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Abstract
Risk is an inherent feature of agricultural production and marketing and accurate
measurement of it helps inform more efficient use of resources. This paper examines
three tail quantile-based risk measures applied to the estimation of extreme
agricultural financial risk for corn and soybean production in the US: Value at Risk
(VaR), Expected Shortfall (ES) and Spectral Risk Measures (SRMs). We use Extreme
Value Theory (EVT) to model the tail returns and present results for these three
different risk measures using agricultural futures market data. We compare the
estimated risk measures in terms of their size and precision, and find that they are all
considerably higher than normal estimates; they are also quite uncertain, and become

more uncertain as the risks involved become more extreme.
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1. INTRODUCTION

The inherent variability in agricultural production (weather, pests, animal illness and
so forth) alongside demand variations (food scares, fads, etc.) make for a marketing
environment for farmers that is characterised by significant levels of risk (Moschini
and Hennessy, 2001, Chern and Ricketsen (2003) and Carter and Smith (2007)). A
natural question then arises - how do you measure the magnitude of risk being faced
by agents? — and the last decade and a half have witnessed an explosion of research
on different measures of financial risk, and especially on one particular measure, the
Value-at-Risk (VaR). This ‘VaR revolution’ began when JP Morgan published its
famous RiskMetrics model on the web in October 1994. VVaR models were first used
by financial institutions for their own risk management purposes, but have since been
adopted by many non-financial corporates as well. Amongst their many uses, VaR
models can be used to determine capital and reserving requirements, establish
position limits and assess hedging strategies. They can also be used to manage
cashflow, liquidity and credit risks as well as the market risks for which they were
first developed. Estimation methods have improved considerably over the years, and
the properties — and especially the limitations — of the VaR itself have become better
understood. Various new measures of financial risk have also been proposed and
these include, most notably, the coherent risk measures proposed by Artzner et alia
(1999). These risk measures have the highly desirable property of sub-additivity,
which the VaR lacks.® Thus, not only have VaR estimation methods improved over
time, but there have also been improvements in the financial risk measures

themselves, of which the VaR is but one.

! Suppose we let X and Y represent any two portfolios and let p(.) be a measure of risk over a given
forecast horizon. The risk measure p(.) is subadditive if it always satisfies the condition
P(X+Y)< p(X)+ p(Y). Subadditivity reflects the idea that risks should not increase, and should

typically decrease, when we put them together, i.e., it reflects the notion that risks should diversify.
The coherent risk measures are always sub-additive by construction, because sub-additivity is one of
the axioms of coherence, but the VaR is not coherent and the failure of VVaR to be sub-additive leads to
the VaR having some strange and undesirable properties as a risk measure. See Artzner et al. (1999, p.
217, Dowd (2005, pp. 31-32)



The relevance of these developments to agricultural financial risks is self-
evident. Yet, ironically, to date they have had only a limited impact on the
agricultural economics and finance literature. Some indication of the current state of
the art in agricultural financial risk measurement can be obtained from Table 1. This
lists the main points of 8 different studies on this subject. Most of these studies use
multivariate parametric approaches to estimate VaR, and these are typically based on
the assumption that underlying risks factors are multivariate normally distributed.
Some studies also use historical simulation methods to estimate the VaR. One study
(Zhang et al. (2007)) uses Monte Carlo methods, and two (Siaplay et al. (2005) and
Odening and Hinrichs (2003)) include results based on Extreme-Value Theory
(EVT). It is also noteworthy that all but one of these studies focuses exclusively on
the VaR risk measure.? To our knowledge, there are no studies so far of coherent risk
measures applied to agricultural risk problems.

Insert Table 1 here

This paper examines three different measures of financial risk applied to
agricultural risk. The measures examined are the VaR and two members of the family
of coherent risk measures. The first of the coherent risk measures is the Expected
Shortfall (ES), which is loosely speaking the average of the ‘tail losses’ or losses
exceeding the VaR. The ES takes account of the magnitude of losses exceeding the
VaR. This, and the related fact that it is subadditive, makes the ES a superior risk
measure to the VaR on a priori grounds. However, both the VaR and ES measures
depend on the choice of a confidence level that delineates the cutoff to the tail region,
and there is seldom an ‘obvious’ choice of what the confidence level should be.

Moreover, the ES has the undesirable property of implying that the user is risk-

2 The one exception (Zhang et al., 2007) looks at lower partial moment measures based on the
downside risk literature (e.g., Fishburn, 1977) rather than the coherent risk measures that have been
much discussed in the mainstream financial risk literature. The VaR and the ES can be regarded as
special cases of the lower partial moment measures if the lower partial moment parameter takes the
values 0 or 1 respectively (see Dowd, 2005, p. 26).



neutral, and this sits uncomfortably with the use of such measures by risk-averse
agents in the first place.®

The other coherent risk measure is a Spectral Risk Measure (SRM) proposed
by Acerbi (2002, 2004). The distinctive feature of an SRM is that it specifically
incorporates a user’s degree of risk aversion. Since SRMs are a subset of the family
of coherent risk measures, they have the attractions of coherent risk measures as well.
A tractable type of SRM is that based on an exponential risk aversion function, and a
nice feature of exponential risk aversion function is that the extent of risk aversion
depends on a single parameter, the coefficient of absolute risk aversion R. Once a
user chooses the value of R that reflects its attitude to risk, it can then obtain an
‘optimal’ risk measure that directly reflects its degree of risk aversion. So, whereas
the VaR or ES are contingent on the choice of an arbitrary parameter, the confidence
level, whose ‘best’ value cannot easily be determined, a spectral-coherent risk
measure is contingent on a parameter whose ‘best’ value can be selected by the agent
that uses it.

Our measurement of the three risk measures is for corn and soybean spot and
futures contracts as these goods represent an important element of US agricultural
production: corn due to its role in feed grain production and soybeans for vegetable
oil production. We analyse the contracts for both long and short positions whose risk
would be of interest to different possible users such as farmer producers and
processors.

The focus of this study is extreme financial risk — the risk associated with the
prospect of low probability, high impact losses. There has been considerable interest
in extreme risks over the last decade. The literature on extremes tells us that extremes
should be modelled separately from the rest of the distribution using the distributions
implied by Extreme Value (EV) theory,* and should not be modelled by fitting full

distributions to the data in an ad hoc way (e.g., such as assuming Gaussianity). In

® For its part, the VaR is even worse, as it implies that a user who chooses to use the VaR as a risk
measure must be highly risk-loving (see Cotter and Dowd, 2007, p. 3472).

* For more on EVT, see, e.g., Embrechts et al.,1997, or Beirlant et al., 2004. Note that tail risk
measures are underestimated using Gaussianity and this estimation bias deteriorates as one moves
further out into the tail (Cotter, 2007).



essence, it suggests that we can either model the extremes themselves using one of
the Generalised EV distributions implied by the Extreme Value Theorem or we can
model the exceedances over a high threshold using a Generalised Pareto Distribution
(GPD; see, e.g., Embrechts et alia (1997)). This latter approach is often referred to as
the Peaks-Over-Threshold approach. We choose the latter because it (typically)
involves one less parameter and because it fits more easily with the likelihood that
extreme losses occur in clusters. The application of the GPD can be justified by
theory that tells us that the tail observations should follow a GPD in the asymptotic
limit as the threshold gets bigger. Once the GDP curve is fitted to the data, it can then
be extrapolated to give estimates of any extreme quantiles or tail probabilities we
choose.

