
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 

 

Agribusiness & Applied Economics 673                                                        March 2011 

 

 

 

 

 

 

 

 

 

 

Aggregation Issues in the Estimation 

of Linear Programming Productivity 

Measures 

 
 

 

 

 

 

 

 

Saleem Shaik 

Ashok Mishra 

Joseph Atwood 

 

 

 

 

 

 

 

 

 

 

Department of Agribusiness and Applied Economics 

Agricultural Experiment Station 

North Dakota State University 

Fargo, ND 58105-6050



 

 

 

 

Acknowledgments 

 

The authors extend appreciation to Cheryl Wachenheim and Siew Lim for the 

constructive comments and suggestions.  Special thanks go to Edie Watts who helped 

prepare the manuscript. The authors assume responsibility for any errors of omission, 

logic, or otherwise. 

 

This publication is available electronically at this web site: http://agecon.lib.umn.edu/. 

Please address your inquiries to: Department of Agribusiness and Applied Economics, 

North Dakota State University, P.O. Box 6050, Fargo, ND, 58108-6050, Ph. 701-231-

7441, Fax 701-231-7400, E-mail ndsu.agribusiness@ndsu.edu. 

 

NDSU is an equal opportunity institution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2010 by Saleem Shaik. All rights reserved. Readers may make verbatim 

copies of this document for non-commercial purposes by any means, provided that this 

copyright notice appears on all such copies. 

http://agecon.lib.umn.edu/
mailto:ndsu.agribusiness@ndsu.edu


 

 

 

Table of Contents 

 

Page 

 

List of Tables ................................................................................................................... ii 

 

List of Figures .................................................................................................................. ii 

 

Abstract  ........................................................................................................................ iii 

 

Introduction .......................................................................................................................1 

 

Linear Programming Approach ........................................................................................2 

 Time-series Output and Input-based Malmquist Productivity .......................................2 

 Time-series Malmquist Total Factor Productivity .........................................................3 

 

U.S. Agriculture Data .......................................................................................................5 

 

Empirical Application and Results ...................................................................................5 

 

Conclusion ......................................................................................................................14 

 

References .......................................................................................................................16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ii 

 

List of Tables 

 

Table                                                                                                                               Page 

 

1 State-wise Annual Output and Input Growth Rates, 1960-1996 .............................8 

 

2 State-wise Annual Productivity Growth Rates, 1960-2004 ...................................11 

 

 3 U.S. Average Market Shares and Shares Estimated From Disaggregate 

   Output and Input Model, 1960-2004 ..............................................................15 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

List of Figures 

 

Figure                                                                                                                             Page 

 

 1 State-wise Annual TFP Estimated by Fisher, OMP and MTFP Index for  

 SOSI, 1960-2004 ..............................................................................................7 

 

 2 State-wise Annual TFP Estimated by Fisher, OMP and MTFP Index for  

 OMP and MTFP Index for MOMI, 1960-2004 ..............................................10 

 

 

 

 

 



 

iii 

Abstract 

 

This paper demonstrates the sensitivity of the linear programming approach in the 

estimation of productivity measures in the primal framework using Malmquist 

productivity index and Malmquist total factor productivity index models. Specifically, the 

sensitivity of productivity measure to the number of constraints (level of dis-aggregation) 

and imposition of returns to scale constraints of linear programing is evaluated.  Further, 

the shadow or dual values are recovered from the linear program and compared to the 

market prices used in the ideal Fisher index approach to illustrate sensitivity.  Empirical 

application to U.S. state-level time series data from 1960-2004 reveal productivity 

change decreases with increases in the number of constraints.  Further, the input and 

output shadow or dual values are skewed, leading to the difference in the productivity 

measures due to aggregation. 

 

JEL classification: O3, C6, Q1 

 

Keywords: Aggregation, Share-weights, single and multiple output and input, Malmquist 

productivity index, Malmquist total factor productivity index. 
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Aggregation Issues in the Estimation  

of Linear Programming Productivity Measures 
 

Introduction  

 
The linear programming (LP) approach has gained popularity since the early 1990s due to its 

ability to impose little apriori functional form, handle multiple outputs-inputs without 

necessitating the use of price data, and accommodate weak and strong disposability assumptions. 

However, the LP approach, due to its piecewise linear approximation of the technology or 

theoretical frontier, is conditioned by the number of decision making units (DMU) and the 

number of constraints (in our case the level of input and output aggregation) in the model. The 

sensitivity of LP efficiency measures due to output and input aggregation has been established 

(Thomas and Tauer, 1994; Hanchar and Tauer, 1995; and Shaik, 2007) and referred to as the 

“curse of dimensionality” problem (see e.g. Thanassoulis et al. 2008: 320).  Due to the “curse of 

dimensionality” problem associated with an increase in the number of constraints (or level of 

disaggregation), leads to an increase or decrease in the number of reference points resulting in a 

decrease or increase in the efficiency and productivity measures. 

