes 

in yield risk can be provided by simultaneously modeling the time trend and the distributional 

parameters. 



 

A Conventional Two-Stage Estimation Framework 

 

In most empirical analyses, a deterministic trend is used to capture the dynamics of the 

expected yields and thus to represent the variation of yields around this expected level.
1
 The 

trend component is usually controlled for before assessing the distribution of yields--generally 

using a homoscedastic parametric or nonparametric regression model. Popular regression models 

include a log-linear specification based on polynomials, kernel regression, smoothing splines, 

and partial linear models (Gyorfi et al. (2002)). We illustrate this idea by using a quadratic trend 

as well as a nonparametric trend model.
2
 

Consider the following trend model:  

             (1) 

where    is the observed crop yield in year t, (       ),      denotes the regression 

function           ,    represents linear or nonlinear time indexes representing trend, and 

   represent residuals that are assumed to be independently distributed with mean zero. The 

regression function      can be estimated nonparametrically using kernel methods or 

smoothing spline methods. Alternatively, if we assume a parametric functional form for     , 

then the regression coefficients can be obtained using ordinary least squares (OLS).
3
 In either 

case, the residuals are obtained as   ̂      ̂    . We considered both quadratic and 

nonparametric trend models. The Kolmogorov-Smirnov (K-S) 2-sample goodness of fit (GOF) 

                                                 
1
The main justification for using a deterministic component is that, if crop yield variables evolve slowly through 

time, then approximation of a deterministic component may be sufficient to model the yield distribution (Just and 

Weninger, 1999). 
2
The selection of these two trend models is intended to provide a benchmark for comparison purposes. There are 

other detrending methods such as log-linear regression. Since the focus of this study is to compare the two-stage 

approach and the time-varying method that we propose as an alternative, we use representative methods to illustrate 

the concepts. A comprehensive survey of all possible detrending methods is beyond the scope of this study. 
3
We assume that               , where    is a known functional form up to some finite dimensional 

regression coefficient vector  . 



test suggests that the two residual distributions are not significantly different between the 

nonparametric and parametric models based on the data in this study. On the basis of this test, 

the quadratic detrending method is used as a benchmark. 

Our empirical analyses presented in this paper are based on applications to USDA's 

National Agricultural Statistics Services (NASS) county-level average yields.
4
 Figure 0 presents 

the nonparametric residual plot of annual corn yields in Iowa, which shows that the deviations 

from trend tend to be proportional to the level of the yields. To account for this temporal 

heteroscedasticity effect, a rescaled form of the deviations from a trend-based, forecasting 

equation is often suggested. This approach, though ad hoc, is commonly used in practice (see, for 

example, Miranda and Glauber (1997), Atwood, Shaik, and Watts (2003)). By dividing each 

error by its associated forecast, the residuals can be scaled to the year T equivalent predicted 

yield. 

We use a goodness of fit (GOF) specification test to determine the appropriate 

distribution for the detrended yield  ̃ . A Q-Q plot based on the residuals   ̂ (figure 0) suggests 

that the residuals are more negatively skewed than what would be implied by the normal 

distribution, which suggests that a Beta distribution may be a viable candidate. A GOF test for 

the Beta distribution (based on a Chi-square statistic) confirms that a Beta distribution provides a 

reasonable fit for the normalized county-level yields typically applied in this two-stage approach. 

For example, the GOF test yields a p-value of 0.51 for Kossuth County and 0.62 for Adair 

County Iowa all-practice corn yields. We use               to denote a Beta distribution with 

location parameter    , scale parameter    , and shape parameters      .
5
 This 

                                                 
4
The data are available at the NASS website at http://www.nass.usda.gov. 

5
In other words, 

 ̃   

 
          , where           represents a standard Beta distribution defined on       

with shape parameters      . 



implies that the yields follow a Beta distribution with constant shape parameters and 

time-varying location and scale parameters, i.e.,              ̃   ̃    with  ̃   ̂    ̃   ̂   

and  ̂  
 ̂ 

 ̂ 
  The log-likelihood function of a general Beta distribution based on the detrended 

data  ̃  with two shape parameters  ,   and location   and scale   parameters, is given by,  

              ̃           ∑ 

 

   

          ̃      ∑ 

 

   

              ̃  
  

                                         ∑   
               ∑   

                 (2) 

where                                             and            if     

and         otherwise, which ensures that    ̃        , for any      . 