Accordingly, in this paper, we use the POT approach to estimate and compare
the extreme VaRs, ESs and SRMs for corn and soybean contracts. Bearing in mind
that the usefulness of any estimates of financial risk measures also depends crucially
on their precision, we also examine alternative methods of estimating their precision.’
Given the heavy reliance of Gaussianity in the literature, we also produce estimates of
risk measures using Gaussianity.

This paper is organised as follows. Section 2 reviews the risk measures to be
examined. Section 3 reviews the Peaks-Over-Threshold (POT) approach and section
4 details the POT-based risk measures. Section 5 introduces the spot and futures corn
and soybean data used in our empirical work and provides some preliminary data
analysis. Section 6 describes the bootstrap procedure used to derive the precision
metrics used in the paper. Section 7 then estimates VaR and ES, and section 8
estimates the SRMs. Each of these sections also examines the precision of these
estimated risk measures. Section 9 concludes.

5 As noted already in the text, two of the studies listed in Table 1 present results based on EVT. Of
these, Siaplay et alia (2005) report EV estimates of VaR in a single table obtained using the EV
function in Palisade Corporation’s ‘@Risk’ package, but provide no EV analysis as such. We also note
there that this function only allows the user to model a Gumbel EV distribution, and this distribution is
not compatible with heavy-tailed returns. Odening and Hinrichs (2002) provide an analysis based on
Generalised EV theory, but they report rather unstable estimates of the tail index parameter — a
common problem in this area - and this makes their results unreliable.



2. MEASURES OF FINANCIAL RISK
Suppose X is a realised random loss variable — a variable that assigns loss outcomes a
positive sign and profit outcomes a negative one - for a commodity over a given

horizon. If the confidence level is « , the VaR at this confidence level is:
VaR, =q, 1)

where the term q,, is the « -quantile of the loss distribution. For any given horizon,

the VaR is defined in terms of its conditioning parameter, the confidence level, which
is arbitrarily specified by the user. Viewed as a function of the quantiles of the loss
distribution, it is useful to note here that the VaR places all its weight on a single
quantile that corresponds to the chosen confidence level and places no weight on any
others. This implies that the user only “cares’ about a single loss quantile, and is not
concerned about higher losses, and it is this rather strange property that causes the
VaR risk measure to be non-subadditive (Acerbi, 2004).

The second measure, the ES, gives equal weight to each of the worst 1— « of
losses and no weight to any other observations. The ES is superior to the VaR in a
number of respects (e.g., it is subadditive and coherent and because takes account of
losses beyond the VaR quantile). However, the ES is specified in terms of the same
conditioning parameter as the VaR and, as with the VaR, there is generally little to
tell us what value this parameter should take.

Our third measure is the Spectral Risk Measure (SRM). Following Acerbi
(2002), consider a risk measure M, defined by:

M, =[a,¢(p)dp 3)



where g, is the p loss quantile, ¢(p) is a weighting function defined over p, the

cumulative probabilities in the range between 0 and 1. Borrowing from Acerbi (2004,

proposition 3.4), the risk measure M, is coherent if and only if ¢(p) satisfies the

following properties:

e Positivity: ¢(p) >0, i.e., weights are always non-negative.
1

e Normalisation: J'¢( p)dp =1, i.e., weights sum to one.
0

e Increasingness: ¢'(p) >0, i.e., higher losses have weights that are higher than

or equal to those of smaller losses.

We now need to specify a suitable weighting (or risk-aversion) function and a

reasonable choice is the exponential risk-aversion function:

R e—R(l— p)
p(p) = T ef (4)

where R>0 is the coefficient of absolute risk aversion. This weighting/risk-aversion
attaches higher weights to larger losses, and, moreover, the weights rise more rapidly
as the user becomes more risk-averse.

The value of the risk measure can then be obtained by substituting (4) into (3),

viz.:

q,dp =

1-eR

1 -R(1-p)
M = J’Re—
0 1

Re™® ¢
e ©)



3. THE PEAKS OVER THRESHOLD (GENERALISED PARETO)
APPROACH

We model the agricultural tail risks using a Peaks over Threshold (POT) approach
which focuses on the realisations of a random variable X over a high tail threshold u.
More particularly, if X has the distribution function F(x), we are interested in the

distribution function F,(x) of exceedances of X over a high tail threshold u:

F(x+u)—F(u)

F, (X) =P{X —u < x|X >u}= - FQ)

(6)

As u gets large, the distribution of exceedences tends to a Generalized Pareto
Distribution (GPD):

1-(l+&/ B¢ ’ E>0

(7)
1-exp(-x/p) ¢<0

G, 4(X) :{

where

XG{[O”’O) if <=0
[0,-8/¢] ¢<0

and the shape &£ and scale >0 parameters are estimated conditional on the threshold
u (Balkema and de Haan, 1974; Embrechts et al., 1997, pp. 162-164). En passant,
note that the shape parameter & sometimes appears in GPD discussions couched in
terms of its inverse, a tail index parameter « given by o = 1/¢&

The behavior of the GPD tail depends on the values of these parameters, and
the shape parameter is especially important. A negative & is associated with very
thin-tailed distributions that are rarely of relevance to financial data, and a zero & is
associated with thin tailed distributions such as the Gaussian, but the most relevant

for our purposes are heavy-tailed distributions associated with £&>0. The tails of such



distributions decay slowly and follow a heavy tailed ‘power law’ function. Moreover
the number of finite moments is determined by the value of & (or «): if £< 0.5 (or,
equivalently, & >2), we have infinite second and higher moments; if £ < 0.25 (or «
>4), we have infinite fourth and higher moments, and so forth. « therefore indicates
the number of finite moments. Evidence generally suggests that the second moment is
probably finite, but the fourth moment is more problematic (see, e.g., Loretan and
Phillips,1994).

The values of the GPD parameters can be estimated by Maximum Likelihood
(ML) methods using suitable (e.g., numerical optimization) methods. The log-
likelihood function of the GPD is:

(& p)=— n(In(,b’)—(1+1/§)anln(l+§xi 1 B) for &0 (8)

1(8)==n(In(A)- 573 %, fores0

where in both cases x; satisfies the constraints specified above for x.

4. FORMULAS FOR RISK MEASURES UNDER THE POT APPROACH
Assuming that u is sufficiently high, the distribution function for exceedances is

given by:

-1

E.(x) =1 (1+§ﬂy (10)
n B

where n is the sample size and N, is the number of observations in excess of the

threshold (Embrechts et al.,1997, p. 354). The p™ quantile of the return distribution -



which is also the VaR at the (high) confidence level p — can then be obtained by

inverting the distribution function, viz.:

gln Y
qp =VaRp =Uu +E{[N—u pJ 1} (11)
The ES is then given by:
ES, = 9 Ao (12)
1-¢& 1-¢

To obtain our SRM, we now substitute (11) into (5) to get:

g L e gl(n Y°
M¢'[°¢(p)qp(X)de°W[u +E{(N— pj 1Hdp (13)

Having obtained the risk-measure formulas, estimates of the risk measures
themselves are then obtained by estimating/choosing the relevant parameters and
plugging these into the appropriate (i.e., (11) for the VaR, (12) for the ES, and (13)
for the SRM). This is straightforward for the VVaR and the ES; however, for spectral
risk measures, we need to use a suitable numerical integration method (e.g., a
trapezoidal rule, Simpson’s rule, etc.: see Miranda and Fackler, 2002, or Cotter and
Dowd, 2006, for further details).