 

These aggregation issues have been addressed in the literature (Blackorby and Russell, 

1999; Färe and Zelenyuk, 2003; and Simar and Zelenyuk, 2003) with the use of dual input, 

output prices.  However, explaining the aggregation issue in the primal framework without the 

explicit or implicit use of dual or shadow price is challenging. 

 

This paper addresses the “curse of dimensionality” issue by demonstrating that the 

problem may be due to the shadow or dual values recovered from the constraints of the LP 

approach. The dual values of the LP constraints should reflect technology and economic 

behavior of individual DMUs (or states in this case).  Theoretically (Caves, Christensen and 

Diewert, 1982a and 1982b), the computation of productivity measures involves the use of market 

prices in the case of the ideal Fisher index approach, marginal product in the case of the 

parametric approach, and shadow or dual values in the case of LP approach.  We also 

demonstrate the shadow or dual values recovered from the LP constraints depend on how the 

return to scale constraint is imposed in the estimation of the LP productivity measures.  The 

input-based Malmquist productivity index (IMP) or output-based Malmquist productivity index 

(OMP) imposes a constant returns to scale (CRS) or variable returns to scale (VRS) simultaneous 

in the input and output constraints (see Färe et al, 1994; Färe et al,1998; and Grifell-Tatje and 

Lovell, 1995).  In contrast, the Malmquist total factor productivity (MTFP) index model (see 

Bjurek, 1996) imposes constant returns to scale independently in input and output constraints.  

Other advantages of the MTFP index (a Hicks-Moorsteen type index) over the standard 

Malmquist productivity index is that it always has a TFP interpretation and that under weak 

assumptions of VRS and strong disposability of inputs and outputs it is not unbounded. One can 

see the TFP discussion in Grifell-Tatjé and Lovell (1995) and in Bjurek (1996), and the issues of 

infeasibilities and unboundedness in Bjurek (1996). 
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Specifically, this research demonstrates the sensitivity of the LP approach by comparing 

the estimated productivity measures and the shadow or dual values
1
 (relative to the market prices 

of the ideal Fisher index approach) of the constraints of the LP model estimated at various levels 

of aggregation.  The following section presents the time-series linear programming OMP, IMP 

and MTFP index methods.  In the third section, a brief description of the U.S. state-level time 

series data from 1960-2004 is presented.  Empirical application and the results along with the 

performance of methods are presented in section four followed by conclusions. 
 

Linear Programming Approach 

 
For the nonparametric programming approach, technology that transforms input vector

 1 2, ,...,t t t itx x x x  into output vector  1 2, ,...,t t t jty y y y  for each DMU 1,2,..., (48)k K over 

time 1(1960),2,..., (2004)t T can be represented by the output set: 

 

(1)    : can producek k k k

t t t tP x y x y
 

 

or input set: 

 

(2)    : is produced byk k k k

t t t tL y x y x
 

 

and follows the properties of strong disposability of outputs and inputs, and constant returns to 

scale (CRS) or variable returns to scale (VRS) as in Färe et al, 1994; Färe et al,1998; and Grifell-

Tatje and Lovell, 1995. 

 

 In a given year, ,t  the concept of the output set can be represented by the output distance 

function for k  decision-making unit, as: 

 

(3)    
1

, max :k k k k

t t t t tOD x y y P x 


 
 

 

or the concept of input set can be represented by input distance function for k  decision making 

unit as: 

 

(4) 1( , ) min : ( )k k k k k

t t t t tID y x x L y   
 

 

Time-series Output and Input-based Malmquist Productivity 

 
Following Shaik, 1998 and Shaik et al., 2002 in a time-series observations on a single 

economic unit (such as the U.S.), an IMP in year t relative to the final year T can be represented 

as follows.  Consider the multiple of year t output that is revealed to be possible relative to the 

set of all observations including year T, using the year t bundle of inputs.  If outputs could be 

                                                           
1
 Other relative issues, slack and disposability are important but beyond the scope of the paper. We also will not be 

dealing with non-marketable goods or assume weak disposability in estimating productivity measures. 
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doubled (the multiple is 2.0), then the productivity at time t is the inverse of this multiple, or 0.5. 

This concept can be represented by an output or input distance function evaluated for any year t 

using reference production possibilities set T as: 

   
1 1

,,

,,

,,

(5 ) , max (5 ) , min

. .. .

00

t t t t
zz

j tj t j j

i t ii i t

a OD x y b ID y x

s t y zYs t y zY

x zXzX x

zz


 





 



 





  
 

where    1 1 1 2, ,........, , ,........,T T

j j j j i i iY Xy y y and x x x  , the intensity variables  0 0z z   

identifies the CRS (VRS) boundaries of the reference set. 

