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Rating Crop Insurance Policies with 
Efficient Nonparametric Estimators 

that Admit Mixed Data Types 

Jeff Racine and Alan Ker 

The identification of improved methods for characterizing crop yield densities has 
experienced a recent surge in activity due in part to the central role played by crop 
insurance in the Agricultural Risk Protection Act of 2000 (estimates of yield densities 
are required for the determination of insurance premium rates). Nonparametric 
kernel methods have been successfully used to model yield densities; however, tradi- 
tional kernel methods do not handle the presence of categorical data in a satisfactory 
manner and have therefore tended to be applied on a county-by-county basis. By 
utilizing recently developed kernel methods that admit mixed data types, we are 
able to model the yield density jointly across counties, leading to substantial finite- 
sample efficiency gains. Findings show that when we allow insurance companies to 
strategically reinsure with the government based on this novel approach they accrue 
significant rents. 
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Introduction 

Political forces have recently fashioned crop insurance as the cornerstone of U.S. 
agricultural policy. In 2000, Congress approved the Agricultural Risk Protection Act 
(ARPA). The additional cost of this legislation was estimated to be $8.2 billion over a 
five-year period, thereby doubling the federal budget on crop insurance programs to 
$16.1 billion. The program, only available to traditional field crops as recently as 1990, 
currently covers over 150 different crops including such nontraditional products as cut 
flowers, trees and shrubs, and most specialty crops such as avocados, blackberries, etc. 
ARPA has mandated the expansion of crop insurance in three important dimensions: 
(a)  expanded product coverage including, for example, livestock products; ( b )  expanded 
geographical availability for existing crops; and ( c )  increasing producer demand by 
doubling subsidies from approximately 30% to 60% of the premium rate. Recent legis- 
lative actions indicate that crop insurance may become the policy instrument of choice 
to funnel resources to agricultural producers. Given the pivotal role played by crop 
insurance in U.S. agricultural policy and the substantial resources directed toward the 
support of agricultural producers, the accurate pricing of crop insurance policies, along 
with precise risk assessment, is more important than ever. 
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In this study we investigate a nonparametric method, recently introduced by Hall, 
Racine, and Li (2004), having the potential to substantially improve the accuracy of 
premium rate estimates. To this end, we compare this to the standard nonparametric 
kernel estimator used by Goodwin and Ker (1998) as well as the current rating proce- 
dures for the chosen plan of insurance. The distinguishing feature of the Hall, Racine, 
and Li (2004) estimator is that it can appropriately utilize data from extraneous sources 
to improve estimator efficiency. Specifically, we will be able to use yield data from 
comparable areas in estimating the yield density for a given area. 

Because premium rates are derived from the lower tail of the estimated densities, we 
are necessarily comparing the competing methodologies with respect to their ability to 
accurately model this lower tail. This therefore requires a substantial amount of data 
in order to ensure sufficient statistical power to discriminate between the competing 
estimators in terms of their out-of-sample performance.1 As a result, we are forced to 
focus on the less-purchased Group Risk Plan (GRP) of insurance allowing us to utilize 
the lengthy county-level yield series that was also used by Goodwin and Ker (1998). 
Ideally, we would prefer to focus on either the Multiple Peril Crop Insurance (MPCI) 
yield program or the Crop Revenue Coverage (CRC) revenue program, but both are 
based on the much shorter farm-level yield series. Recognizing this is a necessary limita- 
tion to any empirical analysis of this type, we provide simulation results in the appendix 
that compare, under a variety of situations, the performance of the Hall, Racine, and Li 
(2004) estimator with the traditional nonparametric kernel estimator used by Goodwin 
and Ker (199812 

The U.S. crop insurance program is somewhat unique among insurance schemes in 
that three economic interests are served. The federal government through the United 
States Department ofAgriculture7s Risk Management Agency (RMA), the private insur- 
ance companies, and the farmers, all have vested interests. In 1980, the marketing of 
crop insurance policies, previously the domain of the RMA, was expanded to include 
private insurance companies in an attempt to increase farmer participation. While the 
pricing of the crop insurance policies remains the responsibility of the RMA, insurance 
companies receive compensation for administrative expenses and share, asymmetrically, 
the underwriting gains and losses of the policies.3 The Standard Reinsurance Agreement 
(SRA) stipulates the terms of the sharing of these underwriting gains and losses. The 
structure of the SRA enables the private insurance companies to retain or cede-ex ante 
and subject to constraints-varying portions of the realized underwriting gains or losses 
of every federally subsidized crop insurance policy they 