5. DATA AND PRELIMINARY ANALYSIS

Our data set consists of weekly logarithmic price changes for Corn and Soybean
contracts traded on the CBOT between January 1979 and December 2006 totalling
1461 observations. For each product there are 8 series analysed: 1 futures and 7 spot

across 7 different geographical areas. We examine the tails of both long and short

10



positions for each series, thus giving us a total of 8x2x2 =32 cases in total. We
choose these particular crops for their importance in the US agricultural sector. Corn
is the most widely produced feed grain in the US and accounts for 90% of the total
value of feed grains produced. Approximately 80 million acres are planted to corn
with most being in the heartland states. Illinois is the largest producer along with
lowa, hence the focus on the former for this analysis. Soybeans are also selected as
the US is the world's largest producer and exporter of them and approximately 2.5
billion bushels were produced in 2007°. lllinois is again a major producer and is
second only to lowa in output terms. Soybeans are used for vegetable oil production
and the meal for animal feed. Thus, we believe our choice of crop and state captures
significant agricultural activity and thus could be viewed as suitably representative of
arable production in the US albeit with a constrained focus.

As a preliminary, we illustrate some indicative time series properties in
Figure 1 and Table 2. The mean returns are near zero for both spot and futures
contacts, and the corresponding standard deviations suggest weekly volatilities in
excess of 3% for both sets of contracts. The series are mostly negative skewed and
always have excess kurtosis, and Jarque-Bera results indicate that normality is always
rejected.

Insert Figure 1 here

Insert Table 2 here

Despite the fact that normality is rejected so strongly, it is useful to know
what the risk measures would be under the counterfactual and heavily used
assumption that returns are normal. These are reported in Table 3, and we will

comment on these later when presenting the POT estimates of these risk measures.

Insert Table 3

® Data are drawn from the National Agricultural Statistics Service (NASS) of the USDA website at
http://www.nass.usda.gov/
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Figure 2 shows QQ plots for these series’ empirical return distributions
relative to a normal (or Gaussian) distribution. If the normal distribution is an
adequate fit, then the QQ plot should be approximately a straight line. However, in
each case, we find that the QQ plot is approximately straight only in the central
region, and that the tails show steeper slopes than the central observations: this
indicates that the tails exhibit heavier kurtosis than the normal distribution, and is

consistent with the results of Table 2.

Insert Figure 2 here

In addition, the points where the QQ plots change shape provides us with
natural estimates of tail thresholds, and these implied thresholds are also consistent
with the tail index plots — plots of the estimated tail index « and its 95% confidence
interval against the number of exceedances — shown in Figure 3. The number of
exceedances reflects the choice of threshold, a smaller number reflecting a higher
threshold. In each case the estimated tail index is stable over a wide range of
exceedance numbers (or threshold size, if you prefer), and this tells us that the
estimated indices are stable relative to the thresholds selected.

Insert Figure 3 here

The approach taken here focuses on both short and long positions. The
rationale for this is to reflect the various agents that operate in the supply chain for
agricultural commodities. At one end, the farmer faces price risk through production
and thus will be interested in short positions. Equally, processors (and possibly
retailers if the product can be sold without much processing such as potatoes for
example) are concerned about the price of their inputs rising and will tend to take
long positions in the futures market. Finally, there are also merchants who both buy

and sell the commodities and potentially face input and output price risk and thus

12



could take a mixed strategy approach to trading by going both short and long
depending on their circumstances.

We now fit the distributions of exceedances and ML estimates of the GPD
parameters are given in Table 4 for both long and short trading positions. The Table
gives the assumed thresholds u, the associated numbers of exceedances (N,) and the
observed exceedance probabilities (prob). Also included and of most interest for the
risk measures are the tail indices, & and the scale parameter, . The tail indices are
generally positive (though not statistically significant) for the spot and futures
contracts, and the scale parameters vary around 2. The numbers and probabilities of
exceedances vary somewhat, but all confirm that the chosen thresholds are in the

stable tail-index regions identified earlier.
Insert Table 4 here

To check that the GPD provides an adequate fit, Figure 4 shows empirical
exceedances fitted to the GPDs based on the parameter estimates given in Table 1,

and the results confirm that the GPD provides a good fit in all cases.

Insert Figure 4 here

6. BOOTSTRAP ALGORITHM

The estimates of standard errors and confidence intervals reported in this paper were
obtained using a semi-parametric bootstrap set out by Cotter and Dowd (2006). To
implement this procedure, we begin by taking 5000 bootstrap resamples, each of
which consists of n=1492 uniform random variables. Each resample is then sorted
into ascending order so that its relative frequencies can be considered ‘as if’ they
were a set of resampled cumulative probabilities. For example, for the j™ resample,

these relative frequencies are as p/, pJ,.., pJ, where p/ < p/,. We then use the

fitted GPD (i.e., (11)) to obtain each element of the j™ resample set of losses. Thus, if

13



p! is the i cumulative probability in the j™ resample, then g/, the i"" highest loss in

the j™ resample, can be obtained from

¢
n j _
{N} P, ] 1 (14)

where (14) is a version of (11) in which the **” refer to the sample-based estimates of
the GPD parameters. Since the VaRs are quantiles, (14) gives us direct resample
estimates of the VaRs. Resample estimates of the ES and SRM are then obtained

using (12) and (13) respectively (with g, replaced by ' and parameters replaced by

their *“~’ estimates). For each resample, the standard errors and confidence interval

were obtained from the set of resample estimates of the appropriate risk measures.

7. ESTIMATES OF VALUE AT RISK AND EXPECTED SHORTFALL

GPD estimates of VaR and ES are given in Table 5 for confidence levels of 99%,
99.5% and 99.9%: Table 5a gives the results for corn contracts and Table 5b gives the
results for soybean contracts. To illustrate, the VaR of 9.989 at the 99% level implies
that there is a 1% chance of having losses greater than 9.989% of the value of the
corn Region 1 contract for a long trading position. These show, as we might expect,
that estimated risk measures rise with the confidence level, and that the estimated
VaRs are notably larger than the estimated ESs. There are no great differences
between the different contracts or between the corn and soybean estimates of the risk
measures, but the short and long results can be somewhat different from each other. It
Is also noteworthy that the estimated risk measures are usually much higher than the
Gaussian-based estimates in Table 3 and the divergence increases as one moves to
more extreme probability levels. This suggests that extreme risks are large, and that
assuming Gaussianity in these circumstances can lead to very considerable under-

estimates of our risk measures.
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The Table also reports the bootstrapped standard errors of the estimated risk
measures, and these rise considerably with the confidence level: this indicates that
estimated risk measures become considerably less precise as the confidence level
rises. This is a well-known phenomenon, and reflects the fact that as the confidence
level rises, we are dealing with an increasingly extreme tail measured with fewer and

fewer observations.’