 

The OMP measure for a single economic unit, between two time-periods t and t+1, given 

technology, is defined as: 

 

(6) 
1 1 1( , )

( , )

t t t
t

t t

OD x y
OMP

OD x y

  

 
 

and IMP  measure for a single economic unit, between two time-periods t and t+1, given 

technology, is defined as: 

 

 (7) 
1 1 1( , )

( , )

t t t
t

t t

ID y x
IMP

ID y x

  

 
 

Time-series Malmquist Total Factor Productivity 

 
Following Bjurek (1996), an alternative to the time-series OMP or IMP index, time-series 

MTFP Malmquist total factor productivity  MTFP , is the ratio of Malmquist output index

 MO and Malmquist input index  MI .  The MO index measures the scalar change in outputs 

assuming the inputs are constant over time.  Here inputs are constant, meaning that input usage 

does not change.  Hence this would reflect the computation of an ideal Fisher output quantity 

index.  Similarly the MI index measures the scalar decrease in inputs assuming the outputs are 

constant over time.  Here outputs are constant, meaning that output produced does not change.  

Hence this would reflect the computation of an ideal Fisher input quantity index.   

 

This concept of MO and MI can be represented by the modifying equation (5a and 5b) 

output and input distance functions evaluated for any year t for a single firm employing a 

reference production possibility set T 
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     
1 1

, ,

, ,

, ,

(8 ) max (8 ) min

. . . .

0 0

t t t t
z z

j t j i t i

i t i j t j

a OD x constant y b ID y constant x

s t y zY s t x zX

x zX y zY

z z

x constant y constant

 
 

 

 





   





 

   

where    1 1 1 2, ,........, , ,........,T T

j j j j i i iY Xy y y and x x x  , the intensity variables  0 0z z   

identifies the constant (variable) return to scale boundaries of the reference set. 

The MTFP for a single economic unit maintaining the index productivity notion is 

represented as: 

(9) 
  
  

  
  

1 1

1 1

, ,
*

, ,

t t t t

t t t t

OD x constant y ID y constant xMO
MTFP

MI OD x constant y ID y constant x

 

 

 
 

 
 

 

To illustrate the sensitivity of the nonparametric program approach to the level of 

commodity aggregation, we compare the share-weights recovered from the dual values implicit 

in the linear programming constraints.  In the programming approach, the share-weights are 

recovered from the dual values  dv  of the output (input) constraints defined in equation 5a 

(equation 5b) as well as the dv  recovered from the output (input) constraints in equation 8a of 

MO (equation 8b of MI ) of MTFP . 

 

The dv  of the linear programming input (equations 5b and 8b) and output (equations 5a 

and 8a) constraints are normalized to one, and are equivalent to the share-weights.  Following 

Shaik (1998) and Shaik et al. (2002) the nonparametric implicit output and input share-weights 

in terms of the dv are represented as: 

 

(13) 
j

j

jj

dv
RS

dv



 

and 

(14) i
i

ii

dv
CS

dv

  

 

where RS CSj iand  are the implicit output and input share-weights recovered from the linear 

programming constraint and dv  are the dual values obtained from the output and input linear 

programming constraints. 
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U.S. Agriculture Data 

 
The U.S. Department of Agriculture’s Economic Research Service (ERS) constructs and 

publishes the state and aggregate production accounts for the farm sector.
2
 The features of the 

state and national production accounts are consistent with the gross output model of production 

and are well documented in Ball et al. (1999). Output is defined as gross production leaving the 

farm, as opposed to real value added (quantity index, base 1960=100).  All inputs are quantity 

index with 1960=100. Finally, quantity indexes are constructed as the weighted sum of the rate 

of growth of the components, where the weights are the respective value (output or input) shares. 

As such, the indexes measure the annual rates of change in the output or input aggregate. 

 

The state-wise annual growth rate of the variables’ employed in the estimation of 

productivity for the period 1960-2004 is presented in Table 1.  Annual growth rate is defined as 
1

1( ) 1 *100n

t tx x
    where x  is input or output variable and n  is the number of years in the 

time period.  Within outputs, the average annual growth rate across all the states for crops is 

1.464 followed by livestock with 0.942 and other farm revenue with 0.715.  In the input 

category, capital (-0.339), land (-0. 881) and labor (-2.187) had a negative average annual growth 

rate across all the states compared to positive average annual growth rate of energy (0.444), 

material (0.7) and chemicals (2.014).  The productivity computed based on the average annual 

growth rate of output (1.315) and input (-0.342) leads to average annual productivity growth rate 

of 2.136. 

