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Economic and Marketing Efficiency Among Corn Ethanol Plants 

 

Abstract 

In the corn ethanol industry, the ability of plants to obtain favorable prices through marketing 

decisions is considered important for their overall economic performance. Based on a panel of 

surveyed of ethanol plants we extend data envelopment analysis (DEA) to decompose the 

economic efficiency of plants into conventional sources (technical and allocative efficiency) and 

a new component we call marketing efficiency. The latter measure allows us to evaluate plants’ 

ability to contract favorable prices of corn and ethanol relative to spot market prices and its 

implications for their overall economic performance. Results show that plants are very efficient 

from a technical point of view. Dispersion in overall economic performance observed across 

units is mainly explained by differences in allocative and marketing sources. Our results are 

consistent with the view that plants with higher production volumes may perform better, in part, 

because they can secure more favorable prices through improved marketing performance.  Plants 

also seem to achieve significant improvements in marketing performance through experience and 

learning-by-doing. These results are consistent with two facts; 1) economies of scale may not be 

the only reason behind the increase in the average size of plants in the ethanol industry and; 2) 

there might be incentives for horizontal consolidation across plants.  

 

 

Key words: corn ethanol, data envelopment analysis, economic efficiency decomposition, 

marketing efficiency, mergers 
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Introduction  

Based on current scientific knowledge ethanol seems to be a viable “clean” substitute of 

fossil liquid fuels (although it can only substitute for fossil fuels at a relatively small scale) even 

considering indirect land use changes associated with increased production (Tyner, 2008).  It 

may also increase corn grower revenues (McNew) and reduce feeding costs of livestock 

producers (Van Wart and Perrin). However, in the last few years (especially since 2007) 

increases in corn prices and reductions in oil prices (and hence in ethanol prices) have hit the 

industry. In addition, a considerable amount of volatility in commodity markets has increased 

uncertainty and shorten plants’ planning horizon (Tyner, 2009). As a result the ability of plants 

to make production and marketing decisions that maximize their operating margins is becoming 

increasingly important. Identifying and quantifying potential drivers of plants economic 

performance may be of interest to plant managers, government officials, farmers, and other 

stakeholders (e.g. banks, investors, environmental agencies). This study puts special emphasis on 

the ability of plants to contract favorable prices of corn and ethanol (relative to spot market 

prices) on the basis of their production volumes and experience in the industry. We quantify this 

by extending conventional non parametric measures of efficiency to include a new component 

called marketing efficiency and linking this measure to a vector of proposed correlates.  

 

Price Bargaining in Contracts and Economic Performance 

Performance, as discussed by the theory of the firm (Gibbons), is determined by the 

choice of boundaries (what activities are conducted internally or outsourced) and by choices 

internal to the organization once the boundaries have been set. In the context of the ethanol 

industry the choice of boundaries is understood as the decision of plants on whether (and how) 
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they purchase corn directly from farmers or through elevators and whether (and how) they 

market their ethanol directly to blenders or through third parties. Therefore the choice of 

boundary is understood as marketing decisions made by plant managers. These decisions affect 

prices (net of transportation and marketing costs) faced by plants and, hence, their overall 

economic performance. Conventional methods of measurement of economic efficiency allow 

quantification of efficiency once the prices have been set and, thus, cannot factor in the role of 

marketing performance on overall economic efficiency. We propose to extend these methods in a 

way that permits quantification of overall economic efficiency including efficiency associated 

with marketing activities. Once we have calculated overall performance and decomposed it into 

its internal (technical and allocative) and boundary (marketing/procurement) sources, we find the 

statistical link between marketing efficiency and certain drivers believed to be important in the 

ethanol industry.  

Differential performance across ethanol plants may be explained by managerial ability 

but also by constraints faced by plants in the market. Evaluating plants’ performance subject to 

constraints requires modeling and quantification of those constraints. Frontier methods 

developed in production economics (Coelli et al.) provide the tools to quantify technological 

constraints. Technological frontiers may be calculated parametrically or non-parametrically. The 

latter is especially suitable for small samples. Since we have 33 observations in our sample we 

will pursue a non-parametric calculation of the technological frontier. Based on this frontier 

conventional measures of economic efficiency decompose overall efficiency into technical and 

allocative sources.
1
 Technical efficiency represents the ability of managers to achieve an 

engineering optimum. Allocative efficiency assumes prices are exogenous (an exception is 

                                                
1 A third component sometimes included is a measure of input congestion. This component measures the extent to 

which too much of one input (given quantity of other inputs) reduces the productivity of the plant. 
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Cherchye et al. which considers non-competitive settings) and measures performance based on 

the alignment of the chosen input-output combination to exogenous prices. For this reason, it is 

not designed to measure the ability of the plant to increase operating margins by partially 

controlling prices through marketing decisions. In the context of the ethanol industry this could 

be a serious drawback.  