Insert Table 5 here

Table 6 shows bootstrapped estimates of the standardized 90% confidence
intervals for the VaR and ES: these are estimates of the 90% confidence intervals
divided by the estimated mean risk measure, and are easier to interpret than
conventional confidence intervals. So, for example, the first two results in the first
row of Table 6a tell us that the 90% confidence interval for the region 1 spot VaR
varies from 89.3% to 111.7% of the mean VaR, and so forth. Two features of these
results stand out:

e The standardized confidence intervals for the ES are generally a little
narrower than those for the VVaR: this confirms that in relative terms, estimates
of the ES are more precise than estimates of the VaR.

e The confidence intervals are fairly symmetric for the risk measures predicated
on the 99% confidence level, but become asymmetric as the confidence level
rises and, in particular, we see that the right bound is further from the mean
risk measure than the left bound. To give an example, at the 99.9% confidence
level, the standardized confidence interval spans the range from 80% to
125.5% of the mean risk measure (i.e., down 20%, but up 25.5%). This

finding is also to be expected and again reflects the fact that as we move

! Interestingly, we also see that the standard errors are usually only a little larger for the ESs than for
the VaRs: these indicate that ES estimates are a little less precise than VaR estimates in absolute terms.
However, the ratios of estimated risk measures to standard errors are often lower for the ESs than for
VaRs, so in relative terms (i.e., taking account of the sizes of the two risk measures), it is often the case
that the ES is more precisely estimated than the VaR.

15



further out into the extreme tail, we run into fewer observations and our

uncertainty increases further.

Insert Table 6 here

8. ESTIMATES OF SPECTRAL RISK MEASURES
We now turn to estimates of spectral risk measures. As we have discussed already,
these risk measures make use of the coefficient of absolute risk aversion R rather
than the confidence level as their conditioning parameter. The value of this
coefficient depends on the user’s attitude to risk, and can in principle be any positive
number (assuming that the user is in fact risk-averse). However, in the present EV
context it only makes sense to work with fairly high values of R : the higheris R, the
more we are concerned about very high (i.e., extreme) losses relative to more
moderate ones. A concern with extremes therefore suggests a high value of R.
Accordingly, we consider here values of R equal to 20, 100 and 200.

Once a value of R has been chosen, we can estimate the value of the integral
(13) using numerical integration. The idea behind this is to discretize the continuous
variable p into a large number N of discrete ‘slices’, where the discrete approximation
gets better as N gets larger. We then choose a suitable numerical integration method,
and the ones we considered were the trapezoidal rule, Simpson’s rule, and numerical
integration procedures using quasi-Monte Carlo methods based on Niederreiter and
Weyl algorithms respectively.®

However, we first need to evaluate the accuracy of these methods. To help us
do so, Table 7 gives estimates of the approximation errors generated by these

alternative numerical integration methods based on alternative values of N and a

® The choice of numerical integration method was also influenced by the need to have fast integration
algorithms for use in our bootstrap algorithms. We used the Miranda-Fackler (2002) CompEcon
functions, which are very fast indeed.

16



plausible set of benchmark parameters.® These results indicate that all methods have a
negative bias for relatively small values of N, but they also indicate that the bias
disappears as N gets large. In addition, they suggest that for high N, the trapezoidal

method is at least as accurate as any of the others.

Insert Table 7 here

For the remaining estimations, we selected a benchmark method consisting of
the trapezoidal rule calibrated with N=1 million.*°
Estimates of SRMs and their bootstrapped standard errors and standardised
90% confidence bounds are given in Table 8. In many respects these results are
comparable to those obtained earlier for the VaR and ES, but with R playing the
same role as the earlier confidence level. In particular, we see that:
e Estimated SRMs are considerably higher than the normal estimates in Table 3.
e Estimated SRMs rise notably as R increases.
e Estimated SEs and the widths of confidence intervals rise as R increases; we
also see some asymmetry in the confidence intervals for very high values of
R, again with the right bound being a little further away from the mean than
the left bound.**
e Differences across contract types are fairly small, and the only noteworthy
difference between the corn and soybean results is that the latter have more

pronounced differences between long and short positions.

Insert Table 8 here

% These benchmark parameters were the mean parameters in Table 2 for the case where R =100.

19 There is of course a tradeoff between calculation time and accuracy, but the choice of N=1 million
gives us results that are accurate to within half a percentage point in the illustrative case examined in
Table 7, and this is accurate enough for our purposes.

' This phenomenon was also observed by Cotter and Dowd (2006), and the explanation is that as R
increases, an SRM estimator places more weight on a smaller number of extreme observations, and
therefore operates with a smaller effective sample size. For very high values of R, we would then get
right- and left-asymmetry reflecting the greater paucity of observations on the right-hand side.
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9. CONCLUSIONS

Effective and accurate measurement of risk in agricultural markets is central to
informing how best to design strategies and instruments aimed at helping farmers
manage the risks they face. Toward this end, this paper applies the Peaks-Over-
Threshold version of Extreme Value Theory to estimate the extreme financial risk
measures for a selection of agricultural contracts. The risk measures considered were
the Value at Risk (VaR), the Expected Shortfall (ES), and the Spectral Risk Measure
(SRM) based on an exponential risk-aversion function for a given coefficient of
absolute risk aversion. We examine the properties of these risk measures and suggest
that SRM is to be preferred to the ES, which in turn is to be preferred to the VaR. We
also estimate both the risk measures themselves and some precision metrics obtained
using a parametric bootstrap procedure. Our empirical results suggest three main
conclusions, and this is the case for all three risk measures. First, we find that the
estimated risk measures are all considerably higher than the estimates we would have
obtained under Gaussianity. This suggests that Gaussianity can lead to major under-
estimates of extreme risks. Second, we find that estimated risk measures are quite
uncertain, as judged by the estimated standard errors and confidence intervals. This is
to be expected, as EV problems almost by definition involve small numbers of
extreme observations. Third, we find that the degree of uncertainty associated with
our estimated risk measures increases as we go further out into the tail. This finding
also makes intuitive sense: the further we go into the tail, the more sparse our
observations become, and the more uncertain any estimates will be. In a nutshell,

extreme risk measures are large, but also uncertain.
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FIGURES

Figure 1a: Time Series Plots of Weekly Series: Corn
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Figure 1b: Time Series Plots of Weekly Series: Soybeans

Soybean Region 1 Spot

Soybean Region 2 Spot

0 T T T T T T 0 T T - T T T
S h I 1 i i f i T T I i
MR L L DURR L o LR LR (o bt Tt ol Tl Rt L LR ATl A AN R L] 2 RGN L LA LU ALURGLE JREE T K 1 A [ R RN I T
P B i e i e AL R s D i £ o LIPSOV i N A Y
v 3
| LI | T 4
T T | | U|
o T
X : 8 n
1980 1985 1990 1995 2000 2005 1980 1985 1990 1995 2000 2005
Soybean Region 3 Spot Soybean Region 4 Spot
n n T T T T T T
S ] — ] ] I S5 | T | | |
o I PV, [T T (Y ATY LA it Nt LR L i A g ITHL PRI, AT AW TR PP R BAVITLN TYOPR 19 A Epegr s (e
Aol o el U dad A D (|t ok i WAL 04 2 Nt ol i ) Al L L L b A Jd WL )
@ I
| LI 11 | 1 il
o T
Ppa—- H SEH i

20

15

-10

1980

1985

1990

Soybean Region 5 Spot

1995

2000

2005

1980

1985

1990

Soybean Region 6 Spot

1995

2000

2005

Returns

1

-20

il
1]

1980

1985

1990

Soybean Region 7 Spot

1995

2000

2005

1980

1985

1990

1995

Soybean Futures

2000

2005

i

LKL LDURI ]

[

AT
o) ] L 1 e o L1

|

LI |

1

Returns

1980

1985

sample size is 1461.