 

Empirical Application and Results 

 
To illustrate the sensitivity of the LP to the level of aggregation, equation 5a (output 

based Malmquist productivity measures, OMP) and equation 8a and 8b (Malmquist total factor 

productivity measures, MTFP) are estimated for various levels of commodity and input 

aggregations using state-level data from 1960-2004.  First, productivity measures estimated by 

alternative models are compared to the ideal Fisher index productivity measure.  Second, the 

shadow or dual values of the LP constraints for disaggregate Malmquist productivity index and 

the Malmquist total factor productivity index, are compared to the market prices used in the 

Fisher index. 

 

The state-wise annual productivity growth rate
3
 estimated for the period 1960-2004 using 

OMP and MTFP index time series models for various levels of aggregation are presented in 

Table 2.  Specifically, two
4
 levels of dis-aggregation were considered: (1) single output and 

single input (SOSI) model with an aggregate input and aggregate output; and (2) multiple output 

and multiple input (MOMI) model with 6 inputs and 3 outputs.  

For aggregate or SOSI technology, the OMP estimated an annual growth rate of 2.136 for 

CRS (1.55 for VRS) that is identical (different) to the ideal Fisher index measure.  Since the SOI 

                                                           
2
 The data are available at the USDA/ERS website http://www.ers.usda.gov/data/agproductivity/.  

3
 The detailed annual productivity measures computed can be obtained from the author. 

4
 Results from other levels of disaggregation: (1) single output and multiple input (SOMI) model with an aggregate 

output and 6 inputs; and (2) multiple output and single input (MOSI) model with an aggregate input and 3 outputs 

are available from the author. 

http://www.ers.usda.gov/data/agproductivity/
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or aggregate technology is immune to the divergences in productivity, measures such as share-

weights are not used in the estimation process of the LP model.  In contrast, the MTFP index for 

the SOSI model estimated an annual productivity growth rate of 1.9127 for CRS and VRS 

technology.  Even though MTFP index has a TFP interpretation and it is not unbounded that 

under weak assumptions of VRS and strong disposability of inputs and outputs the productivity 

measures are expected to be identical given equation (9) was estimated under constant input 

(output) for MO (MI).  This is different from the ideal Fisher index productivity measure of 

2.136 (Table 2).  The annual productivity measures estimated by the ideal Fisher productivity 

index, OMP index, and MTFP index for SOSI are graphically presented by state (state FIPS
5
 

code) in Figure 1. 

 

Results for disaggregate or multiple output and multiple input (MOMI) model with 6 

inputs and 3 outputs are also presented in Table 2.  The OMP index estimated an annual 

productivity growth rate of 1.0244 for CRS (1.0074 for VRS), while the MTFP estimated an 

annual growth rate of 1.3612 for CRS and VRS technology.  These annual productivity growth 

rates for the MOMI models were different from ideal Fisher index measure. Further, the 

estimated annual productivity growth rate from the MOMI model is different from the SOSI 

model.   Figure 2 presents the annual productivity measures estimated by the ideal Fisher 

productivity index, OMP index, and MTFP index for the MOMI models by state (state FIPS 

code).  

 

This difference in the annual productivity growth rates due to “curse of dimensionality” 

problem is consistent with the efficiency (Hanchar and Tauer, 1995; Tauer, 2001; and Thomas 

and Tauer, 1994) measures.  In a productivity framework it is obvious that the “curse of 

dimensionality” problem leads to decreased productivity growth measures and the results in 

Table 2 support the argument.  In addition, results also show the sensitivity of the use of CRS 

and VRS technology due to the composition of the theoretical frontier (or envelope). 

                                                           
5
 State Federal Information Processing Standards (FIPS) range from 1 to 56 for the 48 U.S. states. 



 

 

Figure 1. State-wise Annual TFP Estimated by Fisher, OMP and MTFP Index for SOSI, 1960-2004
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Table 1. State-wise Annual Output and Input Growth Rates
1
, 1960-1996 