We obtain the parameter estimates   ̂  ̂  ̂  ̂  by maximizing the                

based on the normalized values of  ̃ . The results are presented in table 1. The predicted mean 

yield can be calculated from the detrended model as:  

  ̂̂  
 ̂ 

 ̂ 
 ̂̃  

 ̂    

 ̂    
  ̂   ̂

 ̂

 ̂  ̂
  (3) 

  As we have noted, using a first stage estimation to detrend yield data and then treating the 

resulting detrended yields as if they were observed without error may not be appropriate because 

the first stage estimation error is ignored (e.g.,   ̂ 's are assumed known for the LLF in equation 

2.) A more systematic inferential method may be needed to accurately capture trend effects and 

model conditional yield risk. 

 

A Time-Varying Yield Distribution Model 
 

In this section, a flexible class of parametric models is proposed which allows us to 

simultaneously and coherently specify the first four moments using suitable polynomials of time 

and the coefficients of the polynomials are estimated simultaneously by maximizing the resulting 



likelihood function. Several alternative models are examined to measure conditional yield risk. 

For instance, instead of using polynomials to models the first four moments of the proposed 

distribution, one may use knot-based splines. In contrast to typical methods, the time-varying 

model accounts for parameter uncertainty by maximizing the time-varying likelihood function, 

which includes time-trend parameters and the distributional parameters in one step. The results 

of this proposed model are compared to those based on the conventional two-stage approach 

described in the previous section for several important crops and counties drawn from U.S. 

county-level data. 

The basic assumption of the time varying model is that the parameters of the distribution 

follow a specific temporal pattern, such that the whole temporal changes of the yield distribution 

can be captured by the time-varying shape and scale parameters. The resulting parameter 

estimates are consistently estimated if the likelihood function is appropriately specified. 

These time varying parameters evolve according to an exponential form. This particular 

functional form ensures that the Beta shape, scale, and location parameters are positive at every 

observation. We evaluated two different time trend structures for the parameters of the yield 

distributions---a standard linear trend and a quadratic trend model. However our method is not 

restricted to these chosen functional forms.
6
 The log-likelihood function of the time-varying 

Beta distribution is identical to that of the constant Beta distribution (equation 2) with the notable 

exception that the shape and scale parameters are allowed to vary with time and thus appear as 

          and   . 

                                                 
6
Of course, other functional forms including quadratic specifications could be used to ensure positive parameters. 

For instance, quite generally we can model any of these Beta parameters as     ∑   
           , where  

 
   's may 

represent members of collection of   basis functions (e.g., choosing  
 
         we obtain polynomials while 

choosing  
 
           

  we obtain cubic polynomials with knots   's). Alternatively, one may also specify 

functional form using the first four moments of the Beta distribution, which may require a constrained optimization 

of the likelihood function. 



Because the quadratic specification nests the linear trend, a standard likelihood ratio test 

can be used to evaluate the statistical significance of the quadratic terms and thus to select the 

optimal trend specification. Note that the Beta distribution is characterized by four parameters 

(       and  ). For simplicity and numerical stability of the maximum likelihood approach, we 

fix the minimum possible yield to be equal to zero in each case (i.e., by setting      for all  ). 

We allow each parameter of the Beta distribution to vary over time through a functional 

relationship of the form (e.g.,               where      is a linear or quadratic function of 

time). Such a specification allows us to use an unconstrained maximization of the likelihood 

function. As our results demonstrate below, the quadratic terms were not found to be statistically 

significant for the data sets that we have analyzed and thus our final representation of the 

conditional moments use a standard linear trend. 

The predicted value  ̂  from the time-varying model is given by  

  ̂   ̂ 
 ̂ 

 ̂   ̂ 
 (4) 

  where                    , and          . 

 

Empirical Application 

 The time-varying model not only addresses the dynamic characteristics of yield 

distributions, but also provides a more flexible specification of heteroscedasticity and higher 

order moments (e.g., skewness and kurtosis). We implement the time-varying model by applying 

the methods to the top 10 counties in the major producing states for corn, soybeans, cotton. 

These county/crop combinations include the following: Iowa all-practice corn from Kossuth, 

Sioux, Pottawattamie, Plymouth, Webster, Pocohontas, Hardin, Franklin, Clinton and Woodbury 

counties; Iowa soybeans from Kossuth, Sioux, Pattawattamie, Plymouth, Webster, Woodbury, 



Benton, Grundy, Crawford and Tama counties; Texas upland cotton from Gaines, Lubbock,  

Hockley, Lynn, Dawson, Hale, Terry, Crosby, Floyd and Martin counties.
7
 It is widely 

recognized that the rate of technological progress varies considerably across different crops. Our 

results are presented in figure 1 and demonstrate that Iowa corn and soybean yields are skewed, 

kurtotic and exhibit strong time trend effects and varying degrees of heteroscedasticity through 

time. In contrast, Texas cotton yields appear to have a more modest time trend, though strong 

evidence of temporal heteroscedasticity is exhibited. 