1990

1995

2000

2005

1980

1985

1990

1995

2000

2005

The

23



Figure 2a: QQ Plots for Corn Spot and Futures Returns
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Notes: Plots show empirical quantiles of return series against those of a normal distribution. Based on 1461
weekly observations over the period January 1979 to December 2006.
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Figure 2b: QQ Plots for Soybean Spot and Futures Returns
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Figure 3a: Tail Index Plots as Functions of Numbers of Exceedances: Corn Spot and
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Figure 3b: Tail Index Plots as Functions of Numbers of Exceedances: Soybean Spot

and Futures
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Figure 4a: Exceedances Fitted to GPD: Corn Spot and Futures
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Figure 4b: Exceedances Fitted to GPD: Soybean Spot and Futures
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TABLES

Table 1: Existing Studies of Measures of Agricultural Financial Risk

Study

Application

Data

Estimation method

Manfredo and
Leuthold (2001)

Odening and MuRhoff
(2002)
Odening and Hinrichs
(2003)

Pritchett et alia (2004)

Dawson and White
(2005)
Katchova and Barry
(2005)
Siaplay et alia (2005)

Wilson et alia (2005)
Zhang et alia (2007)

US cattle market

German hog market

German hogs and farrows. Focus on
cashflow-at-risk rather than VaR per se

Impact of alternative risk management
strategies in US agriculture
A typical UK arable farm

Portfolio of Illinois farms

US turkey market, with the emphasis on
food safety
US bakeries
Applies downside risk management
techniques to investigate how US Gowt.
policies affect a typical farm’s financial
risk management

Weekly cash prices

Weekly prices

Weekly prices.

Annual
Weekly cash prices

Annual
1995-2002
Monthly prices and
costs
Monthly
Cotton in Colquitt
County GA
Daily futures prices

Parametric methods, including RiskMetrics, and Garch and
implied volatility estimates of volatility.
Historical simulation
Multivariate parametric methods including EWM A and
GARCH volatility models. Historical simulation
Parametric methods with GARCH, square-root rule and
Drost-Nijman formula for volatilities. Historical simulation
and Generalized Extreme Value approaches
Unspecified

Multivariate parametric methods, including RiskMetrics
and GARCH volatility models
CreditMetrics and KMV models of credit quality used to
estimate default VaRs
Various parametric methods (including Extreme Value
distribution) estimated using @Risk software
Monte Carlo
Monte Carlo simulation, conditional kernel approach,
copula methods




Table 2: Summary Statistics for Weekly Series

Mean Std Dev Skewness Kurtosis JB P-value
Corn

Reg 1 Spot 0.033 3.495 -0.331 6.557 0
Reg 2 Spot 0.033 3.554 -0.342 7.022 0
Reg 3 Spot 0.034 3.402 -0.347 6.942 0
Reg 4 Spot 0.033 3.585 -0.153 8.540 0
Reg 5 Spot 0.029 3.512 -0.109 5.491 0
Reg 6 Spot 0.030 3.497 -0.279 6.362 0
Reg 7 Spot 0.029 3.485 -0.219 5.698 0

Futures 0.032 3.205 0.005 6.857 0

Soybean

Reg 1 Spot -0.001 3.224 -0.640 8.379 0
Reg 2 Spot 0.000 3.166 -0.577 7.435 0
Reg 3 Spot -0.001 3.210 -0.597 8.488 0
Reg 4 Spot -0.001 3.169 -0.571 7.058 0
Reg 5 Spot -0.001 3.272 -0.393 7.849 0
Reg 6 Spot 0.000 3.161 -0.516 7.092 0
Reg 7 Spot -0.001 3.127 -0.383 5.404 0

Futures -0.001 3.100 -0.444 6.359 0

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the
period January 1979 through December 2006. Mean and standard deviation are in percentage form. ‘JB
P-value’ is the P-value of the Jarque-Bera normality test.



Table 3: Estimated Risk Measures Under the Assumption that Returns are Normal

VaR at o = ESat o= SRM at y ARA=
0.99 0.995 0999 | 099 0995 0.999 20 100 200
Corn

Reg 1 Spot | 8.098 8970 10.767 | 9.282 10.074 11.735 | 6.512 8.788 9.624
Reg 2 Spot | 8.235 9.122  10.950 | 9.439 10.245 11.934 | 6.621 8.936 9.786
Reg 3 Spot | 7.880 8.729  10.479 | 9.033 9.804 11.421 | 6.340 8.556 9.370
Reg 4 Spot | 8.307 9.201 11.046 | 9.522 10.335 12.038 | 6.678 9.014 9.871
Reg 5 Spot | 8.141 9.017 10.824 | 9.331 10.128 11.796 | 6.539 8.827 9.666
Reg 6 Spot | 8.105 8.978  10.777 | 9.290 10.083 11.745 | 6.512 8.790 9.626
Reg 7 Spot | 8.078 8.948 10.741 | 9.259 10.049 11.705 | 6.489 8.759 9.592

Futures 7.424 8.224 9.872 | 8510 9.237 10.760 | 5.973 8.061 8.827
Soybeans
Reg 1 Spot | 7501 8.306 9.964 | 8594 9.325 10.857 | 5.975 8.075 8.846
Reg 2 Spot | 7.365 8.155 9.784 | 8.438 9.156 10.660 | 5.869 7.931 8.688
Reg 3 Spot | 7.469 8.269 9.921 | 8556 9.284 10.809 | 5.949 8.040 8.808
Reg 4 Spot | 7.373 8.164 9.794 | 8.447 9.166 10.671 | 5.873 7.938 8.695
Reg 5 Spot | 7,613 8.429  10.112 | 8.722 9.464 11.018 | 6.064  8.196 8.978
Reg 6 Spot | 7.354 8.142 9.768 | 8.425 9.141 10.643 | 5.859 7.919 8.674
Reg 7 Spot | 7.275 8.055 9.663 | 8.334 9.043 10.529 | 5.796 7.833 8.581

Futures 7.213 7.986 9.581 | 8.263 8.966 10.439 | 5.745 7.765 8.506

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period
January 1979 through December 2006. Estimates of SRMs obtained using the CompEcon software of Miranda
and Fackler (2002) written in MATLAB using the trapezoidal rule and N=1m ‘slices’.
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Table 4: GPD Parameters for Weekly Series