State 
Aggregate 

Output 
Crops Livestock 

Other Farm 

Revenue 

Aggregate 

Input 
Land Labor Capital Chemicals Energy Materials 

AL 1.609 0.591 2.132 1.974 0.307 -1.358 -2.661 0.368 0.727 0.779 1.914 

AZ 1.450 1.454 1.790 -0.490 -0.058 -2.397 -0.776 0.802 2.901 0.540 0.478 

AR 2.726 2.270 3.563 0.889 0.806 -0.186 -2.399 0.885 4.695 0.608 1.966 

CA 2.236 2.490 1.975 0.777 0.585 -0.645 -0.753 0.105 3.166 0.523 1.524 

CO 1.701 1.284 1.990 1.907 0.612 -0.701 -1.619 -0.248 3.997 0.840 1.530 

CT 0.367 0.787 -0.355 0.524 -1.764 -2.176 -2.654 -1.781 -0.870 -0.181 -0.811 

DE 2.440 1.615 2.772 2.652 0.653 -0.805 -2.570 -0.342 -0.322 1.859 1.945 

FL 2.049 2.516 1.544 -0.943 0.621 -0.912 -0.231 1.266 1.259 1.199 1.470 

GA 2.151 1.735 2.458 1.383 0.258 -1.466 -2.303 0.030 1.979 0.411 1.529 

ID 2.403 2.333 2.655 -0.160 0.407 -0.597 -1.400 0.274 4.074 1.940 1.248 

IL 1.227 2.260 -1.729 1.289 -0.695 -0.247 -2.789 -0.528 4.005 -0.425 -0.774 

IN 1.415 2.322 -0.122 -0.089 -0.822 -0.385 -2.891 -0.583 3.278 -0.526 -0.480 

IA 1.327 2.302 0.261 0.292 -0.504 -0.122 -2.836 -0.375 4.950 0.458 -0.035 

KS 1.705 1.416 2.013 2.169 0.665 -0.114 -1.694 -0.229 4.936 0.809 1.639 

KY 1.423 1.136 1.323 2.489 -0.159 -0.392 -2.419 0.770 1.782 0.935 1.605 

LA 1.603 1.967 0.908 0.108 -0.294 -0.737 -2.974 0.093 3.699 0.245 0.734 

ME 0.028 -0.675 0.679 -1.021 -1.814 -1.849 -2.885 -1.437 -2.322 0.061 -1.267 

MD 1.474 1.802 1.158 1.289 -0.322 -1.300 -2.365 -0.874 -0.132 0.578 0.887 

MA -0.423 0.463 -2.326 0.534 -2.627 -1.960 -4.197 -1.460 -1.741 -0.332 -1.588 

MI 1.355 1.945 0.443 0.202 -1.004 -0.780 -2.694 -0.821 2.163 0.161 0.369 

MN 1.454 2.263 0.426 0.584 -0.370 -0.213 -2.632 -0.246 4.032 0.967 0.595 

MS 1.718 1.151 2.089 1.641 -0.229 -1.082 -3.923 -0.009 2.122 0.484 1.947 

MO 1.131 1.918 0.114 0.780 -0.456 -0.225 -1.986 -0.026 3.312 -0.180 0.041 

MT 1.265 1.499 0.413 1.998 -0.088 -0.215 -1.038 -0.041 4.044 0.403 0.011 

NE 2.242 2.500 1.864 2.765 0.654 -0.051 -1.854 -0.028 4.699 0.865 1.761 

8
 



 

 

