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Abstract

Conservation auctions are increasingly being used to procure public
environmental goods on private land. In the absence of demand-side
price information, the majority of conservation auctions in Australia have
been designed without a reserve price. In these instances bids have been
accepted in order of cost-effectiveness until the budget constraint binds. It
is widely recognised that in situations where auctions are run repeatedly
a reserve price strategy could allow for a more efficient allocation of funds
across multiple rounds, both spatially and temporally.

This paper provides a brief overview of methods for determining a
reserve price for application in conservation auctions. It is concluded that
information deficiencies and the high transaction costs involved in the
application of these methods to conservation auctions often render them
unsuitable for application to real-world auctions.

This paper presents an empirical approach to determining a reserve
price using data obtained during an auction - the supply curve. The
approach stems from the C4.5 algorithm, developed in the field of
data mining to construct decision trees from training data using the
concept of information entropy. The algorithm establishes a reserve price
by determining the cut-off price that results in the ”best fit” of two
normal distributions to the frequency distribution of bid-price per unit
environmental benefit.

Empirical data from conservation auctions in Victoria is used to
demonstrate the algorithm and compare auction results obtained using
the algorithm and traditional ”budget” methods. The paper presents a
discussion on the situations where the algorithm could be appropriately
used, and advantages and limitations of the approach are identified. The
paper concludes that the use of the algorithm can result in efficiency gains
over the traditional budget method in situations where alternative reserve
price strategies are impractical.
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1 Introduction

It is widely recognised that there is a need to invest in the maintenance and
improvement of ecosystem health in Australia. As many priority ecosystems
exist solely, or predominantly, on land that is privately owned (Stoneham et
al, 2000; DSE, 2008), government agencies are interested in investing in the
maintenance and improvement of ecosystems on private land.

Auctions for conservation are a favoured policy instrument for targeting
environmental improvements on private land. Their argued benefits include
cost revelation incentives provided by competitive bidding (Stoneham et al,
2003; Conner et al, 2008) and the use of a scientifically based scoring system to
identify high value projects (Connor et al, 2008).

Historically, most conservation auctions have been implemented in a one shot
setting without a reserve price (Stoneham et al, 2002; Connor et al, 2008; Windle
et al, 2009). Typically both a budget and the auction area are determined ex
anti. Bids are accepted in decreasing order of cost effectiveness until the budget
is exhausted.

Stoneham et al, 2003, argued that while a reserve price is less important in
a budget constrained single shot auction, it would become more important in a
repeated auction setting where funds can be allocated across multiple rounds.
This notion can be extended to the allocation of funds across multiple tenders
in different locations (within the same time period), as well as allocating funds
between auctions and alternative policy mechanisms (e.g. fixed price grants
schemes).

Another issue arises in the absence of a reserve price when there is inadequate
competition (bids) to reach the ex ante budget allocation. If an auction area is
chosen that does not result in sufficient bids to expend the whole budget should
all bids be accepted? It is likely that some bidders would have attempted to
game the auction and bid high in the hope of extracting greater rents. Without
a binding budget constraint all the high-cost bids will be successful impacting
negatively on cost effectiveness. Alternatively, there may be sufficient bids
however it is evident from the bid data that some of the bids accepted are
very high unit cost when compared to others selected. In these instances bid
selection panels are often required to make a subjective decision on which bids
to fund. There is no information (apart from intuition) to aid bid selection
panels with this decision.

This paper presents an empirical method to estimate an ex post reserve
price using the unit bid data1 from the auction. The approach is based on the
theoretical framework applied in the C4.5 algorithm (Quinlan, 1993) which is
used widely in data mining. In C4.5, the concept of information gain is used as
the partitioning criterion for constructing decision trees. The algorithm applies
the same concept to find a threshold to partition the unit bid data into two sets.
The algorithm utilises information gain as the criterion for partitioning the unit
bid data set into high cost and low cost suppliers of environmental benefit. The
threshold is used as the reserve price. In this paper the application of the bid

1Unit bid data refers to the bid price per unit of environmental benefit.
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cut-off algorithm to conservation auctions is demonstrated using empirical data
from past EcoTender auctions run in Victoria, Australia.

2 Conservation auctions on private land

Currently 63 percent of Victorian land is privately owned. When private land-
holders make land management decisions, they face strong economic incentives
to generate private benefits. However, it is often the case that landholders are
not provided with sufficient incentives to produce public environmental benefits.
This market failure results in under-investment in environmental outcomes on
private land (Rolfe, 2002).

A range of policy mechanisms have been implemented to provide incentives
for the production of public environmental benefit on private land. Historically,
fixed price grants schemes have been the primary mechanism used for purchasing
environmental outcomes from private landholders (Latacz-Lohmann & Hodge,
2003). In a fixed price grant scheme, a landholder is paid a set price based on
input units (for example, $20.00 per kilometre of fence) for the management
actions they undertake. Latacz-Lohmann and Hamsvoort (1997) argue that
an information asymmetry exists between the landholder and the governing
agency. The landholder has more accurate information about their costs, whilst
the agency has better information about the environmental benefit obtained.
While grant mechanisms provide incentives for landholders to engage in the
production of public environmental outcomes, fixed price input based schemes
do not address problems arising from asymmetric information.