The maximum likelihood estimates of this time-varying Beta distribution with a linear 

time trend in the exponent and a quadratic time trend structure are shown in table 1. A likelihood 

ratio test statistic of the two alternative models has a value of 4.12, which does not reject the null 

hypothesis that the quadratic trend parameters are equal to zero and thus supports the adequacy 

of the linear specification. 

The MLE estimates can be used to evaluate the time-varying Beta density for any given 

year. Figures 2(d), 2(e) and 2(f) illustrate the dynamic evolution of the densities that are 

estimated by each time-varying model for corn, soybeans and cotton yields. Various moments of 

the distributions appear to evolve over time. The density plots of these estimated time-varying 

distributions suggest different means, skewness coefficients, and maximum values of corn yields 

for each year. In figures 2(a), 2(b) and 2(c), we present estimated densities for both the 

time-varying model and the more conventional detrended model. In every case, the time-varying 

densities show a smaller degree of leptokurtosis than is the case for standard, two-stage 

                                                 
7
Although our choice of counties encompasses a significant proportion of the overall production of each crop in the 

relevant states (and further reflects a significant amount of the GRP crop insurance liability and premium), we also 

considered analysis for a much wider range of all counties (for which data existed) in each state evaluated. The 

results were very consistent with what is presented below. In order to conserve space, we only present results for the 

top ten counties in prominent states for each crop. However, detailed results for other counties are available from the 

authors on request. In addition, analysis of shorter series of yield data were also considered and found to yield 

similar conclusions. These results are also available on request. 



detrended yield data.  

Table 2 presents log-likelihood values for the two alternative models for a number of 

counties. In almost every case, the time-varying model provides a superior fit to the data than the 

conventional model, even after adjustments (within the context of alternative information criteria) 

for the number of parameters. This is also illustrated in figure 3, which contains a side-by-side 

bar plot of the LLF values for all major county/crop combinations considered in our analysis.
8
 

 

Model Performance and Specification Tests 

 

We considered a number of specification tests and evaluations of forecasting 

performance of the alternative models. Vuong's nonnested specification test (Vuong (1989)) is a 

likelihood-based test for model selection. Vuong's test statistic is given by:  

   
 

 
      ̂   ̃  

 ̂ 
 (5) 

  where      ̂   ̃     
 
  ̂     

 
  ̃  ,   

 
  ̂   is the maximum likelihood function of the 

time-varying model and   
 
  ̃   is the maximum likelihood function of the two-step model.  ̂  

is defined as:  

  ̂ 
  

 

 
∑   

   (   
         ̂  

         ̃  
)
 

 (
 

 
∑   

      
         ̂  

         ̃  
)
 

 

The test statistic   is approximately distributed as a standard normal random variable. As 

specified, if    , where   is the critical value
9
, we reject null that the models are the same in 

favor of the alternative time-varying model   . Alternatively, if     , we would reject the 

null in favor of the detrended model   . Vuong's test statistics   are presented in table 2 and in 

a majority of cases (87%) support the time-varying specification. 

                                                 
8
MLEs for these other counties are available upon request from the authors. 

9
We can choose a critical value   from the standard normal distribution that corresponds to the desired level of 

significance (e.g. for       ;                ). 



Table 2 also presents goodness-of-fit comparisons for conventional models (model I) and 

time-varying models (model II) based on the Akaike Information Criterion (AIC) (Akaike (1974)) 

and Schwarz's Bayesian Information Criterion (BIC) (Schwarz (1978)). Smaller values of the 

AIC or BIC indicate a better fit. Both figure 2 and table 2 show that the time-varying Beta has 

the lowest AIC and BIC for most if not all counties, which indicates that it is the most 

parsimonious and optimal model that we have considered in this article. Moreover, 

                          and                           in table 2 are 

significantly large for the conventional detrended Beta model,
10

 which also offers evidence in 

support of the time-varying model (see Burnham and Anderson, 2003). 

Table 3 presents the results of comparisons of ten-year, out-of-sample forecasts, 

two-step-ahead forecasts and a cross validation (leave-one-out) test. The out-of-sample forecast 

method essentially evaluates which method is better at forecasting the first moment of yields. 

This, of course, has direct relevance for the estimation of crop yield distributions and the 

subsequent rating of crop insurance contracts. Note, however, that these tests only compare 

models in one aspect of the yield distribution---the first moment (the mean). Thus, likelihood 

based specification tests may provide more information about goodness of fit for the entire 

distribution. 