NV 1.751 2.692 1.148 0.270 0.528 -1.471 -0.426 0.618 3.476 2.250 1.283 

NH -0.205 1.027 -1.326 0.211 -2.138 -2.242 -3.041 -1.690 -1.862 0.049 -1.603 

NJ -0.163 0.518 -1.584 0.012 -1.777 -1.286 -2.245 -1.344 -0.737 -0.664 -1.345 

NM 2.220 1.307 2.911 0.009 0.787 -0.092 -0.871 0.307 2.042 1.097 1.984 

NY 0.279 0.392 0.172 -0.558 -1.165 -1.336 -2.558 -1.036 -0.761 -0.375 -0.177 

NC 1.913 0.516 3.755 1.947 0.093 -1.276 -3.557 -0.147 1.392 0.336 3.061 

ND 1.839 2.297 -0.103 0.921 -0.033 -0.125 -1.489 -0.426 5.678 0.313 0.194 

OH 1.074 1.677 0.023 -0.318 -1.036 -0.421 -2.959 -0.830 1.761 -0.015 0.161 

OK 1.113 0.771 1.934 -1.564 0.542 -0.180 -1.174 0.124 3.531 0.583 1.818 

OR 2.171 2.967 0.788 0.397 -0.372 -0.770 -1.223 -0.568 2.510 0.974 0.268 

PA 1.284 1.349 1.179 0.729 -0.492 -0.943 -1.748 -0.397 -0.026 0.342 0.639 

RI -0.388 0.611 -2.632 1.893 -2.774 -1.930 -4.136 -2.005 -1.921 -0.875 -1.931 

SC 1.065 0.245 2.461 0.233 -0.516 -1.411 -3.224 -0.406 1.492 -0.150 1.466 

SD 1.635 2.551 0.500 1.002 0.143 -0.057 -1.618 -0.548 7.991 0.579 0.615 

TN 0.779 1.303 -0.046 0.861 -0.324 -0.675 -2.264 0.279 1.731 0.061 1.176 

TX 1.582 1.257 1.851 1.665 0.457 -0.301 -1.431 0.201 3.586 -0.189 1.678 

UT 1.452 1.487 1.401 0.614 -0.074 -1.127 -1.616 0.060 0.935 1.089 1.017 

VT 0.239 -0.161 0.393 -0.530 -1.338 -1.993 -2.776 -1.125 -1.595 0.473 -0.242 

VA 1.113 0.687 1.458 0.808 -0.386 -0.945 -2.794 -0.488 0.677 0.227 1.590 

WA 2.402 2.746 1.739 1.127 0.688 -0.721 -0.970 -0.371 2.427 0.775 1.670 

WV 0.288 0.281 0.191 0.418 -0.967 -1.201 -2.324 -1.117 -1.599 0.180 0.598 

WI 0.703 1.296 0.252 0.454 -0.853 -0.666 -2.857 -0.668 3.181 0.669 0.264 

WY 0.893 1.116 0.735 0.193 0.248 -0.209 -1.131 -0.267 2.340 0.573 1.195 

     
  

     
Average

2
 1.315 1.464 0.942 0.715 -0.342 -0.881 -2.187 -0.339 2.014 0.444 0.700 

1
 Annual growth rate is defined as 

1

1( ) 1 *100n

t tx x
    where 

x
 is input or output variable and 

n
 is the number of years in the time period  

2
 A simple average across states. 
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Figure 2. State-wise Annual TFP Estimated by Fisher, OMP and MTFP Index for MOMI, 1960-2004 
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Table 2. State-wise Annual Productivity Growth Rates, 1960-2004. 

State 

Ideal 

Fisher  

Index 

  Variable returns to scale   Constant returns to scale 

 
OMP 

 
MTFP 

 
OMP 

 
MTFP 

  MOMI SOSI   MOMI SOSI   MOMI SOSI   MOMI SOSI 

              
AL 1.7868 

 
1 1.1381 

 

1.4965 2.3537 
 

1 1.7868 

 

1.4965 2.3537 

AZ 1.9621 
 

1 1.9372 

 

1.2557 1.8624 
 

1 1.9621 

 

1.2557 1.8624 

AR 2.3373 
 

1 0.998 

 

2.3118 4.8143 
 

1 2.3373 

 

2.3118 4.8143 

CA 2.0802 
 

1 1.3163 

 

1.9897 3.5166 
 

1 2.0802 

 

1.9897 3.5166 

CO 1.6236 
 

1 0.9347 

 

1.8902 2.8109 
 

1 1.6236 

 

1.8902 2.8109 

CT 2.6272 
 

1.1872 1.3061 

 

0.8493 0.5294 
 

1.3217 2.6272 

 

0.8493 0.5294 

DE 2.2077 
 

1 2.0862 

 

2.1225 3.9668 
 

1.1245 2.2077 

 

2.1225 3.9668 

FL 1.8851 
 

1 1.0069 

 

1.1868 3.2912 
 

1 1.8851 

 

1.1868 3.2912 

GA 2.3204 
 

1 2.2309 

 

2.003 2.9272 
 

1 2.3204 

 

2.003 2.9272 

ID 2.4248 
 

1 1 

 

1.4285 3.4952 
 

1 2.4248 

 

1.4285 3.4952 

IL 2.3695 
 

1 1.7314 

 

1.0229 1.2651 
 

1 2.3695 

 

1.0229 1.2651 

IN 2.729 
 

1 1.8821 

 

0.9988 1.2981 
 

1 2.729 

 

0.9988 1.2981 

IA 2.2719 
 

1 1.8096 

 

1.1598 1.4413 
 

1 2.2719 

 

1.1598 1.4413 

KS 1.5875 
 

1 0.9695 

 

2.0278 2.8837 
 

1 1.5875 

 

2.0278 2.8837 

KY 2.0293 
 

1 1.8887 

 

1.8937 1.7579 
 

1.0663 2.0293 

 

1.8937 1.7579 

LA 2.3355 
 

1 2.2156 

 

1.2627 1.7922 
 

1 2.3355 

 

1.2627 1.7922 

ME 2.3075 
 

1 1.2168 

 

0.6983 0.4444 
 

1.1174 2.3075 

 

0.6983 0.4444 

MD 2.2332 
 

1 1.9317 

 

1.8314 1.6708 
 

1.2131 2.2332 

 

1.8314 1.6708 

MA 2.738 
 

1 1 

 

0.7334 0.2493 
 

1 2.738 

 

0.7334 0.2493 

MI 2.8855 
 

1 1.8328 

 

1.1789 1.1641 
 

1 2.8855 

 

1.1789 1.1641 

MN 2.2626 
 

1 1.9598 

 

1.213 1.621 
 

1 2.2626 

 

1.213 1.621 

MS 2.3861 
 

1 2.3255 

 

2.1031 1.9411 
 

1 2.3861 

 

2.1031 1.9411 

MO 2.0374 
 

1 1.6585 

 