More recently, there has been a transition towards market based approaches,
such as conservation auctions, in an effort to procure environmental outcomes
cost-effectively (Windle & Rolfe, 2007). In a conservation auction, landholders
competitively bid to be paid to produce environmental outcomes on their land.
Generally a scoring system, or metric, is used to put a value on the predicted
environmental outcomes from different bids. Bids can then be ranked from
best to worst value for money and selected down the list until the budget is
exhausted, or an alternative cut-off point is reached.

It is argued in (Connor, Ward, & Bryan, 2008) that the competitive bidding
process addresses asymmetric information by providing incentives for bidders to
reveal information about their costs. Moreover, the use of a scientific metric to
measure the value of environmental outcomes across competing projects allows
for the identification of high value projects (Connor et al., 2008). Cost revelation
incentives provided by competitive bidding, coupled with the use of scientific
metrics to value environmental outcomes, allows for the identification of low
cost suppliers of environmental outcomes.

The Victorian Governments BushTender auction for terrestrial biodiversity
outcomes (Stoneham, Chaudhri, Ha, & Strappazzon, 2003) and EcoTender
auction for multiple environmental outcomes (Eigenraam, Strappazzon, Lans-
dell, Beverly, & Stoneham, 2007) are examples of conservation auctions in
Victoria. Other conservation auctions that have been implemented in Australia
include the Onkaparinga Catchment Care Auction (Connor et al., 2008) and the
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Southern Desert Uplands Landscape Linkage Auction (Windle & Rolfe, 2007).
A well known Conservation Auction outside of Australia is the US Conservation
Reserve where private land-holders competitively tender for payments to remove
their land from agricultural production (Vukina, Zheng, Marra, & Levy, 2008).

3 Supply and demand in conservation auctions

In conservation auctions information about land-holders costs is elicited through
a competitive bidding process. The output of the auction process is a supply
curve depicting the marginal cost to the agency of acquiring environmental
benefits, defined by an environmental metric. The nature of the supply curve
will be influenced by the auction design as well as the distribution of land-
holder bids (costs). In a discriminatory price auction, the optimal bidding
strategy involves seeking rents, where the quantity of rents sought is a decreasing
function of both the landholders ranking in the distribution of costs (ascending
order), and the number of bidders. In a uniform price conservation auction
where a landholder can only submit a single bid, the optimal bidding strategy
for landholders is to bid their cost. An example of a conservation auction supply
curve is given in Figure 1 below.

Figure 1: Typical supply curve from conservation auction.

While competitive auctions facilitate the revelation of supply side infor-
mation, demand side information is much harder to obtain. Ideally, when
a government agency runs a conservation auction, it would have a demand
schedule articulating the quantity of environmental benefits they wish to
purchase for any given price. Assuming that the agencies demand schedule
is monotonically decreasing in cost, the optimal quantity and marginal price
will be given by the intersection of the supply curve (above) and the demand
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curve of the agency. Figure 2 below shows the optimal quantity and marginal
price given the availability of an agency demand schedule.

Figure 2: Optimal quantity of EBI with known demand schedule.

However, information on the agencies demand schedule is often unknown.
An agencies demand for a marginal unit of environmental benefit is dependent
on the opportunity cost of investing in that unit. That is, the benefit that is
forgone by not investing in the highest value alternative.

For simplicity, let us assume that the government agency has only two
options; invest in a marginal unit of environmental benefit in the current tender,
or save the funds to invest in a future tender. Consider an agency that has a
priori information on the expected shape of the supply curve in a future tender.
Assume that the agency is indifferent between allocating funds between the
present and future tender. In this case, the agency could allocate funds between
the two tenders such that the marginal cost of purchasing the final environmental
benefit unit in the current tender is equal to the expected marginal cost of
procuring the final unit of environmental benefit in the future tender as shown
in Figure 3 below.

In many instances it is difficult to accurately predict the cost of environmen-
tal benefits in future tenders. Further, the costs may be different if the future
tender is held in a different area. In the new area landholder costs may be higher
or lower depending on the opportunity cost of the land. For example, land in a
sheep grazing area generally has a lower opportunity cost than dairy production
land. If the tender is to be held in the same area, costs may be higher in the
second tender due to low cost suppliers being funded in the prior tender.

In addition, communities may have preferences that place a higher value
on environmental benefits obtained geographically closer to them; it can be
argued that government has a responsibility to allocate funds in a manner that
accounts for these preferences. This notion is supported in (Hajkowicz, 2007)
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Figure 3: Optimal quantity of EBI purchased with known current and expected
future supply curves.

where it is found that fairness is a strong policy objective in the allocation of
agency funds to regions for environmental management. Consequently, it can
be contended that the role of government in allocating funds to manage natural
resources extends beyond allocating funds to areas where environmental goods
and services can be procured at least cost.