The cross-validation method ranks competing models based on their out-of-sample 

forecasting performance with some observations being randomly left out. For example, the 

“leave-one-out cross-validation test” is conducted for all counties considered for Iowa 

all-practice corn for the 82 years of county-level annual yields from 1926 to 2007. We drop each 

observation from the sample, fit the model, and use the estimates to forecast the omitted 

                                                 
10

As an example,                       for detrended model for Webster county soybean yields in Iowa. 



observation. The predicted and actual yields are compared to get the cross-validation Root Mean 

Squared Error (RMSE) in each period.  

      √
 

 
∑   

        ̂      

where  ̂    is the prediction for    obtained by fitting the model with observation   omitted. 

We sum the cross-validation errors and obtain the RMSE for the two competing models. 

Results (table 3) indicate that the time-varying Beta distribution model out-performs the constant 

Beta model in most of the major agricultural production counties. Specifically, eight of the ten 

top Iowa corn production counties, nine of ten Iowa top soybean production counties, and six of 

seven Texas top cotton production counties exhibit a better cross-validation performance in the 

time-varying model. The resulting RMSEs of the time-varying model for these yield data are 

smaller than that of the conventional model. The differences of the RMSE between the two 

competing models are bigger for corn and cotton than soybeans. This is consistent with what we 

have observed in the practice of genetic improvement and biotechnological progress in 

agriculture. There have been less biotech innovations for soybeans than for corn and cotton and 

therefore the yield distribution of soybeans is less affected. As a result, the two competing 

methods do not make a big difference in the out-of-sample predictive power for soybeans yields. 

In addition to computing RMSEs, one may also compute the Spearman's correlation between the 

  's and  ̂   's or generate a Q-Q plot to check other distributional characteristics between the 

observed and (leave-one-out) predicted values. 

In the current group risk crop insurance programs in the U.S., yields are forecast two 

years into the future. These forecasts are then used to establish insurance guarantees. In light of 

this, we considered an additional out-of-sample forecast evaluation intended to provide an analog 

to the forecasts used in these area-wide programs. In this approach, models are ranked based on 



their out-of-sample forecasting performance for a series of two-year ahead and ten-year ahead 

forward forecasts. For example, to predict 1993's yield, the estimates are based on the sample 

from 1926 to 1991; to predict 1994's yield, the estimates are based on the sample from 1926 to 

1992, etc. Another out-of-sample test is conducted by partitioning the entire sample into two 

parts and estimating parameters based on the first part of the data for the period 1926 to 1997 

(the first 72 observations), then the estimated parameters are used to compute the expected 

(mean) yields for the out-of-sample period spanning 1998 to 2007 (the second part of the data). 

The mean of the squared difference between the predicted value and the actual yield value is 

calculated as a “leave-ten-out” forecast error       . 

The out-of-sample measures are computed for selected major crop/county combinations 

in the U.S. and such predictive measures again provide comprehensive evidence that the 

time-varying approach represents an improvement across all criteria considered. Table 3 shows 

that time-varying model has smaller values of both       and        in most cases. 

Having noted this, we must point out that the out-of-sample comparison test is only based on the 

accuracy of first moment mean prediction, which is not an overall evaluation of the entire yield 

distribution. Since the time-varying model is an alternative to the conventional two-stage model 

to estimate the yield distribution and to forecast the mean, these two models may display 

different out-of-sample performance based on different yield data in terms of mean prediction. 

Recall that strong evidence, as presented in table 2, supports the time-varying model's 

performance in estimating the entire yield distribution in terms of likelihood based tests and 

nonnested model distribution tests. 

Table 4 presents alternative methods to comparing the two competing models. By using a 

regression method, we can consider which model's predicted values better explain the variation 



of the actual yields. To this end, we regress actual yields on each of the alternative predictions. 

The results indicate that only the coefficient on predicted yields from the time-varying model is 

significantly different from zero, which suggests the time-varying model yields a better 

prediction of the actual yield. Further, the intercept term is also not significantly different from 

zero, indicating that the chosen model has no systematic bias. Likewise, the coefficient on the 

time-varying model prediction is not significantly different from one, suggesting that the chosen 

model has no scale bias. 

Simulation of a Group Risk Insurance Program 

 Yield--based insurance policies in the federal crop insurance program include the 

individual, farm-level multiple peril crop insurance (MPCI) and the county-level Group Risk 

Plan (GRP), which is based upon county-average yields from NASS. An important policy 

parameter in the GRP program is the premium rate, which is based on the county-average yield 

distribution. In this section, we evaluate the economic impacts of adopting rates based on the 

time-varying distribution methods. If the yield distributions change over time, premium rates 

should be adjusted accordingly. The premium rates from the proposed time-varying approach are 

illustrated with simulated data and a rate cross-validation test is conducted to compare the 

predictive accuracy of the premium rates from the time-varying approach with those of the 

conventional two-stage approach. Standard crop yield insurance pays an indemnity at a 

predetermined price to replace yield losses. Under the GRP, insured farmers collect an indemnity 

if the county average yield falls beneath a guarantee, regardless of the farmers' actual yields. 