Long Position

A

N

Short Position

N

~

u prob N, & (tail) S (scale) u prob N, & (tail) S (scale)
Corn

Reg 1 Spot | 3.269 0.862 201 0.036 2.445 3.153 0.863 200 0.089 1.978
(0.068)  (0.239) (0.078)  (0.208)

Reg 2 Spot | 3.957 0.897 150  0.073 2.478 3.793 0.897 150 0.207 1.813
(0.085)  (0.292) (0.113)  (0.250)

Reg 3 Spot | 3.052 0.863 200 0.084 2.320 3.697  (0.897 150 0.167 1.786
(0.078)  (0.243) (0.106)  (0.238)

Reg 4 Spot | 3.238 0.863 200 0.118 2.293 3.748 0.897 150 0.135 2.080
(0.068)  (0.239) (0.078)  (0.208)

Reg 5 Spot | 3.223 0.856 210 0.016 2.357 3.031 0.849 220 0.056 2.165
(0.073)  (0.237) (0.080)  (0.226)

Reg 6 Spot | 2.993 0.843 230 0.120 2.104 3.822 0.897 150 0.091 2.037
(0.080)  (0.217) (0.098)  (0.260)

Reg 7 Spot | 3.685 0.884 170 0.012 2.454 3.048 0.843 230 0.130 1.828
(0.076)  (0.264) (0.087)  (0.200)

Futures 3.484 0.897 150 0.132 1.781 3.256 0.877 180 0.033 2.162
(0.084)  (0.208) (0.078)  (0.234)

Soybean

Reg 1 Spot | 3.550 0.897 150 0.229 1.875 3.377 0.890 160  0.040 1.843
(0.109)  (0.254) (0.082)  (0.210)

Reg 2 Spot | 3.008 0.870 190  0.177 1.921 3.308 0.890 160  0.022 1.863
(0.090)  (0.221) (0.078)  (0.207)

Reg 3 Spot | 3.462 0.897 150 0.223 1.921 2.951 0.870 190 0.083 1.795
(0.102)  (0.248) (0.078)  (0.191)

Reg 4 Spot | 3.043 0.870 190 0.178 1.903 3.494 0.897 150 0.028 1.801
(0.109)  (0.254) (0.082)  (0.210)

Reg 5 Spot | 3.506 0.897 150  0.205 2.021 3.525 0.897 150 0.116 1.752
(0.107)  (0.270) (0.083)  (0.203)

Reg 6 Spot | 3.870 0.911 130 0.179 1.958 3.433 0.897 150 0.075 1.732
0.109)  (0.272) (0.095)  (0.216)

Reg 7 Spot | 3.580 0.897 150  0.052 2.200 3.533 0.897 150 -0.023 1.856
(0.100)  (0.283) (0.068)  (0.197)

Futures 2.821 0.863 200 0.252 1.627 2.934 0.863 200  0.000 1.842
(0.095)  (0.191) (0.007)  (0.131)

Notes: The Table presents estimates of the GPD parameters for long and short positions in spot and futures corn and
soybean contracts. The sample size n is 1462, the threshold is u, the probability of an observation in excess of u is

prob, the number of exceedences in excess of u is N, the estimated tail parameter is 92 and the estimated scale

parameter is /§ The numbers in brackets are the estimated standard errors of the parameters concerned. The
thresholds u are chosen as the approximate points where the QQ plots for each series change slope.
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Table 5a: GPD Values-at-Risk and Expected Shortfalls: Corn Spot and Futures Contracts

Long positions Short positions
a =0.99 a =0.995 a =0.999 a =0.99 a =0.995 a =0.999
Values-at-Risk
Region 1 spot 9.989 11.875 16.440 8.979 10.764 15.359
SE 0.678 1.008 2.304 0.629 0.975 2.458
Region 2 spot 10.246 12.334 17.610 7.327 8.752 12.969
SE 0.741 1.133 2.772 0.482 0.819 2.595
Region 3 spot 9.839 11.902 17.181 8.779 10.716 16.178
SE 0.729 1.124 2.808 0.664 1.093 3.199
Region 4 spot 10.265 12.520 18.526 9.438 11.508 17.130
SE 0.787 1.247 3.320 0.718 1.153 3.170
Region 5 spot 9.640 11.354 15.409 9.370 11.151 15.563
SE 0.621 0.909 2.004 0.636 0.960 2.276
Region 6 spot 9.865 11.981 17.632 9.105 10.906 15.554
SE 0.738 1.171 3.131 0.635 0.985 2.492
Region 7 spot 9.795 11.554 15.696 9.106 11.003 16.127
SE 0.638 0.931 2.038 0.659 1.054 2.872
Futures 8.338 10.096 14.855 8.915 10.562 14.534
SE 0.610 0.978 2.674 0.593 0.879 1.998
Expected Shortfalls
Region 1 spot 12.777 14,733 19.468 11.720 13.679 18.723
SE 0.703 1.045 2.390 0.691 1.070 2.698
Region 2 spot 13.414 15.667 21.359 9.739 11.537 16.855
SE 0.799 1.222 2.991 0.607 1.033 3.272
Region 3 spot 12.995 15.247 21.010 11.942 14.267 20.824
SE 0.796 1.227 3.066 0.797 1.313 3.841
Region 4 spot 13.805 16.362 23.171 12.731 15.124 21.623
SE 0.892 1.414 3.764 0.830 1.333 3.665
Region 5 spot 12.139 13.882 18.002 12.039 13.926 18.600
SE 0.631 0.923 2.036 0.673 1.017 2.410
Region 6 spot 13.193 15.598 22.019 11.874 13.856 18.969
SE 0.839 1.331 3.558 0.698 1.083 2.741
Region 7 spot 12.353 14.134 18.325 12.112 14.293 20.182
SE 0.646 0.942 2.063 0.758 1.212 3.301
Futures 11.129 13.154 18.636 11.344 13.047 17.155
SE 0.703 1.126 3.081 0.613 0.909 2.067

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period
January 1979 through December 2006. ¢ indicates the confidence level and SE indicates the standard error
of the risk measure in the box above. Standard errors are based on 5000 semi-parametric bootstrap resamples.
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Table 5b: GPD Values-at-Risk and Expected Shortfalls: Soybean Spot and Futures