4 Reserve prices and conservation auctions

In theory, a conservation auction can be either budget or target constrained.
In the former, the environmental benefit is maximised within a maximum
budget constraint. In the latter, the budget is minimised within a minimum
environmental benefit constraint. Both of these optimisation problems have the
potential to result in the selection of some bids with a high unit price. This
can be inefficient if the marginal cost of purchasing these bids is greater than
the marginal cost of purchasing the same level of benefit through an alternative
means. The use of an appropriately designed reserve price can improve the
efficiency of both budget and target constrained tenders by placing an upper
bound on the marginal cost of environmental benefit.

The majority of conservation auctions in Australia have been implemented
with no reserve price (Stoneham et al., 2003; Windle & Rolfe, 2007; Connor
et al., 2008). The use of a reserve price was discussed in (Stoneham et al,
2003) where it was identified that a reserve price strategy would become more
important in a repeated auction setting to optimally allocate funds across
multiple auctions both temporally and spatially.

The US Conservation Reserve Program (CRP) is an example of a conserva-
tion auction where a reserve price strategy has been implemented. In the CRP,
the reserve price was set to the average land rental price (by county and soil
type) scaled by area and contract duration (Vukina et al., 2008). In another
example, in the Victorian Stormwater Tender 2 , a reserve price was determined

2In Stormater Tender, landholders competitively tendered to undertake actions to reduce
stormwater runoff from their property
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ex post by equating the expected marginal costs of public and private supply
of environmental benefit (Nemes et al., 2010). The public supply curve was
obtained from data on the costs and environmental benefits obtained from public
programs that had been collected previously (Nemes et al., 2010). This method
relied upon the existence of information on costs and environmental benefit
which may not be available in many instances. Further, most non market-
based programs do not employ a metric when evaluating alternative investment
options. Therefore it is not possible to calculate a unit cost for use as a reserve
price.

This concept of equating marginal costs across programs can be applied
if both programs have a comparable metric. For example if a tender and
traditional grants scheme are run simultaneously, a budget could be optimally
allocated across the two programs by equating marginal costs. This method has
the potential to yield efficiency gains over running the two programs separately.
However, it is likely to be the case that when the administrative costs of
implementing both programs are considered, it is more efficient to allocate the
total budget to one program.

5 Motivation for an empirical estimate

In 2007 the Victorian government committed $4.5m to three EcoTenders with-
out specifying the breakdown of funding between the tenders. The development
of the bid-threshold algorithm was motivated by the desire to cost effectively
allocate funds across the three tenders. In particular, the development of the
algorithm was motivated by the need to develop an alternative to funding all
projects in a tender that is under-subscribed.

It was also recognised that it was not possible to use results from one
tender to assist in setting a reserve price in subsequent tenders due to the
heterogeneity in opportunity costs across regions. In addition, over the three
years of the EcoTender trials, scientific metrics would be updated to reflect
improved measurement and modelling capabilities. Therefore the environmental
benefits would not be directly comparable across the tenders, adding to the
difficulty of using information from prior tenders in setting a reserve price.

In response to these issues it was identified that an ex post reserve price
strategy was required with the following properties. The strategy:
1. relies solely on data obtained within the tender;
2. is replicable and transparent; and
3. selects a cut-off that has merit from a theoretical point of view.

An overview of landholder bid signalling and the application of information
gain is provided in Section 6 below. Section 6.1 provides a brief background on
the information-theoretic principle behind the algorithm. Section 6.2 describes
how the algorithm is applied to situations where there is no sufficient prior
knowledge about the reserve price. We shall also describe how the algorithm
would behave in exceptional circumstances where more complex models do not
provide greater information than the simpler model. Section 6.3 describes how
the algorithm can be extended to “soft” thresholds that take uncertainty into
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account, and to situations where there is prior information on the reserve price
from previous tenders.

6 Information Gain

In this section we describe an algorithm for estimating an ex post reserve price
in a conservation tender. The unit bid prices received are interpreted as signals
about the unit payment landholders require in order to provide the EBIs – the
landholders’ “willingness to accept”. Without a reserve price it is not possible
to identify which of the signals (unit bids) come from low-cost and high-cost
sources.

The aim of the algorithm is to estimate a threshold from the signal using a
concept known as “information gain”. The threshold is then used as the ex post
reserve price and all bids below the threshold are accepted. The bid prices are
a sample of the signals from a population of landholders.

In order to apply the information gain concept, a model that best reflects the
signals must be chosen. In this case, we assume that the unit cost of providing
EBIs is a random variable with a normal probability distribution. We can
use that model to describe the sample. For instance, we can use the mean to
partition the sample into low-cost and high-cost bids. However, the mean is not
necessarily the best statistic to partition the sample. For example, outliers can
dramatically influence the mean value. Rather than using an arbitrary statistic
(such as the mean) we can use to the concept of information gain to make better
use of the information contained in the unit bids.

The “source” of the signal is an important concept used in information
theory. In this case, the source is a “typical” landholder which is modelled
as a random variable with a probability distribution. The signal is the unit bid,
which is the realisation of the random variable. The challenge is to model the
source (i.e. model a “typical” landholder). A simple model is to assume that the
random is normally distributed. In this case, the expected value of the random
variable is the mean of the normal distribution.