1.144 1.3501 
 

1 2.0374 

 

1.144 1.3501 

MT 1.8317 
 

1 1.8003 

 

1.2619 1.6926 
 

1 1.8317 

 

1.2619 1.6926 

1
1
 



 

 

NE 2.0222 
 

1 1 

 

2.326 3.6364 
 

1 2.0222 

 

2.326 3.6364 

NV 1.7232 
 

1 1.1265 

 

1.6116 2.7678 
 

1 1.7232 

 

1.6116 2.7678 

NH 2.4116 
 

1 1.0173 

 

0.7369 0.3447 
 

1.0718 2.4116 

 

0.7369 0.3447 

NJ 2.0827 
 

1 1 

 

0.6685 0.4147 
 

1.0017 2.0827 

 

0.6685 0.4147 

NM 1.8879 
 

1 1.1706 

 

1.2963 3.8233 
 

1 1.8879 

 

1.2963 3.8233 

NY 1.9205 
 

1 1.1879 

 

0.8425 0.6692 
 

1 1.9205 

 

0.8425 0.6692 

NC 2.2504 
 

1 2.3082 

 

1.3335 2.446 
 

1 2.2504 

 

1.3335 2.446 

ND 2.3041 
 

1 2.2704 

 

1.1058 2.2371 
 

1 2.3041 

 

1.1058 2.2371 

OH 2.5839 
 

1 1.617 

 

1.0099 1.012 
 

1 2.5839 

 

1.0099 1.012 

OK 1.2903 
 

1 1.386 

 

1.0389 2.0984 
 

1 1.2903 

 

1.0389 2.0984 

OR 3.1089 
 

1 2.6286 

 

1.3746 2.2226 
 

1 3.1089 

 

1.3746 2.2226 

PA 2.2172 
 

1 1.8181 

 

1.4517 1.4219 
 

1.1105 2.2172 

 

1.4517 1.4219 

RI 2.9781 
 

1 1.0666 

 

0.518 0.2367 
 

1.0261 2.9781 

 

0.518 0.2367 

SC 2.0334 
 

1 1.611 

 

1.1664 1.2763 
 

1 2.0334 

 

1.1664 1.2763 

SD 1.9455 
 

1 1.9257 

 

1.3662 2.213 
 

1 1.9455 

 

1.3662 2.213 

TN 1.6407 
 

1 1.4179 

 

1.1151 1.2254 
 

1 1.6407 

 

1.1151 1.2254 

TX 1.6506 
 

1 1.1169 

 

1.758 2.4871 
 

1 1.6506 

 

1.758 2.4871 

UT 1.9774 
 

1 1.9343 

 

1.8496 1.8503 
 

1.1203 1.9774 

 

1.8496 1.8503 

VT 2.0407 
 

1 1.195 

 

0.9054 0.6072 
 

1.0007 2.0407 

 

0.9054 0.6072 

VA 1.9583 
 

1 1.6456 

 

1.3608 1.3828 
 

1 1.9583 

 

1.3608 1.3828 

WA 2.1368 
 

1 1.8953 

 

2.0309 3.9611 
 

1 2.1368 

 

2.0309 3.9611 

WV 1.7625 
 

1 1.1415 

 

0.9345 0.7349 
 

1.0112 1.7625 

 

0.9345 0.7349 

WI 2.0152 
 

1 1.3978 

 

1.1569 0.9323 
 

1 2.0152 

 

1.1569 0.9323 

WY 1.3343 
 

1 1.3428 

 

1.3154 1.6677 
 

0.9861 1.3343 

 

1.3154 1.6677 

              
Average 2.1362   1.0074 1.55   1.3612 1.9127   1.0244 2.1362   1.3612 1.9127 

OMP is out-based Malmquist productivity index, MTFP is the Malmquist total factor productivity, CRS is constant returns to scale, VRS  

is variable returns to scale, MOMI is multiple output and input and SOSI is single output and input. 
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Next, we identify the “curse of dimensionality” problem in reference to the shadow or 

dual values of the LP constraints.  We also demonstrate the weights or shadow prices recovered 

depends on how the CRS or VRS constraint is imposed in the estimation of the OMP and MTFP 

indexes.  To accomplish this objective, we compare the endogenous share-weights recovered 

from the dual values of the linear programming constraints of the OMP and MTFP programming 

method for various levels of commodity and input aggregation.  Also, we compare the 

endogenous share-weights recovered from the programming approach to the exogenous share-

weights of the ideal Fisher index approach from 1960-2004.  The average input and output shares 

of the ideal Fisher index approach, the OMP programming approach, and the MTFP 

programming approach for the disaggregate model are presented in Table 3
6
.  Results in Table 3 

indicate that the average shadow shares
7
 of the OMP and MTFP programming approach are 

different from the exogenously observed market shares of the ideal Fisher index approach.  For 

example, in the ideal Fisher index approach, the average land, labor, capital, chemicals, energy 

and materials share are 9%, 27%, 13%, 6%, 4%, and 41%, respectively.  Compared to the ideal 