The unique arrangement among the producers, private insurance companies, and the 
RMA not only provides us with an ideal environment in which to evaluate proposed 
estimation methodologies, but also has important policy ramifications. Under the SRA, 

' Unfortunately, there is a tradeoff between the estimator efficiency and the power of the out-of-sample test. The more of 
the sample we use to estimate the density, the less we have to conduct the out-of-sample test, thereby reducing the power 
of the test to distinguish between competing methodologies. 

In our concluding remarks, we also discuss the possibilities of using the Hall, Racine, and Li (2004) estimator with the 
more popular farm-level yield and revenue programs. 

Underwriting gainfloss for a set of policies is the total premium less the total indemnity payments. 
In practice, the insurance company can only retain or cede varying portions of the liability and associated premium rate 

for any insurance policy. See Ker and McGowan (2000) for a detailed discussion of the SRA. For the current analysis, it is 
sufficient to assume the insurance company can retain or cede 100% of the liability and premium for any given policy. This 
greatly reduces the complexity of the analysis without loss of generality. 
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an insurance company must decide which policies to retain and which to cede, thereby 
requiring the company to construct its own premium rate schedule. For example, 
consider the case where a farmer chooses to buy crop insurance from a private insurance 
company at the government-mandated price of, say, $100. The insurance company 
selling that policy must decide whether to retain or cede the premium and associated 
liability of the policy. Suppose the insurance company estimates the premium rate for 
that same policy to be $90. In this case, a risk-neutral insurance company will retain the 
policy because it expects a profit of $10. Suppose, instead, the insurance company 
estimates the premium rate for that policy to be $105. In this case, a risk-neutral insur- 
ance company will cede the policy. 

Consequently, a risk-neutral insurance company will act according to the following 
decision rule: retain the subset of policies for which it expects a profit (the insurance 
company premium rate is less than the RMA premium rate) and cede the subset of 
policies for which it expects a loss (the insurance company premium rate is greater than 
the RMA premium rate15 As a result, the SRA represents an incentive for the RMA to 
employ the rating methodology which makes the most efficient use of the available data, 
thereby reducing adverse selection activities by the insurance companies. An appropri- 
ate context in which to evaluate a proposed methodology for rating crop insurance 
policies is to assume the role of an insurance company and determine if significant 
excess rents can be garnered from using the proposed methodology to identify which 
policies to retain and which to cede. 

In the section below, we briefly review the U.S. crop insurance program and the SRA, 
outline the construction of premium rates, and discuss the yield data used in our 
analysis. Next, the RMArating methodology is outlined, as well as the Hall, Racine, and 
Li (2004) (henceforth denoted as HRL) estimator. We then undertake an out-of-sample 
analysis designed to determine whether or not economically and statistically significant 
excess rents can be garnered using the HRL estimator. Policy implications and conclud- 
ing remarks are offered in the last section. Finally, the appendix examines the finite- 
sample efficiency of the univariate kernel estimator which has previously been used to 
model crop yield densities (Goodwin and Ker, 1998), relative to that for the recently 
developed HRL estimator used in the current analysis. 

Premium Rate Preliminaries 

The U.S. Crop Insurance Program 

Federally regulated crop insurance programs have been a prominent part of U.S. 
agricultural policy since the 1930s. In 2004, the number of crop insurance policies 
exceeded 1.23 million with total liabilities exceeding $48.6 billion. GRP is an area yield 
insurance program where both premiums and indemnities are calculated using county 
rather than farm yields. Group Risk Income Protection (GRIP) is the revenue analog to 
GRP. With respect to GRP and GRIP, the number of crop insurance policies in 2004 
exceeded 48,000 with total liabilities exceeding $385 million. 