Information gain requires an alternative model for the source. Consider a
model where there are two types of “typical”landholders. For example, assume
that landholders may be categorised as sheep farmers or cattle farmers, and that
cattle farmers always have higher opportunity costs than sheep farmers. If an
agency knows that a bid is coming from a specific type of farmer, then they can
more accurately estimate the bid price. Knowing the type of farmer leads to an
information gain about the unit bid price. In reality, there could be several types
of landholders, and the distributions might overlap between different types. For
the purpose of determining a reserve price, the only relevant types of sources
are typical low-cost and typical high-cost bidders. The low-cost and high-cost
bidders are separated by a threshold into two mutually-exclusive groups.

A model with two sources is considered to be more complex than a model
with a single source. Typically, we would expect to gain more information about
the signals from more complex models than from simpler models. The threshold
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where the alternative model leads to the greatest amount of information gain
(compared to the simple model) forms the reserve price. This threshold
separates the bids into two groups such that knowing which group a bid
belongs to provides the greatest information of a bid’s location in the modelled
distribution of bids.

The use of information gain to determine a reserve price is motivated by the
need to find an empirical model that separates the low-cost and high-cost bid
prices using only the bid data. If information on opportunity costs is available,
traditional economic approaches to setting a reserve price are likely to be more
appropriate.

6.1 Information-theoretic principles

Given continuous random variables X and Y , the concept of information gain
provides a quantitative measure of the amount of information one variable
provides about the other. In information and communications theory, the
amount of information received from observing the value of a random variable
is a function of the probability distribution. If p(x) is the probability density
function (p.d.f.) of X, the Shannon entropy (Shannon, 2001; Wallace, 2005) is
the expected amount of information3 from any observed value of X:

H(X) = −
∫ +∞

−∞
p(x) log p(x)dx (1)

If X and Y are not independent, then an observed value of Y provides some
information about X. The entropy of X conditional on Y is:

H(X|Y ) = −
∫ +∞

−∞
p(y)

(∫ +∞

−∞
p(x|y) log p(x|y)dx

)

dy (2)

where p(y) is the probability density function of Y , and p(x|y) is the conditional
probability density function of X given Y . The amount of information “gained”
about X from observing Y is the difference between the entropy of X, and its
conditional entropy given Y :

I(X; Y ) = H(X)−H(X|Y ) (3)

This is also known as the Kullback-Leibler divergence (Bishop, 2007; Duda,
Hart, & Stork, 2001) of the univariate probability distribution of X from the
conditional probability distribution of X given Y . If X and Y are independent,
then I(X; Y ) = 0, which means Y does not provide any gain in information
about X. If X and Y are identical, then I(X; Y ) = H(X) = H(Y ), which
means Y provides the same amount of information as observing X.

Given observed values X = x and Y = y, the amounts of empirical
information received and gained are functions of the estimated probabilities

3The logarithm usually has base 2, with gives a measure of information in bits.
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of the values:

h(x) = − log Pr(X = x) (4)

= − log
∫ x+δ

x−δ

p(ξ)dξ (5)

h(x|y) = − log Pr(X = x|Y = y) (6)

= − log
∫ y+δ

y−δ

∫ x+δ

x−δ

p(ξ|ν)dξdν (7)

I(x; y) = h(x)− h(x|y) (8)

where δ is a constant quantisation (discretisation) parameter which deter-
mines numerical accuracy in the estimated probabilities of observed values
(Christofides et al., 1999). Note that H(X) = E[h(x)], H(Y ) = E[h(y)] and
I(X; Y ) = E[I(x; y)], where E[∙] is the expectation operator.

6.2 Bimodal Price Threshold (BPT) Algorithm

In a conservation tender, the bid prices from the landholders are regarded as
the observed values of random variables. Suppose there are n bids (unit prices),
denoted by the set S = {x1, x2, . . . , xn}. Assuming the landholders are acting
independently, S can be sorted in ascending order (i.e., xi ≤ xi+1) without loss
of generality.

The observed values are regarded as signals from the landholders indicating
the minimum price at which they are willing to sell the environmental goods
and services they produce. Without any prior information about the population
of landholders, a simple model is to assume that the signals are coming from
n independent identically-distributed (i.i.d.) sources, denoted by the random
variables X = {X1, X2, . . . , Xn}, each with a Gaussian probability distribution
whose parameters can be estimated from S. That is, the simple model assumes
that the sources are a group of “typical” landholders.

Since the Xi’s are independent, the amount of information from receiving
the signals in S can be calculated as follows:

h(S) = − log Pr(X = S) (9)

= − log Pr(X1 = x1, X2 = x2, . . . , Xn = xn) (10)

= − log
n∏

i=1

Pr(Xi = xi) (11)

= −
n∑

i=1

log Pr(Xi = xi) (12)

= −
n∑

i=1

log
∫ xi+δ

xi−δ

f(ξ; μ, σ2)dξ (13)

where δ is a constant quantisation parameter, and:

f(x; μ, σ2) =
1

√
2πσ2

e−(x−μ)2/(2σ2) (14)
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is the normal probability density function with parameters μ and σ estimated
from S.