Fisher index approach, the average shadow or dual values input shares computed for OMP 

programming approach with VRS technology are 30%, 16%, 20%, 9%, 12%, and 13% 

respectively for land, labor, capital, chemicals, energy and materials.  Similar average shadow or 

dual values input shares with CRS technology are 15%, 24%, 9%, 15%, 12%, and 26% 

respectively for land, labor, capital, chemicals, energy and materials.  This is different from the 

shares used in the ideal Fisher index approach and recovered from the LP approach with VRS 

technology. 

 

Similarly, the average shadow or dual values output shares computed from OMP 

programming approach with VRS (CRS) are 28%, 50% and 23% (28%, 54% and 18%) 

respectively for crops, livestock and other farm revenue.  However, they are different from the 

output shares used in the ideal Fisher index.  In the ideal Fisher index approach, crop and 

livestock had a share of 49% and 46%, respectively, with the remaining attributed to other farm 

revenue.  

 

In contrast, the output and input shares recovered by the MTFP programming approach 

under CRS and VRS technology were identical.  These shares were different from the shares 

used in the ideal Fisher index approach and recovered from the OMP programming approach 

with VRS and CRS technology. 

 

One of the main reasons for the difference in the productivity measures across models is 

the use of share-weights to form the technology or theoretical fr 

ontier (envelope).  Unlike the ideal Fisher index approach, the average share-weights or 

shadow prices used in programming approach are driven by the number of input and output 

constraints used in the estimation.  For example, with a 6 inputs-3 outputs disaggregation model, 

the OMP or MTFP linear programming approach allocates maximum share-weight on a single 

                                                           
6
 The annual shadow or dual prices recovered from the linear program approach can be obtained from the author. 

7
 Due to the piecewise linear approximation of the programming approach for some inputs or outputs, the shares 

approximated from the linear programming constraints might attach zero or 100 percent weight.  The shares present 

in the Table 3 are averaged across the whole time period. 
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input with a huge positive rate-of-change resulting in a very low productivity measure.  

Alternatively, if the OMP or MTFP linear programming approach allocates maximum share-

weight on a single input with a lowest rate-of-change, then the productivity measures would be 

very high. 

 

Conclusion 

 
This paper examines the sensitivity of nonparametric programming productivity 

measures to the choice of commodity/input aggregation and imposition of CRS/VRS technology 

compared to the traditional ideal Fisher index approach using U.S. state-level data from 1960-

2004.  The importance of share-weights in explaining the sensitivity of the nonparametric 

productivity measures is illustrated by comparing the implicit shadow shares recovered from the 

dual values of the linear programming constraints in the OMP and MTFP programming methods 

to the observed shares of the ideal Fisher index. 

 

The analyses at the U.S. state level indicates productivity measures estimated from the 

OMP programming approach with CRS technology is identical to the ideal Fisher index 

productivity measures for aggregate (single output and single input) technology.  Divergence in 

productivity measures is observed not only due to choice of method –OMP and MTFP methods 

and various levels of commodity and input aggregation, but also between CRS and VRS 

technology.  Due to the piecewise linear approximation of the nonparametric programming 

approach, the shadow share-weights are skewed leading to the difference in the productivity 

measures across methods, models and various levels of commodity aggregation. 

 

The importance of the results reported in this paper will depend upon the researcher’s 

objectives and the availability of data.  If prices are available utilizing the price information (as 

share-weights) in the computation of productivity measures, either by the index and or linear 

programming approach will provide similar productivity measures.  However, for the unpriced, 

non-market goods, like environmental pollution, the unavailability of price information would 

motivate researchers to apply the programming approach to estimate the productivity measures 

as well as to recover the shadow prices. 



 

 

Table 3. U.S Average Market Shares and Shares Estimated from Disaggregate Output and Input Model, 1960 - 2004.

Model 

Output shares 
 

Input shares 

Crops Livestock 
Other Farm 

Revenue 
  Land Labor Capital Chemicals Energy Materials 

 
          Fisher Index 49% 46% 4% 

 

9% 27% 13% 6% 4% 41% 

 
          

 
Variable returns to scale 

           

OMP 28% 50% 23% 

 

30% 16% 20% 9% 12% 13% 

MTFP 35% 51% 14% 

 

49% 9% 17% 5% 10% 10% 

 
          

 
Constant returns to scale 

           

OMP 28% 54% 18% 

 

15% 24% 9% 15% 12% 26% 

MTFP 35% 51% 14% 

 

49% 8% 17% 5% 10% 10% 

                      

1
5
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