While this may not be economically inefficient, as it represents a simple transfer to insurance companies rather than 
agricultural producers, in a political economy framework this outcome may be undesirable. Political rents recovered from the 
agricultural production sector are likely to be significantly greater than those recovered from the private insurance companies 
involved in agricultural crop insurance. 
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Section II.A.2 of the 1998 SRA states that an insurance company ". . . must offer all 
approved plans of insurance for all approved crops in any State in which it writes an 
eligible crop insurance contract, and must accept and approve all applications from, all 
eligible producers." An eligible farmer will not be denied access to an available, federally 
subsidized, crop insurance product. Therefore, an insurance company wishing to conduct 
business in a state cannot discriminate among farmers, crops, or insurance products in 
that state. An unusual situation arises, however; the responsibility for pricing the crop 
policies lies with the RMA, but the insurance company must accept some liability for 
each policy it writes and cannot choose which policy it will or will not write. 

Clearly, in the absence of additional incentive mechanisms, insurance companies are 
unlikely to become involved in such a risk-sharing arrangement. Therefore, to elicit their 
participation, two mechanisms are required that, necessarily, emulate a private market 
from the company's perspective. First, given that insurance companies do not set prem- 
ium rates, there needs to be a mechanism by which they can cede the liability, or the 
majority thereof, of an undesirable policy (in a private market, the insurance company 
would simply refuse to write any policy deemed undesirable). Second, a mechanism 
providing an adequate return to the insurance company's capital and a level of protec- 
tion against ruin (bankruptcy) is needed. Premium rates in a private market reflect a 
return to capital and a loading factor guarding against ruin. Premium rates set by the 
RMA do not reflect a return to capital but do include a loading factor. The SRA provides 
two such mechanisms which, in effect, emulate a private market from the perspective 
of the insurance company. In so doing, the SRA is the vehicle by which an insurance 
company can either retain or cede most of the premium and accompanying liability of 
policies of its choosing. By assuming the role of an insurance company, we can create an 
ideal environment in which to evaluate competing estimation methodologies. 

Determining Premium Rates for Crop Contracts 

Accurate pricing of crop insurance policies requires accurate estimation of yield densi- 
ties. We define the premium rate as the probability of a loss multiplied by the expected 
loss given that a loss has occurred. Formally, the actuarially fair premium rate for a 
yield insurance contract that guarantees a percentage (say A) of the expected yield (say 
ye) is given as: 

(1) Premium Rate = P(Y < Aye)(Aye - E(Y I y < Aye)) 

where 0 5 A 5 1, the expectation operator and probability measure are taken with 
respect to the conditional yield density f,(y I I,), and I, is the information set known at 
the time of rating.6 In the analysis that follows, the information set contains past yields 
and the county in which they were recorded. The RMA premium rate is taken with 
respect to its predicted yield and its estimate of the conditional yield density. Conversely, 
the insurance company determines its premium rate for the policy by integrating its 
estimate of the conditional yield density over the same space, [O, Aye]. 

The premium rate defined in (1) is in terms of expected loss with units equal to bushels per acre. 
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Yield Data 

As noted earlier, our need to successfully discriminate between competing estimators 
in terms of their out-of-sample performance forces us to restrict attention to those crops 
and practice types for which a sufficiently long time series is available. Ideally, farm- 
level yield data would be used, but these data are available only for 20 years at most, 
and generally much less. While we could apply this estimator to farm-level yield series 
that are smaller in length, we would be unable to meaningfully discriminate between 
estimators because there would be far too few observations to permit us to differentiate 
between them in terms of their out-of-sample performance. Therefore, we use county- 
level yield data and the accompanying GRP plan of insurance for 87 Illinois counties 
with a complete yield series from 1956 to 2001 for all-practice corn. Historically, demand 
for GRP has been relatively high for this region-crop combination. 