Loss probabilities correspond to the likelihood that yields   below some threshold will be 

observed, which is given by the area under the density curve to the left of the guaranteed yield. 

Consider an insurance contract that insures some proportion (       ) of the expected crop 



yield (  ). If      , the insurer will pay (        as an indemnity, where   is a 

predetermined price. An actuarially fair premium is defined by the expected loss of this contract, 

which takes the form of  

                                            (6) 

where             for a number    . In the preceding discussion,   denotes the 

observed annual county level yield and    represents the predicted (guaranteed) yield. 

Calculation of expected loss requires estimation of the distribution of yields. We compare the 

conventional two-stage estimation method to the proposed time-varying distribution in terms of 

expected loss and premium rates. 

In our simulation, one million yields are generated from the time-varying Beta 

distributions. The probability of yield loss, the expected yield loss, and the actuarially fair 

premium rate associated with a contract that guarantees 75% of the expected yield is calculated 

for each year. As shown in figure 3, the premium rates range from 0.83% in 1985 to 0.36% in 

2006 for the case in which the yields are from the time-varying model. The rates change as the 

moments of the time-varying distribution evolve. In contrast, the premium rates calculated from 

a conventional two-stage Beta distribution model (model I) indicate a constant premium rate 

around 1.88% from 1927 to 2006 (figure 3). For crop insurance in 2006, the premium rate from 

the detrended Beta model is 1.52 percentage points higher than the premium from the 

time-varying Beta model (0.36% versus 1.88%). Thus, the conventional model tends to 

significantly over-price the same level of coverage. 

Rate cross-validation is proposed to measure the predictive accuracy of premium rates of 

one model when the alternative model is true. Rate cross-validation can be tested as follows:  

    • Step 1: Assume one of the alternative yield distribution models, denoted by  , is 



true and simulate a set of actuarially fair premium rates (denoted as         
).  

    • Step 2: Simulate 1000 sets of 80 pseudo-observations of corn yields from the 

corresponding true yield distribution.  

    • Step 3: Obtain 1000 sets of MLEs based on these pseudo-observations; then 

calculate the ”pseudo” actuarially fair premium rates (denoted as  
 ′  

) based on the MLEs.  

 Then we can compare the pseudo premium rates with the true rates and obtain the Mean 

Percentage Error (MPE) and the Root Mean Squared Error(RMSE). 

Cross-validation demonstrates a smaller MPE and RMSE for the time-varying model. As 

is shown in table 4, when the true rate is derived from the conventional model (with an average 

rate equal to 0.0188), the mean squared error (MSE) of predicted rates of the time-varying model 

is 0.0087, which is 9.58% lower than the MSE (0.0097) obtained from the conventional model 

when the alternative (the average premium rate implied by the time-varying model is 0.0058) is 

true. In addition, the MPE is 0.45 for the time-varying model and 1.66 for the detrended model. 

Smaller MPE and MSE values indicate that the time-varying model is more accurate, flexible, 

and robust in terms of premium rate prediction. This prediction error can also be expressed in 

economic terms. For example, for a crop insurance contract with       liability per acre, the 

rate cross-validation error of the premium is       for the time-varying model. The rate 

cross-validation error of the premium is       for the conventional model. Therefore, the 

predicted premium error of the time-varying model is       less than the detrended model per 

unit of insurance (       of total liability in this example). In light of the fact that the total 

premium in the federal crop insurance program in 2009 was nearly     billion, pricing errors 

can result in substantial aggregate losses. Consequently, the accuracy of insurance rates is 

improved by applying the time-varying yield distribution model. 