Contracts
Long positions Short positions
a =0.99 a =0.995 a =0.999 a =0.99 a =0.995 a =0.999
Values-at-Risk
Region 1 spot 9.317 11.717 19.006 8.005 9.430 12.897
SE 0.805 1.393 4.611 0.512 0.763 1.757
Region 2 spot 9.243 11.474 17.841 7.885 9.257 12.523
SE 0.762 1.265 3.775 0.496 0.729 1.624
Region 3 spot 9.326 11.746 19.042 8.081 9.666 13.716
SE 0.813 1.401 4.580 0.560 0.863 2.152
Region 4 spot 9.228 11.444 17.778 7.827 9.172 12.399
SE 0.757 1.257 3.759 0.485 0.717 1.615
Region 5 spot 9.537 11.963 19.122 8.208 9.865 14.266
SE 0.820 1.393 4.394 0.578 0.915 2.428
Region 6 spot 9.106 11.243 17.356 7.839 9.306 13.023
SE 0.729 1.213 3.633 0.520 0.797 1.957
Region 7 spot 9.025 10.778 15.099 7.741 8.950 11.686
SE 0.626 0.943 2.219 0.445 0.631 1.298
Futures 8.847 11.229 18.663 7.753 9.029 11.994
SE 0.792 1.397 4.846 0.465 0.672 1.441
Expected Shortfalls
Region 1 spot 13.462 16.575 26.029 10.118 11.602 15.213
SE 1.044 1.807 5.981 0.533 0.795 1.830
Region 2 spot 12.918 15.629 23.365 9.893 11.296 14.635
SE 0.926 1.537 4587 0.507 0.745 1.661
Region 3 spot 13.481 16.596 25.985 10.503 12.231 16.648
SE -1.046 1.803 5.895 0.611 0.941 2.347
Region 4 spot 12.883 15.579 23.284 9.805 11.189 14.508
SE 0.920 1.530 4574 0.499 0.737 1.661
Region 5 spot 13.634 16.685 25.690 10.805 12.679 17.658
SE 1.032 1.752 5.526 0.654 1.035 2.746
Region 6 spot 12.632 15.235 22.681 10.069 11.655 15.673
SE 0.888 1.477 4.426 0.562 0.861 2.116
Region 7 spot 11.645 13.493 18.052 9.460 10.643 13.317
SE 0.661 0.994 2.341 0.435 0.617 1.269
Futures 13.052 16.237 26.176 9.595 10.872 13.836
SE 1.059 1.867 6.478 0.465 0.672 1.441

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period
January 1979 through December 2006. « indicates the confidence level and SE indicates the standard error
of the risk measure in the box above. Standard errors are based on 5000 semi-parametric bootstrap resamples.
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Table 6a: Standardised 90% Confidence Intervals for Values-at-Risk and Expected Shortfalls: Corn Spot and Futures Contracts

Long positions Short positions
a =0.99 o =0.995 a =0.999 a =0.99 a =0.995 a =0.999
contract LB uB LB uB LB uB LB uB LB UB LB uB
Values-at-Risk

region 1 spot 0.893 1.117 0.871 1.148 0.800 1.255 0.890 1.121 0.864 1.159 0.780 1.293
region 2 spot 0.886 1.125 0.861 1.161 0.781 1.288 0.899 1.115 0.864 1.166 0.748 1.366
region 3 spot 0.884 1.128 0.858 1.165 0.774 1.299 0.883 1.132 0.850 1.180 0.743 1.363
region 4 spot 0.880 1.133 0.851 1.175 0.758 1.329 0.882 1.132 0.851 1.176 0.754 1.340
region 5 spot 0.898 1.110 0.877 1.139 0.812 1.236 0.893 1.117 0.870 1.150 0.794 1.267
region 6 spot 0.883 1.130 0.854 1.172 0.761 1.326 0.891 1.121 0.864 1.158 0.780 1.293
region 7 spot 0.897 1.112 0.877 1.140 0.812 1.236 0.887 1.126 0.858 1.168 0.762 1.327

futures 0.886 1.127 0.856 1.170 0.760 1.330 0.895 1.114 0.873 1.145 0.804 1.250

Expected Shortfalls

region 1 spot 0.913 1.094 0.892 1.123 0.825 1.223 0.908 1.102 0.882 1.137 0.802 1.264
region 2 spot 0.907 1.103 0.882 1.136 0.805 1.256 0.904 1.109 0.870 1.159 0.756 1.355
region 3 spot 0.904 1.106 0.879 1.141 0.799 1.267 0.897 1.116 0.865 1.162 0.760 1.338
region 4 spot 0.899 1.112 0.871 1.152 0.781 1.298 0.899 1.113 0.869 1.155 0.774 1.311
region 5 spot 0.918 1.089 0.898 1.115 0.837 1.205 0.912 1.096 0.889 1.127 0.818 1.236
region 6 spot 0.901 1.110 0.873 1.150 0.783 1.296 0.908 1.101 0.883 1.137 0.802 1.265
region 7 spot 0.917 1.089 0.898 1.116 0.837 1.204 0.903 1.108 0.874 1.149 0.782 1.300

futures 0.902 1.110 0.873 1.151 0.780 1.303 0.915 1.093 0.894 1.121 0.828 1.219

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period January 1979 through December 2006, and based on
5000 semi-parametric bootstrap resamples. « indicates the confidence level, and LB and UB refer to the lower and upper bounds of the 90% confidence
interval divided by the estimated mean of the risk measure concerned.



Table 6b: Standardised 90% Confidence Intervals for Values-at-Risk and Expected Shortfalls: Soybean Spot and Futures Contracts

Long positions Short positions
a =0.99 a =0.995 a =0.999 a =0.99 a =0.995 a =0.999
contract LB uB LB uB LB uB LB uB LB uB LB uB
Values-at-Risk

region 1 spot 0.867 1.152 0.828 1.211 0.701 1.443 0.899 1.110 0.877 1.141 0.806 1.248
region 2 spot 0.872 1.144 0.838 1.195 0.727 1.388 0.901 1.108 0.880 1.137 0.814 1.236
region 3 spot 0.866 1.153 0.827 1.211 0.702 1.439 0.891 1.120 0.866 1.156 0.783 1.287
region 4 spot 0.873 1.143 0.839 1.194 0.728 1.388 0.902 1.106 0.881 1.136 0.814 1.237
region 5 spot 0.867 1.151 0.830 1.206 0.711 1.421 0.890 1.122 0.862 1.163 0.770 1.312
region 6 spot 0.876 1.140 0.842 1.191 0.731 1.384 0.896 1.114 0.871 1.150 0.791 1.275
region 7 spot 0.891 1.120 0.867 1.152 0.793 1.268 0.909 1.098 0.891 1.122 0.836 1.200

futures 0.863 1.158 0.821 1.221 0.686 1.472 0.905 1.103 0.886 1.129 0.825 1.217

Expected Shortfalls

region 1 spot 0.881 1.136 0.842 1.193 0.716 1.420 0.917 1.090 0.896 1.119 0.829 1.219
region 2 spot 0.889 1.125 0.856 1.174 0.747 1.360 0.919 1.088 0.899 1.114 0.837 1.206
region 3 spot 0.881 1.136 0.843 1.193 0.719 1.415 0.909 1.100 0.884 1.135 0.805 1.258
region 4 spot 0.890 1.125 0.856 1.173 0.747 1.360 0.920 1.087 0.899 1.114 0.836 1.208
region 5 spot 0.884 1.132 0.847 1.186 0.729 1.394 0.906 1.105 0.878 1.143 0.790 1.285
region 6 spot 0.891 1.123 0.858 1.171 0.749 1.358 0.913 1.096 0.889 1.129 0.813 1.247
region 7 spot 0.911 1.097 0.888 1.128 0.817 1.236 0.927 1.078 0.910 1.100 0.859 1.172

futures 0.876 1.143 0.835 1.204 0.701 1.450 0.923 1.083 0.905 1.107 0.848 1.188

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period January 1979 through December 2006, and based on
5000 semi-parametric bootstrap resamples. « indicates the confidence level, and LB and UB refer to the lower and upper bounds of the 90% confidence
interval divided by the estimated mean of the risk measure concerned.
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Table 7: Spectral Risk Measure Estimates and % Errors