The reserve price, on the other hand, provides information for the buyer
side. It indicates the maximum price that a purchasing agent is willing to pay
for environmental goods and services. The reserve price can be represented as a
threshold, t /∈ S, for assigning a binary label, yi, to each bid price in S according
to the following rule:

yi =

{
“low” xi < t

“high” t < xi

(15)

The labeling of the bid prices with respect to the threshold (reserve price)
is effectively an alternative, slightly more complex model of the sources of the
signals. The alternative model suggests that the sources comprise two categories
of landholders: those who typically bid below the threshold, and those who
typically bid above the threshold. That is, the model partitions the set X into
two subsets:

Xlow = {Xi where yi = “low”} (16)

Xhigh = {Xi where yi = “high”} (17)

where the random variables in Xlow are assumed to be i.i.d., each with a
Gaussian probability distribution whose parameters μlow and σlow are estimated
from:

Slow = {xi ∈ S | xi < t} (18)

Similarly, the random variables in Xhigh are assumed to be i.i.d., each with
a Gaussian probability distribution whose parameters μhigh and σhigh are
estimated from:

Shigh = {xi ∈ S | t < xi} (19)

Let θ = {y1, y2, . . . , yn} denote the labels of the bid prices in S for a
given threshold. The amount of information gained about S given θ can be
approximated empirically as follows:

I(S; θ) = h(S)− h(S|θ) (20)

= h(S)− (h(Slow|θ) + h(Shigh|θ)) (21)

where h(S) is as defined in Equation 13, and:

h(Slow|θ) = −
∑

xi∈Slow

log
∫ xi+δ

xi−δ

f(ξ; μlow, σ2
low)dξ (22)

h(Shigh|θ) = −
∑

xi∈Shigh

log
∫ xi+δ

xi−δ

f(ξ; μhigh, σ2
high)dξ (23)

In a conservation tender, the reserve price can be determined by finding
a threshold that maximises the empirical information gain in Equation 21.
Algorithm 1 on page 13 describes the procedure. The algorithm is based on
the following assumptions:
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1. There is no prior knowledge about the distribution of the reserve price.
Assuming a normal distribution with parameters μ and σ estimated from S
essentially biases the reserve price towards μ. In fact, if the distribution is
symmetric around μ (e.g. a normal distribution or a uniform distribution),
then the information gain is likely to be maximised with a threshold value
near μ. In which case, the reserve price partitions S into two equally-
sized subsets. (Section 6.3 discusses how to extend the algorithm to
situations where there is prior knowledge on the probability distribution
of the reserve price).

2. The quantity of supply available at each bid price is not taken into account.
This constraint prevents high-quantity suppliers from dominating the
reserve price, unless they are willing to spread out the quantity of their
supply across several bids. (Section 6.3 discusses how to extend the
algorithm to weight the bid prices by the available quantity).

3. The set S is likely to contain outliers, requiring robust estimates of the
parameters of the normal distribution. The algorithm considers three
methods for estimating μ and σ from S: “mean” which uses the arithmetic
mean and standard deviation; “median” which uses the median and half
the range of values in S; and, “midpoint” which uses the mean of the
maximum and minimum values in S. We are assuming that these methods
are sufficient to address the effects of outliers.

4. Preference is for a threshold (reserve price) at an interval with a wide
gap between consecutive values in S. The algorithm incorporates this
constraint by using the width of the gaps to vary the quantisation
parameter, δ, at each iteration. This parameter determines the numerical
accuracy of the estimated probabilities. A δ which is either too narrow
or too wide would overestimate or underestimate the probabilities of the
observed values (Figure 4). Either case would result in low information
gain.

Figure 4: Overestimation or underestimation of probabilities when δ is too
narrow or too wide.

5. If there are two thresholds (reserve prices) that lead to the same amount
of information gain, preference is for the threshold in an interval where the
margin, δ, is largest. In the unlikely event that there are two thresholds
with the same margins and same information gains, then preference is
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for the higher threshold—that is, the reserve price that procures more
environmental benefits. If a conservative lower reserve price is preferred,
then the conditional expression (δ̂ ≤ δ) in Line 16 in Algorithm 1 should
be replaced with (δ̂ < δ) instead.

Algorithm 1: BimodalPriceThreshold

Data: Bid prices S = {x1, x2, . . . , xn}, sorted such that xi ≤ xi+1

Result: Reserve price t̂
begin1

initialise t̂← undefined ;2

initialise Î ← −∞ ;3

initialise δ̂ ← −∞ ;4

for i← 1 to (n− 1) do5

if xi 6= xi+1 then6

t← 0.5 (xi + xi+1) ;7

δ ← 0.5 (xi+1 − xi) ;8

Slow ← {x ∈ S | x < t} ;9

Shigh ← {x ∈ S | t < x} ;10

for method ← “mean”, “median”, “midpoint” do11

use method to estimate μ and σ from S ;12

use method to estimate μlow and σlow from Slow ;13

use method to estimate μhigh and σhigh from Shigh ;14

I ← h(S)− (h(Slow|θ) + h(Shigh|θ)) ;15

if (Î < I) or ((Î = I) and (δ̂ ≤ δ)) then16

Î ← I ;17

t̂← t ;18

δ̂ ← δ ;19

end20

end21

end22

end23

end24

6.3 BPT extensions

An important question in determining a reserve price using Algorithm 1 is the
degree of uncertainty that could be associated with the threshold value. In a
conservation tender, for example, it can be argued that the algorithm should
take into account uncertainties in the unit bid price, particularly in relation to
the precision of the metric for EBI, and the impact of outliers.