Conclusions 

This study has examined the accuracy of alternative methods for measuring conditional 

yield risk under technological change. We propose a method for incorporating trends in the yield 

distribution that may offer a more accurate and consistent method for estimating the distribution 

of crop yields than other approaches commonly used in the literature. This method involves 

simultaneously estimating the time trend effects and the parameters of the yield distribution and 

therefore overcomes possible shortcomings associated with the more common approach of 

treating the detrended yields as “observed'” data rather than data estimated from a previous 

detrending model. Several model selection tools are used to compare the in-sample goodness of 

fit and out-of-sample predictive power of the alternative models. The results show that the 

proposed time-varying model is superior to the conventional two-stage model in terms of 

providing a better fit (in terms of lower AIC and BIC criteria) and stronger out-of-sample 

predictive power for most of the major county/crop combinations. The results of out-of-sample 

prediction tests are consistent with prior expectations based on technological progress and 

biotechnology. In particular, multiple biotech traits and genetic improvements have occurred for 

corn and, to a lesser degree, for cotton. Much of the biotech innovations for soybeans have 

mainly involved herbicide tolerance. The proposed time-varying method therefore appears to 

offer greater improvement for corn and cotton than is the case for soybeans.
11

 

In a rate simulation exercise, the premium rate derived from the time-varying model 

showed significantly decreasing premium rates (from 0.83% in 1985 to 0.36% in 2006) over time, 

                                                 
11

A referee has astutely pointed out that the time-varying model may have advantages when applied to such a long 

span of data (1927-2009) because of its greater flexibility. GRP and GRIP insurance contracts are based on a much 

shorter series of data (typically dating from 1958). We repeated the analysis using shorter series (1958-2009 and 

1973-2009) and reached very similar conclusions which supported the advantages of the time-varying approach. 

These results are available from the authors on request. 



while the conventional model implied a constant rate (1.88%). A method of “rate 

cross-validation” demonstrated that the time-varying distribution model may offer significant 

advantages, even when the underlying yield trend process is misspecified. Overall, this analysis 

reveals a dynamic evolution of yield distributions under technological change for major U.S. 

crop yields. In our data, which represents county-level yields for important crops in major 

growing areas, we find that the time-varying model provides a superior fit to the data. This study 

has policy implications that relate to improving the accuracy of assessing yield distributions in 

cases where parameters of the distribution evolve over time. When the distributions change, 

premium rates can be adjusted to represent the most recent information. This offers the potential 

to improve the accuracy of models used in rating crop insurance contracts and thus may improve 

risk management mechanisms to protect producers from risk. The improved time-varying 

method has practical implications for the GRP and GRIP programs as well as the design of other 

insurance contracts. Our applications assume a Beta distribution for each year. Future research 

may benefit from relaxing this assumption by using more flexible models such as a mixture of 

Beta distributions and nonparametric methods. 
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Table  1: Maximum-Likelihood Parameter Estimates and Summary Statistics for Two-Stage 

Model and Time-Varying Models: Example for Adair County Corn Yields   

   

.......... Two-Stage Model Based on Detrended Yield Data .......... 

 

…Four-Parameter Beta (LLF = -378.69) ...  …Three-Parameter Beta (LLF=-380.67) ... 

                   

Parameters    Estimates    Std. 

Error  

Parameters    Estimates    Std. 

Error  
                   

shape1( )   5.99   0.21     shape1( )   5.99   0.19    

shape2( )   2.10   0.23     shape2( )   2.07   0.23    

location( )   0.97   7.85   -   -   -  

scale( )   203.43   1.04     scale( )   204.13   1.07   

 

 

 

.......... Time-Varying Models Based on Actual Yield Data .......... 

 

…Linear Trend Structure   (LLF = -328.68) ... …Quadratic Trend Structure   (LLF = -326.62) ... 

 

Parameters    Estimates    Std. 

Error  

Parameters    Estimates    Std. 

Error  
                   

      2.38   0.32          2.55   0.10    

     0.43   0.75        0.16   0.40  

     ---   ---        -0.29   0.50  

     4.02   0.32          2.95   0.10    

     -2.71   1.29          -1.63   0.30    

     ---   ---        -2.61   4.8  

     7.47   14.99        12.26   117.70  

     -7.50   18.14        -15.27   138.15  

     ---   ---        -13.72   90.03  

 

 

 

Time-Varying Models: LLF(L): L1:  -328.68  L2:  -326.62  

LRT Statistics:                   
                  

 

Notes: An asterisk * denotes statistical significance at the        or smaller level 

   the Time-Varying Beta Model with a linear trend structure is defined as:                 

             ̃ ;              ̃               ̃  

   the Time-Varying Beta Model with a quadratic trend structure is defined as:                 

             ̃     ̃
  ;              ̃     ̃

  ;              ̃     ̃
    

   Examples for other crops and counties are available from the author on request.    