Estimating Yield Densities 

The methods which have been used to model yield distributions fall into two camps, 
parametric and nonparametric. In the parametric camp, one common specification is the 
Beta distribution (see, for example, Hennessy, Babcock, and Hayes, 1997; Babcock and 
Hennessy, 1996; Coble et al., 1996; Borges and Thurman, 1994; Kenkel, Busby, and 
Skees, 1991; Nelson, 1990; and Nelson and Preckel, 1989). These authors found 
sufficient evidence of skewness andlor kurtosis in their yield data and opted to use the 
Beta distribution in lieu of the Normal distribution. Interestingly, none of these authors 
tested the appropriateness of the Beta distribution. Just and Weninger (1999) attempt 
to renew support for the Normal distribution by calling into question the use of aggre- 
gate yield data, inflexible trend modeling, and the interpretation of the normality test 
results. In contrast, Atwood, Shaik, and Watts (2000) attempt, using more diverse crop- 
region combinations, to reduce support for the Normal distribution, while Ker and Coble 
(2003) found empirical evidence rejecting the use of both the Normal and Beta distribu- 
tions for modeling county corn yields in Illinois. In the nonparametric camp, Goodwin 
and Ker (1998) and Ker and Coble (2003) employ univariate nonparametric and semi- 
parametric kernel methods, respectively, to estimate yield densities and rate crop policies. 
Ker and Goodwin (2000) use empirical Bayes methods pointwise across the support to 
shrink the univariate nonparametric kernel estimates toward the mean. 

GRP Rating Methodology 

To model the temporal process of yields, the RMA employs a one-knot linear spline with 
once-iterated least squares while windsorizing outliers (determined based on residual 
estimates from the first iteration) in the second iteration to estimate the temporal 
process of yields (see Skees, Black, and Barnett, 1997h7 The temporal model is the 
following: 

'Windsonzing involves truncating the yield such that the absolute value of the residual is bounded below some determined 
level. 
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where t is time, T is the knot point to be estimated, TT is the end of the time series, I ( - )  
is an indicator function, and a,, a,, p,, and p, are the parameters to be estimated subject 
to the constraint a, + PIT = a, + P,T. After correcting for heteroskedasticity, Skees, 
Black, and Barnett (1997) estimate a normal distribution and inflate the tails. The 
premium rate is the higher of the empirical rate or the rate derived from the Normal 
with inflated tails. The interested reader is referred to Skees, Black, and Barnett (1997) 
and the references contained therein for more detailed information on the GRP rating 
m e t h o d o l ~ g ~ . ~  

Nonpararnetric Methodology 

Following the RMA, we first model the temporal process of yields employing the one- 
knot linear spline with once-iterated least squares while windsorizing outliers in the 
second iteration. Then, rather than presuming a parametric yield distribution or 
employing univariate kernel methods as has been done in the literature, we instead 
elect to use recently developed conditional nonparametric methods that are ideally 
suited to this setting. In the discussion below, we briefly outline the estimator for the 
interested reader, while the appendix presents some Monte Carlo results that examine 
the finite-sample performance of the estimator relative to the competing univariate 
kernel estimator. 

For what follows, let X denote a vector of explanatory variables, and for a given value 
X = x, we wish to estimate the conditional density of the response Y. In our case, X will 
denote the county in which yields are recorded, and Ywill denote crop yields. We outline 
the estimator with a vector of mixed explanatory variables for completeness, and also 
to highlight the fact that additional information can be readily incorporated within the 
conditioning set X without modification. 

We can always consistently estimate the density of crop yields conditional on county 
by simply computing each county's yield density separately, i.e., by taking a "frequency" 
approach. Specifically, we could first condition on county, then compute the density of 
yields for that county only. This is, of course, a consistent estimator, and is exactly that 
used by Goodwin and Ker (1998). However, this approach will be inefficient for a 
number of reasons leading to finite-sample efficiency losses. These efficiency losses will 
arise since the frequency approach does not use all available sample information he. ,  
the county subsamples are much smaller than the overall sample size), it ignores any 
structure common to yield densities across counties, and it ignores any potential 
correlation structure amongvariables. Furthermore, if the yield density for all counties 
and time periods was in fact identical, then clearly one ought to pool all of the data 
in order to obtain the most efficient estimate. The frequency approach simply cannot 
take advantage of such possibilities. For what follows, we elect to use the kernel 
approach of HRL, which has improved finite-sample properties relative to the case 
where one simply computes yield densities separately by county. This approach is briefly 
described below. 