One approach is to estimate uncertainty through a stochastic simulation of
“trials” involving samples of the unit bids, as shown in Algorithm 2. In each
trial, a subset of S is selected randomly, and a threshold is calculated using
that subset. The trial is repeated several times, resulting in several possible
thresholds. The probability distribution of the thresholds over several trials can
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be used to estimate some degree of uncertainty. For example, the mean, μt, and
standard deviation, σt, of the thresholds over several trials can be calculated,
and the value t = μt± σt can be regarded as a “soft” reserve price. This means
that we can choose a threshold anywhere between μt−σt and μt +σt. However,
due to random sampling, repeated applications of Algorithm 2 may produce
different values of μt and σt for the same S. In situations where a deterministic
soft threshold is required, or if the size of S is small, a leave-one-out method
(Algorithm 3) could be used instead of random sampling.

Algorithm 2: BPTSoft

Data: Bid prices S = {x1, x2, . . . , xn}, sorted such that xi ≤ xi+1

Parameter: M = number of trials, and R = proportion of n per trial
Result: Reserve price mean μt, and standard deviation σt

begin1

for m← 1 to M do2

Sm ← set of bnRc randomly-selected bids from S ;3

tm ← BimodalPriceThreshold(Sm) ;4

end5

μt ← arithmetic mean of {t1, . . . , tM} ;6

σt ← standard deviation of {t1, . . . , tM};7

end8

Algorithm 3: BPTLeaveOneOut

Data: Bid prices S = {x1, x2, . . . , xn}, sorted such that xi ≤ xi+1

Result: Reserve price mean μt, and standard deviation σt

begin1

for m← 1 to n do2

Sm ← S \ {xm} ;3

tm ← BimodalPriceThreshold(Sm) ;4

end5

μt ← arithmetic mean of {t1, . . . , tn} ;6

σt ← standard deviation of {t1, . . . , tn};7

end8

The algorithm can also be extended to incorporate arbitrary constraints
on the reserve price. For example, if there was a policy requirement that at
least half of the bids have to be accepted, then the first “for-loop” (Line 5) in
Algorithm 1 could be modified so that i starts from dn/2e instead of 1.

Note that the algorithm can only select a threshold from a set of candidate
thresholds. Information gain is the selection criterion, but it does not produce
the list of candidate thresholds. In Algorithm 1, the candidate thresholds are
constrained to a finite set consisting of mid-points between the unit bid prices.
Thus, by default, the algorithm ensures that there will be at least one unit
bid on either side of the threshold. The set of candidate thresholds can be
adjusted to incorporate external information on the reserve price. For example,
the set of candidate thresholds in Algorithm 1 can be extended to include reserve
prices from past tenders, including those that are outside the range of values
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in S, effectively allowing for an (unlikely but possible) blanket acceptance or
rejection of all the bids.

The algorithm can also be modified to incorporate prior models of the
distribution of the reserve price. For example, suppose T is a random variable
for the reserve price, and its probability distribution is known a priori (e.g.
estimated from past tenders). It is possible to use this information in two ways:

1. If the probability distribution of T is known to all bidders, it would be
reasonable to assume that they are going to quote bids centered around
E[T ], with variance Var[T ]. In which case, rather than estimating μ and
σ from S in Algorithm 1, we can impose a presumption that μ and σ are
equal to E[T ] and

√
Var[T ], respectively.

2. We can estimate the posterior probability, Pr(θ|S), of the labelling given
the unit bids. Let Y = {Y1, . . . , Yn} denote the random variables for the
labeling of the unit bids in S. In Algorithm 1, each candidate threshold,
T = t, has a corresponding unique labelling, Y = θ, so that:

h(θ) = − log Pr(Y = θ) ∝ − log Pr(T = t) (24)

Thus we can maximise Pr(θ|S) by minimising:

h(θ|S) = − log Pr(θ|S) = − log

(
Pr(S|θ) Pr(θ)

Pr(S)

)

(25)

= − log Pr(θ)− (− log Pr(S) + log Pr(S|θ)) (26)

= h(θ)− (h(S)− h(S|θ)) (27)

= h(θ)− I(S; θ) (28)

Note that h(θ|S) can be interpreted as the amount of additional informa-
tion needed to know θ given S. Minimising h(θ|S) is equivalent to choosing
a threshold that is highly likely (according to the known probability
distribution of T ), and that also maximises the information gain.