 



 

     

Table  2: Model Comparison Using In-Sample Goodness-of-fit Test and Non-nested 

Vuong's Test for Major Agricultural Yields 

    

  
 Detrending Model--Model I  

  
Time-Varying Model--Model II  

  

 County  K

  
LLF   AIC/       BIC/      K   LLF  AIC/     BIC/          

  .......... Iowa All-Practice Corn ..........  
Kossuth 6 -386.90 785.80/129.17 785.28/129.17 6 -322.32 656.63/0 656.11/0 11.41   
Sioux 6 -398.09 808.17/143.62 807.65/143.62 6 -326.27 664.55/0 664.03/0 7.93   

Pottawattamie 6 -406.25 824.50/125.06 823.98/125.06 6 -343.72 699.44/0 698.92/0 12.61   
Plymouth 6 -406.47 824.94/133.44 824.43/133.44 6 -339.75 691.50/0 690.98/0 14.03   
Webster 6 -400.63 813.25/130.30 812.73/130.30 6 -335.48 682.95/0 690.98/0 13.15   

Pocohontas 6 -401.21 814.42/125.83 813.91/125.83 6 -338.30 688.60/0 688.08/0 12.95   
Hardin 6 -379.19 770.39/102.23 769.87/102.23 6 -328.08 668.16/0 667.64/0 10.76   

Franklin 6 -381.39 774.79/108.04 774.27/108.04 6 -327.37 666.75/0 666.23/0 8.55   
Clinton 6 -364.70 741.39/94.04 740.87/94.04 6 -317.67 647.35/0 646.83/0 8.99   

Woodbury 6 -401.22 814.45/133.34 813.93/133.34 6 -334.56 681.11/0 680.60/0 14.81   
..........Iowa Soybeans .......... 

Kossuth 5 -267.22 544.44/102.06 544.01/102.15 6 -215.19 442.38/0 441.86/0 8.73   
Sioux 5 -345.65 701.3/233.88 700.87/233.97 6 -227.71 467.42/0 466.90/0 5.36   

Pottawattamie 5 -300.17   610.34/126.22  609.91/126.31  6  -236.06 484.12/0 483.60/0 8.27   
Plymouth 5 -302.13 614.26/136.72 613.83/136.81 6 -232.77 477.54/0 477.02/0 8.72   
Webster 5 -271.26 552.52/88.16 552.09/88.25 6 -226.18 464.36/0 463.84/0 8.79   

Woodbury 5 -244.77 499.54/73.28 499.11/73.37 6 -207.13 426.26/0 425.74/0 9.01   
Benton 5 -251.3 512.60/73.02 512.17/73.11 6 -213.79 439.58/0 439.06/0 9.57   
Grundy 5 -244.77 499.54/73.28 499.11/73.37 6 -207.13 426.26/0 425.74/0 9.01   

Crawford 5 -285.52 581.04/118.08 580.61/118.17 6 -225.48 462.96/0 462.44/0 6.07   
Tama 5 -257.38 524.76/89.44 524.33/89.53 6 -211.66 435.32/0 434.80 9.77   

.......... Texas Upland Cotton .......... 
Gaines 6 -268.23 548.46/27.38 547.94/27.38 6 -254.54 521.08/0 520.56/0 1.84 

Lubbock 6 -269.56 551.12/38.22 550.60/38.22 6 -250.45 512.90/0 512.38/0 5.11   
Hockley 6 -270.87 553.74/50.14 553.22/50.14 6 -245.8 503.60/0 503.08/0 8.70   

Lynn 6 -261.55 535.1/29.56 534.58/29.56 6 -246.77 505.54/0 505.02/0 6.67   
Dawson 6 -264.87 541.74/32.74 541.22/32.74 6 -248.5 509/0 508.48/0 8.48   

Hale 6 -279.65 571.3/77.94 570.78/77.94 6 -240.68 493.36/0 492.84/0 2.33   
Terry 6 -264.96 541.92/40.34 541.40/40.34 6 -244.79 501.58/0 501.06/0 1.42 

Crosby 6 -261.55 535.1/35.86 534.58/35.86 6 -243.62 499.24/0 498.72/0 1.29 
Floyd 6 -268.92 549.84/37.26 549.32/37.26 6 -250.29 512.58/0 512.06/0 1.27 
Martin 6 -260.08 532.16/8.86 531.64/8.86 6 -255.65 523.30/0 522.78/0 2.00   

Notes: An asterisk * denotes statistical significance at the        or smaller level. K is the 

number of parameters in a model. “a” is the Vuong's test statistics for time-varying model vs. 

detrending model.     

 

 

 

 



Table  3: Out-of-Sample Performance 

 

  

Detrending Model--Model I  

 

 Time-Varying Model--Model II  

 

 County                                                  
 

.......... Iowa All-Practice Corn .......... 