We thank Jerry Skees for providing the actual RMA GRP rating code and data. 
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Let f denote an estimator of the joint density, f ,  of X, Y, and let m be an estimator of 
the marginal density, m, of X. We estimate g(y  1x1 = f(x, y)lm(x), the density of the 
response Y conditional on X = x, by g( y I x) = f(x, y)lm(x). Our estimators off and m are 
kernel estimators of the form: 

where K is a nonnegative "generalized kernel" that allows for the mix of categorical and 
continuous data. In particular, let X = (Xc, xd) represent a division of X into continuous 

d and discrete components. Reflecting these divisions, write Xi = (X:, x:), where Xi = 
d d (Xil, . . . , Xiq) and X[ = (XA, . . . , x;) denote the discrete and continuous components of Xi. 

d d We assume X: takes the values 0, 1, ..., rj - 1. Let xc = (x:, ..., x;) and xd = (x, , ..., xp 1, 
and define the continuous product kernel by: 

where K((xJc - XG)lhj) is a traditional kernel function. Next, define the categorical pro- 
duct kernel by: 

where N,(xd) = I(X: i x;), depending on x: alone, and I(.) is the usual indicator function. 
The h, , . . . , hp are bandwidths for the continuous components of X satisfying 0 < hj  < a, 
while A,, .. ., Aq are smoothing parameters for the discrete components constrained by 
0 I A, I (r, - l)/rj. The generalized kernel K(x, Xi) and the kernel L(y, Y,) are given by: 

where L((y - Y,)lh) is another univariate kernel, typically identical to the univariate 
kernel K((xJc - X;)lhj) used in (4). Bandwidths are chosen by the cross-validation method 
outlined in HRL. For the estimation of unconditional distributions with mixed data 
types, see Li and Racine (2003), while for local constant and local polynomial regression 
with mixed data types, see Racine and Li (2004) and Li and Racine (2004) and the 
references therein. To best appreciate the benefits ofthis approach in the crop insurance 
setting, we undertook a modest simulation that underscores the performance of this 
approach in finite-sample settings. The main point underscored by the simulation 
results presented in the appendix is simply that we can never do worse than the 
frequency estimator employed by Goodwin and Ker (1998), since the HRL estimator 
collapses to the frequency estimator in the limit (i.e., as A -+ 0). 
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Analysis 

As discussed above, an appropriate context in which to evaluate any proposed metho- 
dology for rating crop insurance policies is to assume the role of an insurance company. 
We can determine whether or not significant excess rents can be garnered when using a 
particular methodology by estimating the premium rate schedule and then determining 
which policies to retain and which to cede. In this section, we undertake a simulation 
designed to gauge the relative performance of the HRL kernel estimator, the standard 
cell-based univariate kernel estimator, and the RMA inflated Normal parametric esti- 
mator. Our simulation has the following salient features:' 

The RMA estimates its premium rate, denoted ftR,,, using the GRP rating method- 
ology. That is, the temporal models are estimated using a robust one-knot linear 
spline [see equation (2)1, with premium rates being based on the maximum of the 
associated empirical rate or a rate derived from a Normal with inflated tails. 

The private insurance company estimates its premium rate, denoted ftIc, by using 
the GRP methodology to estimate the temporal models [also equation (211, and the 
HRL estimator to estimate the conditional yield density. 

The private insurance company, a profit maximizer, cedes a contract if fiRm < ftIc 
because the company believes the contract to be underpriced and expects a loss. 
Conversely, the private insurance company will retain a contract if it- > ftIc. 

One-step-ahead premium rates are estimated for each of the 18 years, indexed from 
1984 to 2001, based on yield data up to and including the preceding year-i.e., 
when constructing the 1989 estimated premium rates, only yield data from 1956 
to 1988 are used.'' 

The actual out-of-sample yield realizations are used to calculate the loss ratios for 
the set of contracts that the insurance company retains, the set of contracts the 
insurance company cedes (the set of contracts thereby held by the RMA), and the 
"program" or entire set. 