The algorithm can also be extended to incorporate the volume of EBIs
on offer at a unit bid price. Be default, the algorithm ignores the volume
information in order to avoid biasing the reserve price towards large-volume
bids. Let wi ∈ (0, 1) denote the proportion (of the cumulative total EBIs) that
are on offer at xi per unit, such that

∑n
i=1 wi = 1. The estimations in Lines 12

to 14 in Algorithm 1 could then use the weighted unit bids (e.g. μ =
∑n

i=1 wixi).

It is also possible to change the assumptions about the model class of the
distributions of X, Xlow and Xhigh. In this paper, we assumed that they are
normally distributed because that is the simplest assumption without prior
information. Given information about the likely shape of the distributions of
these random variables, other models can be used in the algorithm instead.

7 Empirical results from EcoTender in Victoria

The bid threshold algorithm has been trialed in a number of tenders throughout
Victoria. These tenders include three EcoTenders and multiple river, wetland,
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grassland and woodland tenders across different catchments in Victoria.

The first EcoTender run in the Corangamite Catchment (CC) was under-
subscribed (low competition). The budget could not be expended if all bids
were accepted. Funding all bids in this circumstance would have resulted in
the purchase of some relatively high cost sites (when compared to other bids
in the tender), foregoing the benefit of separating high and low cost suppliers
of environmental benefit. The funding of all bids also signal to the community
that government is willing to accept all (including very costly bids) without
discrimination. This has the potential to encourage rent seeking behaviour in
future tenders. Information on prior grants schemes was not useful in setting
a reserve price in this instance as there was no information on the expected
outcomes obtained under these schemes.

The second EcoTender in the Port Phillip and Western Port (PPWP) was
also under-subscribed. There was also an absence of data from alternative grant
schemes to inform the setting of a reserve price. In contrast, the third EcoTender
in the West Gippsland (WG) had very high participation. The EcoTender
budget could have funded less than half of the bids received.

The table in Figure 7 shows information on the costs, budgets and
environmental benefits obtained using the bid threshold algorithm in the three
EcoTenders 4

4The method used to estimate the environmental benefits differs across each of the tenders.
Therefore the data cannot be compared to one another meaningfully and has been omitted
from the table.
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From the table it can be seen that the bid threshold algorithm cuts off
at a different percentage of the total cost in each EcoTender demonstration
(see Column 4). This is consistent with the theory behind the algorithm, as
the cut-off is determined by the point that results in a best fit of two normal
distributions to the unit bid data there is no requirement that this point be
similar for different unit bid data.

The tender budget is not relevant to the determination of the bid threshold,
although in the event that the cut-off is higher than the budget, the budget may
be used as the cut-off. In the West Gippsland EcoTender, the bid-threshold
determined by the algorithm was indeed higher than the budget. In this case
additional funds were secured enabling the acceptance of more bids.

In the Corangamite and Port Phillip and Westernport EcoTender rounds, the
cost effectiveness gains from using the threshold determined by the algorithm
over the traditional budget method are significant. The unit cost was 27%
higher in Corangamite and 40% higher in Port Phillip and westerport using the
budget in comparison to the algorithm (see Column 11). In the West Gippsland
EcoTender demonstration using the algorithm results in a 7% increase in the
average unit cost for environmental benefit units. This is to be expected as
increasing the tender budget results in purchasing additional sites, moving to
the right along the supply curve. There are reasons why this might be cost-
effective and these are discussed in the next section.

8 Location of the bid threshold

The algorithm places few constraints on the location of the bid threshold.
There must be at least one bid on each side of the threshold. Therefore the
threshold must be strictly greater than the smallest unit bid and strictly less
than the largest unit bid. As the set of unit bids often displays some normal
characteristics, the bid threshold is more likely to be centrally located.

The location of the threshold in comparison to the budget is likely to change
depending on participation. If a tender is undersubscribed (as in Corangamite
and Port Phillip and Westernport), the cut-off is necessarily to the left of the
budget-determined threshold. Similarly, when there is little competition and
high cost sites are funded using the budget determined cut-off, the algorithm
threshold is likely to be to the left of the budget threshold. When participation
is high relative to the budget (for example funding all bids in the West Gippsland
EcoTender would cost in excess of twice the budget), the bid threshold is more
likely to be to the right of the budget-determined threshold.

When a tender is undersubscribed, or there is little competition, there are
clear advantages to applying the bid threshold algorithm. In these cases there
is an increase in cost effectiveness obtained from shifting the funding cut-off to
the left on the supply curve (see the results for Corangamitte and Port Phillip
and Westernport). There is also a price signal argument that favours the use
of the bid algorithm over the budget when faced with inadequate competition.
When an agency accepts and rejects bids in a tender a price signal is sent back
to landholders regarding the agencies willingness to pay. If an agency purchases
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all bids, the agency may signal to the community that they are willing to pay a
very high price.

This price signal is weaker in a discriminatory price auction than a uniform
price auction because each landholder is only aware of the status of their bid.
However, if landholders communicate (as may occur in smaller communities)
they may gain more information on the agencies willingness to pay. In a uniform
price auction the price signal is stronger as all successful landholders are paid,
and therefore aware of, the marginal bid price. If insufficient competition results
in the funding of high cost bids, this may lead to higher bids in the subsequent
tenders.