Marketing alternatives available to plants involve conducting marketing and procurement 

activities directly with blenders and farmers or through intermediaries. They also involve 

different combinations of contracts and spot markets. The relative success of alternatives may 

also be affected by plants’ bargaining power.  By choosing a certain mix of alternatives, ethanol 

plants, may partially affect prices that they pay and receive. We propose to extend conventional 

DEA methods to account for increases in operating margins (measured by net operating revenues 

or NOR) due to favorable pricing attained through vertical integration decisions, management of 

contracts and spots, and/or hedging. Naturally we call this new measure, marketing efficiency.  

 

Characterization of Technology from Individual Plant Data 

The data consist of 33 quarterly reports of input and output quantities and prices from a 

sample of seven ethanol plants in the Midwest. We refer to each quarterly observation as a 

decision making unit (DMU.) DMUs are assumed to share a technology that transforms a vector 

of 7 inputs (corn, natural gas, electricity, labor, denaturant, chemicals, and “other processing 

costs”) into 3 outputs (ethanol, dried distiller’s grains with  10% moisture content (DDGS), and 

modified wet distiller’s grains with 55% moisture content (MWDGS).) Observed combinations 

of inputs used and outputs produced are taken to be representative points from the feasible 

ethanol technology.  In this study we use data envelopment analysis (DEA) to infer the 
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boundaries of the feasible technology set from the observed points, following the notation in 

Färe, et al. The production technology can be represented by a graph denoting the collection of 

all feasible input and output vectors: 

7 3, :GR x u x L u  

Where uL , is the input correspondence which is defined as the collection of all input vectors 

Nx  that yield at least output vector Mu . 

 

Conventional Decomposition of Economic Efficiency 

A given DMU is deemed economically efficient whenever it chooses a feasible (subject 

to the graph) input-output combination that maximizes NOR given prices.  In this section we 

proceed to calculate and decompose economic efficiency assuming that prices are exogenous and 

hence there is no marketing strategy that can affect prices at which ethanol is sold and corn 

procured. 

Assuming variable returns to scale
3
 and strong disposability of inputs and outputs the 

graph can be denoted by: 

33

1

, , : , , 1,  1,...,33j j j j

j

GR V S x u u zM x zN z j           (1) 

Where z  depicts a row vector of 33 intensity variables, M  is the 33x3 matrix of observed 

outputs, ju  is the 1x3 vector of observed outputs corresponding to the jth DMU, N  is the 33x7 

matrix of observed inputs, and jx  is the 1x7 vector of observed inputs corresponding to the jth 

DMU. 

We define the set of all combinations of inputs and outputs resulting in higher NOR than 

that actually achieved by the thj  DMU as: 
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, , :j j j j j j j j j j j j j

g x u x u p x r u p x r u      (2)   

Where jp  is the vector of input prices paid and jr  the vector of output prices received by the jth 

DMU and the subscript g denotes greater than observed NOR. 

We define an iso-NOR line in ethanol and corn space corresponding to the jth DMU as 

those combinations of ethanol and corn that result in the same level of NOR given jp  and jr . 

Fig. 1 depicts this set graphically in the corn and ethanol space (i.e. keeping all other inputs and 

outputs fixed.) The set j

g
 consists of all those points above the iso-NOR line as indicated by the 

arrows with direction northwest. 

In Fig. 1 the feasible technology set is represented by a graph displaying variable returns 

to scale and strong disposability of inputs and outputs as indicated by the arrows moving from 

the frontier (
Eth cu f x ) with direction southeast. As clearly seen in Fig. 1, the set j

g
 includes 

combinations outside the graph and hence not attainable by DMUs in the sample. The subset of 

observations in j

g
 that belong to the graph and are hence attainable by DMUs is depicted by the 

intersection of both sets delimited by the bold lines in Fig. 1: 

, ,j j j

g c Ethx u GR V S         (3) 

The thj  DMU could choose any alternative production plan within the area denoted by 

the bold lines achieving a feasible increase in NOR. 

We apply in this study a hyperbolic graph efficiency measure which means that the 

technically efficient projection of a given observation to the boundary of the technology set 

follows a hyperbolic path defined by equi-proportional reductions in inputs and increases in 

outputs. The value of the proportionate change necessary to reach the boundary, 
jTE , is defined 

as the technical efficiency of plant j: 
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1, / , min : , ,j j j j j j

v g c EthTE x u V S x u GR V S    (4) 

Where  is a scalar defining the proportionate changes and the rest is as before.  