If either nonparametric estimator better describes the yield distribution than the 
estimator used by the RMA, then the loss ratio for the contracts retained by the private 
insurance company would be expected to be lower than the overall loss ratio, and 
consequently the loss ratio for the government. Approximate randomization tests, which 
simulate the distribution of a desired statistic under the null, are used to ascertain 
statistical significance (see Kennedy, 1995). When evaluating the performance of each 
nonparametric method, our null is that the insurance company recovers rents by 
strategically reinsuring with the government, i.e., the insurance company's loss ratio is 
equal to the overall loss ratio. Under the null, the insurance company estimates every 

'For the kernel estimators, bandwidths must be recomputed for each successive one-step forecast as the estimation sample 
size increases. Therefore, bandwidths are not reported here, but are available from the authors upon request. 

la RMA must forecast two periods ahead because of a lag in the available yield data. We choose to forecast only one period 
ahead to conserve degrees of freedom. The sole effect of this is to maximize the power of our test, and the approach is valid 
for I-step forecasts (I > 0). 
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policy to have zero expected gain, and thus it is indifferent to retaining or ceding each 
and every policy. Having gauged each estimator's performance relative to the RMA, we 
are now in a position to assess their relative performance. 

To obtain a realization from the null distribution, the insurance company randomly 
retains a policy with probability p, where p equals the fraction of policies retained in the 
original simulation (see table 1). We randomize over which policies are retained, not over 
the number of policies retained. We compare the insurance company's loss ratio from the 
analysis (denoted z*) to 1,000 simulated loss ratios under the null I z,, z,, . . . , z,,,,, I. The 
p-value for the test equals the fraction of { z,, z,, . . . , z,,,,, I for which zi s z*. 

Denote E as the universe consisting of 1,566 policies (87 counties x 18 years), F the 
set of policies the insurance company retains, and Fc the set of policies the insurance 
company cedes. The loss ratio for a set, say F, is: 

C m a ( o >  'Y; - yj) 
(7) Loss Ratio, = 

jcF 

C'-,j 
9 

jsF 

where j is the policy, yj is the realized yield associated with policy j, 2 is the coverage 
level, yy is the RMA expected yield associated with policy j, and ftmPj is the RMA 
premium rate for policy j. We calculate the loss ratio for the program, the insurance 
company, and the RMA by summing over 9, F, and Fc, respectively. 

Table 1 summarizes the program, RMA, and insurance company loss ratios for all 
simulations a t  both the 75% and 85% coverage levels based on a comparison of the 
nonparametric and RMA premium rates. 

At the 75% coverage level, the insurance company using the HRL estimator would 
retain approximately 26% of the policies while ceding 74% of the policies to the RMA, 
suggesting the current RMA rating methodology may underestimate premium rates. 
More importantly, the insurance company's loss ratio based on the 26% of contracts it 
retains is reduced to 0.72, while the RMA's loss ratio increases to 1.18. Thep-value of 
0.036 strongly indicates the company is doing better than if it were to randomly select 
policies. By way of comparison, using the standard cell-based univariate kernel esti- 
mator applied to each county individually, the insurance company loss ratio actually 
increased to 1.297. Not surprisingly, the percentage of contracts retained is very small." 
Note that the univariate kernel estimator performs quite poorly. For example, if one just 
randomly chooses 4.5% of the contracts, the resulting loss ratio will tend to be less than 
1.297 with roughly 80% probability. 

At the 85% coverage level, the insurance company using the HRL estimator retains 
approximately 18% of the policies while ceding 82% of the policies to the RMA, suggest- 
ing the current RMA rating methodology appears to underestimate the rates more 
significantly than at the 75% coverage level. This finding is consistent with the overall 
loss ratio being greater than 1. Interestingly, the insurance company's loss ratio based 
on the 18% of contracts it retains using the HRL estimator is reduced to 0.75, while the 
RMA loss ratio rises to 1.21. As suggested by thep-value of 0.017, the company is doing 
significantly better than if it were to randomly select policies. By way of comparison, 

l1 The premium rate based on the univariate kernel will necessarily be higher than the empirical rate. As such, the uni- 
variate kernel rate will tend to be higher than the FtMA premium rate, resulting in very few policies retained. 
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Table 1. GRP Simulation Results for All Counties in Illinois for All-Practice 
Corn: Nonparametric versus RMA Rates 