When a tender has higher participation relative to the budget it is less clear
whether the budget or algorithm threshold is more beneficial to the agency.
In particular, when the algorithm determined threshold lies to the right of
the budget determined threshold, the average unit cost will be higher using
the algorithm than the budget method. The increase in cost per unit may be
perceived as a fall in cost effectiveness of the tender as whole. However, this
decrease in cost effectiveness relates only to on-site costs. The fixed costs of
running a tender are not factored into this cost-effectiveness estimation.

Given a pool of funds to be allocated across several tender rounds, funding
more bids per round reduces the total number of tenders run leading to decreased
transaction costs. In other words, there is a trade-off between keeping on-site
costs low and keeping transaction costs low. Funding additional sites in a tender
where there is a large amount of competition may be more cost effective once
these transaction costs are taken into account. Moreover when participation is
high, the investment has already been made in assessing the quality of each site.
Using funds to purchase additional bids in the current tender has the benefit
of making use of the sunk costs of site assessments in the current round rather
than paying to undertake additional site assessments in a future tender.

Tender budgets are often announced before the tender is implemented. As
levels of participation are unknown ex ante, it is difficult to set the budget
optimally – ensuring enough competition to keep the price low without pushing
transaction costs too high. Using an algorithm that is executed ex post
instead of the budget method has the advantage of implicitly responding
to participation levels. For example, consider two tenders with the same
budget where participants are drawn from the same independent and identically
distributed normal distribution. In tender one, one hundred bidders are drawn
and in tender two, two hundred bidders are drawn. The expected bid threshold
in each case is the mean. Consequently the expected marginal cost is equated
between the two tenders. Using the budget threshold, the marginal cost in
tender one is expected to be higher than tender two as the greater participation
in tender two should result in more low cost options.

9 Conclusion, limitations, and further work

This paper has demonstrated that the bid threshold algorithm can be used
to determine an ex post reserve price in conservation tenders. The algorithm
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is designed for use in situations where information needed to apply standard
economic theory to developing a reserve price is absent. The algorithm is useful
when there are no alternative programs running concurrently and there is no
data available on opportunity costs. The algorithm is particularly useful when
a tender is under-subscribed.

The bid threshold algorithm presented in this paper is one method for
determining an ex post reserve price in conservation tenders. The algorithm
is designed for use in situations where information needed to apply standard
economic theory to developing a reserve price is absent. In cases where reliable
information on opportunity costs exists, these opportunity costs are likely to
provide a reserve price that results in a more efficient allocation of resources.
As discussed previously, situations where there is insufficient information to
form a reasonable estimation of agency opportunity costs may occur when:

• there is no information on prior tenders or alternative schemes;

• there is some information from different areas, however there is an ex-
pectation that opportunity costs are highly heterogeneous across regions;
and,

• the scoring system for a tender has changed significantly and there is no
method for comparing new and old units of environmental benefit.

Further to these situations, depending on the timing between tender rounds,
a tender implemented twice in one area may incur a higher average unit cost to
the agency. Here good value for money landholders may have been contracted
in the first tender, leaving higher cost landholders to bid in the second round.
The bid threshold algorithm could provide an alternative cut-off method in this
case.

The algorithm can be useful in tenders with both low and high levels of
competition. Use of the algorithm in a tender with low levels of competition
results in two potential benefits. Firstly, using the algorithm determined
threshold results in a lower average unit cost for the procuring agency. Secondly,
using the algorithm to determine a cut-off will prevent the community receiving
signals that the agency is likely to accept high bids in future tenders. Using the
algorithm in high competition tenders identifies bids that exceed the budget,
but represent good value for money relative to other bids in the tender. It
may be beneficial to the agency to spend additional funding on these bids
where transaction costs are already sunk, than to use this funding to procure
environmental benefit via an alternative means.

There are limitations associated with the use of the bid threshold algorithm.
The algorithm selects the bid threshold based solely on information contained
in the unit bid data with no regard to transaction costs. If a fixed pool of funds
can be allocated between multiple tenders, if less bids are funded per tender,
more tenders will be run increasing the total transaction costs. Consequently,
the algorithm may determine a threshold that results in the acceptance of too
few bids to be cost effective when considering allocating a pool of funds across
an undetermined quantity of multiple tenders. This problem is not unique to
situations involving the bid threshold algorithm. The trade-off between keeping
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on-site and transaction costs low exists when the threshold is determined by
budget also. Work is needed to investigate the relationship between transaction
costs and on-site costs when allocating funds over an undetermined quantity
of tenders. This information could be used to investigate modifications to
the algorithm that take transaction costs into account when determining the
threshold.

In circumstances where some information is available from a prior tender,
but the reliability of this information is unknown, it may be desirable to use
a combination of both prior information and information contained in the unit
bid data set to determine a reserve price. Further empirical work could be
undertaken to investigate extensions to the algorithm presented in this paper
that take prior information into account.
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