 

Kossuth  14.54   22.21  22.62   14.52    14.72    10.26    

Sioux  13.52     16.02   23.55   13.74  15.27    14.56    

Pottawattamie  16.44   22.45   15.28     16.05     21.85    19.13  

Plymouth  15.57   19.45     19.54     15.56     22.25   19.67  

Webster  19.49   20.73   12.66   15.89     17.72     11.86    

Pocohontas  16.52     22.13     26.32    16.58   22.19   29.18  

Hardin  15.09   21.62   20.12   14.87     19.13     16.41    

Franklin  14.95   23.48     18.51   14.50     23.68   10.95    

Clinton  15.86   19.31     24.17     15.51     19.57   26.63  

Woodbury  14.76     22.97   27.81   14.79   18.51    16.12    

  

.......... Iowa Soybeans .......... 

 

Kossuth  4.12     7.47  7.63   4.14  7.44     7.60    

Sioux  4.18   5.13   5.67     4.13     4.82     6.37  

Pottawattamie  4.75   6.28   6.09     4.73     5.95     6.27  

Plymouth  4.74   4.73   5.06     4.64     4.06     6.43  

Webster  4.38   6.53     6.36     4.36     6.61   6.92  

Woodbury  3.74   6.09   5.82   3.69    5.98    5.71    

Benton  4.38   6.82  6.47  4.07     5.61     6.23    

Grundy  3.74   6.09   5.82  3.69     5.98     5.71    

Crawford  4.60   6.29  6.32  4.50     6.12    6.23    

Tama  3.99   6.67  6.20  3.96     6.56     6.18    

 

.......... Texas Upland Cotton .......... 

 

Gaines  130.72     217.85   307.04     130.90   217.23     307.96  

Lubbock  143.34   157.72   185.53     128.04     182.61     196.43  

Hockley  116.39   143.07     194.23   100.13     159.50   192.15    

Lynn  118.05   153.87   180.65   116.46     136.78     171.73    

Dawson  105.05     96.13   84.69     108.61   84.38     163.53  

Hale  155.32   187.42  239.46   113.24     130.92     116.32    

Terry  112.48     174.85  277.63  129.23   133.25     150.56    

Crosby  127.25   144.48     153.71    114.38     165.91 161.32  

 Floyd   181.32   187.05   234.51   130.37     158.82     150.56    

 Martin   146.23     163.43  150.37    148.57   153.27     155.54  

Note: an “*” indicates a smaller out-of-sample predicted error in the two competing models.  



 

 

Table  4: Other Model Comparison Methods 

    

.......... Compared by Regression Method .......... 

   

Parameter  

  

p  

Variable Estimate  Value    

 

Intercept 

 

-0.125  

 

0.970  

  :Coefficient of Prediction Value of Detrended Beta  -0.065  0.890  

  :Coefficient of Prediction Value of Time-Varying Beta  1.068  0.034    

 

.......... Rate Cross-Validation .......... 

 

  Mean of True Rates from Mean of True Rates from  

  Conventional Model  Time-varying Model  

   (0.01887)   (0.0058)  

 

.......... Root Mean Squared Error .......... 

 

Conventional Predicted Rate (RMSE)   0   0.098  

 

Time-varying Predicted Rate (RMSE)   0.093   0  

 

.......... Mean Percentage Error .......... 

 

Conventional Predicted Rate (MPE)   0   1.66  

 

Time-varying Predicted Rate (MPE)   0.45   0  

Note: a: an “*” indicates statistical significance at the       or smaller level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

(a) Yield Trend of Different Crops (1970-2007) 

 

 

 

 
 

(b) Residual Plot of Annual Corn Yield, Adair County, Iowa 

 

 

 

 

 

 
Figure 1: Scatter Plot and Residual Analysis  



 
(a) Corn Yield Distribution of 2006:       (d) 10-year Overlay Beta Density Plot for 

            Detrended Beta vs. Time-Varying Beta     Corn 

 
(b) Soybeans Yield Distribution of 2007:    (e) 5-year Overlay Beta Density Plot for 

           Detrended Beta vs.Time-Varying Beta      Soybeans 
 

 

 
(c) Cotton Yield Distribution of 2007:       (f) 5-year Overlay Beta Density Plot 

     Detrended Beta vs. Time-Varying Beta       for Cotton   

 Figure  2: Estimated Time-Varying Beta Densities, Major Crop Yields in the U.S. 

 



    

 
 

(a) LLF Comparison---Iowa Corn Yields 

 
(b) LLF Comparison---Iowa Soybeans Yields 

 

 
(c) LLF Comparison---Texas Cotton Yields 

Figure  3: In-Sample Goodness-of-Fit Comparison of the Two Competing Models: LLF 



 
  

   

Figure  4: Premium Rates (for a 75% Coverage Level Crop Insurance Contract) for  

   Time-Varying Model and Detrended Model (1985-2006) 

 

 