75% COVERAGE LEVEL 85% COVERAGE LEVEL 

Univariate HRL Kernel Univariate HRL Kernel 
Kernel Estimator Kernel Estimator 

Estimator vs. vs. RMA Estimator vs. vs. RMA 
RMA Rating Rating RMA Rating Rating 

Description Methodology Methodology Methodology Methodology 

Program Loss Ratio 0.935 0.935 1.097 1.097 

Insurance Company Loss Ratio 1.297 0.719 0.000 0.751 

RMA Loss Ratio 0.925 1.182 1.102 1.213 

Percent of Policies Retained 4.5% 26.4% 0.4% 18.0% 

using the standard cell-based univariate kernel estimator applied to each county indi- 
vidually, the insurance company only retains seven out of the 1,566 policies. Although 
the loss ratio for those seven policies is zero, if we randomly chose seven policies to 
retain, the insurance company would realize zero loss ratio with roughly 29% proba- 
bility. Therefore, while the loss ratio has decreased, it does not differ statistically from 
the overall program loss ratio. 

Based on the results reported in table 1, it is apparent that, by using a more efficient 
nonparametric estimator of yield densities than the univariate cell-based estimator, a 
private insurer could successfully adverse select against the government via its choice 
of which policies to retain. 

Conclusions and Policy Implications 

Given the increasing interest in crop insurance and agricultural risk arising in part due 
to the Agricultural Risk Protection Act, there has been a recent surge in interest in the 
identification of improved methods for characterizing yield distributions. There is 
mounting evidence indicating that common parametric yield distribution models may 
be inappropriate for characterizing the underlying data-generating process. Hence, some 
have turned instead to nonparametric estimation methods. In this study we continue 
this trend and investigate the application of a new nonparametric conditional distribution 
estimator proposed by Hall, Racine, and Li (HRL, 2004). This estimator has the poten- 
tial to improve the accuracy of yield density estimates and their attendant insurance 
rates through the joint modeling of continuous data (yield) and discrete data (county in 
which the yield was recorded) using generalized product kernels. 

We investigate the behavior of the HRL estimator by focusing on economic implica- 
tions of estimator efficiency. Competing nonparametric estimators are used to estimate 
a set of yield densities and to derive the associated premium rates. The competing 
estimators are evaluated by calculating out-of-sample loss ratios based on decision rules 
for retaining or ceding GRP crop insurance contracts. This simulation is of interest from 
an economic and policy perspective because the SRA enables the private insurance 
companies to retain or cede, ex ante and subject to constraints, varying portions of the 
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realized underwriting gains or losses of every federally subsidized crop insurance con- 
tract they sell. Of the policies retained, the loss ratio suggests that the HRL estimator 
was successful at  significantly increasing rents to insurance companies. This finding, 
along with the fact that the univariate estimator employed by Goodwin and Ker (1998) 
is not successful in this setting, simply confirms the new estimator is more efficient than 
the univariate kernel estimator which has been previously used to model yield densities. 

Although our data requirements forced us to focus on a relatively small plan of insur- 
ance (GRP), we feel our results may be more generally applicable, particularly as more 
data become available. First, the RMA is shifting from separate rating methodologies 
to a consistent methodology for its farm-level yield (MPCI) and revenue-based [CRC and 
Revenue Assurance (RA)] products so that the revenue products are simply an addi- 
tional premium to RMA's yield products. Currently, MPCI uses a modified loss cost 
approach and empirical rate relativities, while RA requires estimates of the density. It 
is likely the RMA will adopt a density-based approach, in which case the HRL estimator 
can be used to estimate the yield density component (or just the lower tail) for the 
county base rates across the coverage levels. Second, the HRL estimator may be applied 
not only for GRP but also GRIP. Finally, yield density estimates are used quite often in 
the literature in settings other than crop insurance, in which case the HRL estimator 
may be employed.12 

[Received September 2004;final revision received March 2006.1 
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Appendix: 
A Monte Carlo Examination of Finite-Sample Efficiency 

We consider a modest Monte Carlo experiment to underscore the efficiency gains associated with 
the Hall, Racine, and Li (HRL, 2004) kernel estimator relative to the traditional frequency kernel 
estimator (the so-called "frequency" kernel estimator). We create a setting which parallels the crop 
yield application, and gently remind the reader that our sole intention is to demonstrate our 
approach can be expected to dominate the univariate (frequency) kernel density estimator such 
as that employed by Goodwin and Ker (1998). Furthermore, it is well suited to time-series panels 
as the estimator remains consistent for weakly dependent processes. 