Spectral Risk Measure (SRM) Estimates

Numerical N =1000 N =10,000 N =100,000 N =1m N =10m N =20m
Integration
Method
Trapezoidal rule 8.926 10.451 10.693 10.728 10.733 10.733
Simpson’s rule 8.894 10.448 10.693 10.728 10.733 10.733
Niederreiter QMC 9.154 10.340 10.668 10.725 10.733 10.733
Weyl QMC 9.154 10.340 10.668 10.725 10.733 10.733
% errors in SRM estimates
Trapezoidal rule N =1000 N =10,000 N =100,000 N =1m N =10m
Simpson’s rule -16.835 -2.628 -0.372 -0.048 -0.003 NA
Niederreiter QMC -17.131 -2.658 -0.376 -0.048 -0.003 NA
Weyl QMC -14.712 -3.666 -0.610 -0.075 -0.005 NA
Trapezoidal rule -14.712 -3.666 -0.610 -0.075 -0.005 NA

Notes: Based on the mean parameters from Table 1 (i.e., A=1.98, £=0.1042, threshold = 3.3701 and
N, =173.7813) and R (coefficient of absolute risk aversion) =100, where N is the number of slices in the

numerical integration. Errors are assessed against a ‘true’ value obtained using N =20m. Calculations carried
out using the CompEcon software of Miranda and Fackler (2002) written in MATLAB using the trapezoidal
rule.



Table 8a: Spectral Risk Measures and Associated Precision Statistics for Corn Spot and Futures

Long Position Short position
R =20 R =100 R =200 R =20 R =100 R =200
UB LB UB LB UB UB LB UB LB UB LB UB
Region 1 7.344 11.635 13.558 6.691 10.655 12.542
SE 0.435 1.423 2.289 0.398 1.330 2.166
Cl 0.903 1.097 0.808 1.205 0.737 1.288 0.903 1.097 0.806 1.210 0.733 1.297
Region 2 7.494 12.163 14.346 5.847 8.910 10.574
SE 0.454 1.520 2.474 0.338 1.151 1.918
Cl 0.901 1.099 0.805 1.209 0.733 1.296 0.906 1.095 0.800 1.218 0.724 1.317
Region 3 7.172 11.762 13.935 6.617 10.809 12.987
SE 0.438 1.482 2.422 0.406 1.412 2.356
Cl 0.900 1.101 0.804 1.212 0.732 1.299 0.901 1.102 0.797 1.221 0.722 1.314
Region 4 7.516 12.470 14.906 6.990 11.510 13.777
SE 0.465 1.600 2.642 0.430 1.484 2.459
Cl 0.900 1.102 0.800 1.216 0.729 1.306 0.900 1.102 0.799 1.217 0.727 1.308
Region 5 7.153 11.095 12.822 6.954 10.967 12.807
SE 0.416 1.339 2.138 0.410 1.348 2.176
Cl 0.904 1.094 0.811 1.201 0.739 1.285 0.903 1.096 0.808 1.206 0.736 1.290
Region 6 7.293 11.940 14.230 6.803 10.800 12.707
SE 0.446 1.526 2.515 0.404 1.347 2.195
Cl 0.901 1.101 0.801 1.216 0.729 1.305 0.903 1.097 0.806 1.210 0.733 1.297
Region 7 7.227 11.281 13.049 6.842 10.992 13.061
SE 0.422 1.363 2.176 0.412 1.400 2.307
Cl 0.904 1.095 0.811 1.201 0.739 1.285 0.902 1.099 0.802 1.215 0.730 1.305
Futures 6.248 10.091 12.011 6.593 10.346 12.022
SE 0.378 1.289 2.128 0.387 1.260 2.023
Cl 0.901 1.100 0.801 1.216 0.729 1.306 0.903 1.096 0.809 1.203 0.737 1.287

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period January 1979 through December 2006, and based on 5000
semi-parametric bootstrap resamples. R is the coefficient of absolute risk aversion, SE indicates the standard error, Cl indicates the standardised 90% confidence
interval, and LB and UB refer to its bounds. Calculations carried out using the CompEcon software of Miranda and Fackler (2002) written in MATLAB using the
trapezoidal rule and N=1m ‘slices’.



Table 8b: Spectral Risk Measures and Associated Precision Statistics for Soybean Spot and Futures

Long Position Short position
R =20 R =100 R =200 R =20 R =100 R =200
UB LB UB LB UB UB LB UB LB UB LB UB
Region 1 6.928 12.072 14.935 6.019 9.256 10.713
SE 0.458 1.691 2.904 0.347 1.122 1.797
Cl 0.896 1.109 0.785 1.238 0.706 1.339 0.905 1.094 0.810 1.202 0.738 1.287
Region 2 6.796 11.615 14.147 5.916 9.059 10.446
SE 0.436 1.556 2.622 0.340 1.090 1.740
Cl 0.898 1.106 0.792 1.227 0.717 1.324 0.905 1.093 0.811 1.200 0.740 1.284
Region 3 6.889 12.079 14.947 6.029 9.556 11.224
SE 0.458 1.689 2.897 0.358 1.188 1.931
Cl 0.895 1.109 0.785 1.238 0.706 1.337 0.903 1.097 0.806 1.208 0.734 1.295
Region 4 6.802 11.588 14.106 5.914 8.988 10.353
SE 0.435 1.551 2.614 0.338 1.081 1.724
Cl 0.898 1.106 0.792 1.227 0.717 1.324 0.906 1.093 0.811 1.200 0.740 1.284
Region 5 7.010 12.224 15.049 6.182 9.823 11.610
SE 0.461 1.682 2.868 0.368 1.238 2.029
Cl 0.896 1.109 0.787 1.233 0.711 1.334 0.903 1.098 0.803 1.213 0.732 1.301
Region 6 6.771 11.384 13.814 5.912 9.190 10.726
SE 0.428 1.516 2.550 0.345 1.131 1.829
Cl 0.899 1.105 0.793 1.226 0.718 1.322 0.904 1.095 0.808 1.207 0.735 1.291
Region 7 6.632 10.588 12.394 5.869 8.715 9.906
SE 0.395 1.305 2.110 0.329 1.026 1.615
Cl 0.902 1.098 0.807 1.207 0.735 1.290 0.907 1.090 0.815 1.196 0.745 1.278
Futures 6.579 11.677 14.586 5.851 8.813 10.087
SE 0.447 1.682 2.919 0.332 1.048 1.661
Cl 0.893 1.113 0.781 1.245 0.700 1.346 0.907 1.091 0.813 1.198 0.742 1.281

Notes: Based on 1462 weekly % return observations for each of the stated series indexes over the period January 1979 through December 2006, and based on 5000
semi-parametric bootstrap resamples. R is the coefficient of absolute risk aversion, SE indicates the standard error, Cl indicates the standardised 90% confidence
interval, and LB and UB refer to its bounds. Calculations carried out using the CompEcon software of Miranda and Fackler (2002) written in MATLAB written in
MATLAB using the trapezoidal and N=1m ‘slices’.
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