For what follows, let X denote a random scalar drawn from a binomial distribution having ntrials 
trials with probability of success on each trial equal to 0.5, and let Y denote a random scalar 
drawn from a x2 distribution with degrees of freedom df,, + X, where X E {O,1, . . . , nlrials I. As 
df,, increases, the conditional distribution of Y converges to N(p, a2), where p = dfmin +Xand 
a2 = 2(dfmin + X), while as n,,,, increases, the number of cells increases. The smaller is df,,, the 
more dissimilar the distribution of Y I X. Figure A1 presents two cases, one in which the shape of 
the distribution of Y differs dramatically withX, and one in which it is invariant with respect to 
X (though the mean and variance may, of course, vary). 

In addition to allowing the shape of the distribution to vary withX, note there is also a trend 
present in Y regardless of the shape of its distribution-i.e., the mean of Y increases with X.13 
Hence, this simulation captures a number of features potentially present in the crop yield 
application, in particular, the fact that the distribution of yields may differ in both shape and level 
across counties, while county in which yield is recorded is a categorical explanatory variable. 
Finally, note that the sample size will be 5 n,,,,, x ntria18. 1 4  

For the results that follow, we consider random samples [Y,, Xi l ~ = , ~ n  from f (y 1 x) = Xf'fmi,.xp 
For each sample, we use least squares cross-validation to compute h, A; compute f ( y  1x1 using the 
method of HRL; and then compute the resulting mean squared error (MSE) given by 

We do the same for the frequency estimator, i.e., the univariate kernel estimator applied to those 
Y lying in each cell (each realization of X). We repeat this 1,000 times, and report the relative 
MSE generated as the median MSE of the HRL estimator divided by that for the univariate kernel 
estimator. 

l3 Recall that the mean of a random variable drawn from a X' distribution is its degrees of freedom, in this case df,, + X. 
l4 Some draws may not contain all possible realizations for X. 
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Fig.ure Al. Simulated conditional distribution of Y - ~ 7 ~ ~ ~ ~ ~ + ~ ,  for X E 10, ..., 41 

Table Al .  Summary of the Relative Efficiency of the HRL Estimator versus the 
Univariate Kernel (Frequency) Estimator 

Description dfm* nlriols nsubset Efficiency 

Effect of increasing similarity (df,,): 2 4 25 1.00 

Effect of increasing number of cells (n,,,,,): 2 16 20 0.89 

2 32 20 0.86 

Effect of increasing cell size (n,,,,,,): 50 4 25 0.54 

50 4 50 0.56 

Numbers < 1 indicate better performance of the HRL estimator. We consider a range of simula- 
tions beginning with a scenario in which the two approaches would be expected to deliver identical 
results (distributions differ dramatically with X) to the more typical case in which the HRL 
estimator is far more efficient. This latter case will occur when the number of cells (realizations 
ofX) rises andlor the shape of the distributions becomes more similar. Representative results are 
reported in table Al.  

Table A1 reveals a number of interesting features associated with the HRL estimator. First, 
we can never do worse than the frequency estimator since the HRL estimator collapses to the fre- 
quency estimator in the limit with cross-validation choosing 1 = 0 in such cases, i.e., when the shapes 
of the distributions differ dramatically across cells. This is the case for row 1 in table A1 corres- 
ponding to panel A in figure Al .  Second, as the number of cells increases, other things equal (i.e., as 
n,,, increases), relative performance improves (rows 3 and 4). Third, as the shape of the distribu- 
tions becomes more similar (i.e., d f f i ,  rises), relative performance improves (rows 1 and 2). Fourth, 
as the cell size increases, other things equal, relative performance converges (rows 5 and 6). 

Note that, relative to these simulations, the number of cells in the crop yield application is very 
large (87) while the shape of the crop densities is naturally expected to be similar across counties. 
Hence, we would expect the efficiency gains on the HRL over the univariate kernel estimator 
would be large. Results reported in the text analysis section indicate this is indeed the case. 