Technical efficiency defined in Eq. (4) is illustrated in Fig. 2 by the distance from 

,j j

c Ethx u  to point A which corresponds to the technically efficient allocation in corn and ethanol 

space. Note however that point A does not correspond to the maximum feasible NOR level since 

it does not coincide with the point of tangency between the iso-NOR and the graph (point B.) 

The allocation that achieves the maximum level of NOR subject to the graph is called the overall 

economic efficient allocation. 

Technically, we define this maximum feasible level of NOR as: 

,
max      . .  ( , ) ,  j j j j

x u
p x r u s t x u GR V S     (5) 

Where j denotes maximum NOR attainable by j subject to the graph and observed prices, x  is 

the vector of inputs, and u  is the vector of outputs and the rest is as defined before. 

Overall economic efficiency under variable returns to scale, 
j

vE  , is measured by the 

hyperbolic distance between a given observation j and the iso-NOR line corresponding to j . 

The hyperbolic distance is computed through calculation of the reduction of observed inputs and 

equiproportional expansion of observed byproducts such that the iso-NOR corresponding to j  

is reached. This is illustrated by Fig. 3 where overall environmental efficiency is the distance 

between ,j j

c Ethx u  and point C. 

Since the movement from ,j j

c Ethx u  to C is a hyperbolic one, the measure of overall 

economic efficiency, 
j

vE ,  is related to maximum NOR in the following manner: 
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1

         1,2,...,j j j j j j j

v vE p x E r u j J      (6) 

We can decompose j

vE  into purely technical efficiency j

vTE   (represented graphically by 

the distance between ,j j

c DDGSx u  and A) and allocative inefficiency j

vAE  (represented 

graphically by the distance between A and C.) Overall efficiency can be expressed as: 

j j j

v v vE AE TE           (7) 

Therefore, we can define allocative inefficiency residually as:
2
 

j
j v

v j

v

E
AE

TE
          (8) 

Based on the solution to the problem described in Eq. (5) we calculate overall economic 

efficiency by solving the implicit Eq. (6) for each observation.  

 

 Limitations of Conventional Decomposition and Marketing Efficiency 

Plants’ marketing abilities may affect, at least to some extent, the prices obtained for 

ethanol and paid for corn. This fact would be ignored by the conventional decomposition of 

efficiency. In order to capture the effect of plants’ pricing strategies (integration/third parties, 

ability to bargain price in contracts) on performance we introduce the concept of marketing 

efficiency. Provided we have price observations for different plants located in different states and 

across time, differences among prices paid and received by DMUs can be due to spatial patterns, 

managerial efficiency,
3
 and inflation. The part due to inflation is controlled for by adjusting all 

prices to a base quarter (3
rd

 quarter of 2006) using the Producer Price Index (PPI) as calculated 

                                                
2 In this way we minimize stronger assumptions about convexity that may result in artificially low efficiency 

indexes. 
3 Note that expectation formation on market prices will affect plants marketing decisions. Differences in price 

expectations are, thus, embodied in managerial efficiency.  
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by the Bureau of Labor Statistics. The managerial and spatial parts however, are more difficult to 

deal with. 

Managerial differences are due to the fact that plants use different marketing channels 

(i.e. vertical integration and third parties as indicated in Table 1) and have different degrees of 

success in bargaining prices in marketing contracts . Since we have one plant per state we have a 

perfect correlation between space and manager and hence distinguishing between managerial and 

spatial sources of price differentials requires quarterly data on prices at the State level. Using 

these data as a basis we introduce in this section a new concept capturing the ability of plant 

managers to obtain, in a given State and a given quarter, prices as favorable as possible relative 

to prevailing market prices in that State and that quarter 

We denote market prices (as opposed to prices reported by plants) faced by the jth DMU 

as ,j j

M Mr x . Output market prices faced by the jth DMU, 
j

Mr , consist of ethanol market price 
j

ethr  

and prices directly reported by plants in all other revenue categories (byproducts). Input market 

prices 
j

Mx  consist of corn market prices and prices directly reported by plants in all other cost 

categories. State level data on corn prices is publicly available from USDA NASS Agricultural 

Prices. Ethanol prices, on the other hand, were obtained from 2006 and 2007 publications of 

Ethanol and Biodiesel News magazine (now Ethanol and Biofuels News).  

Using these prices we are now ready to define our novel concept of marketing efficiency. 

Technical and allocative efficiency do not change. We introduce, however, marketing efficiency 

as an additional component of overall economic efficiency. Marketing efficiency denotes the 

increase (reduction) in revenue and equi-proportional reduction (increase) in operating cost 

resulting from the ability of the managers to secure prices more (less) favorable than spot market 

prices. Therefore we are, in fact, comparing two levels of NOR under the same input-output 
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allocation but different sets of prices (spot market prices and prices actually obtained).  

Graphically this amounts to measuring the distance between two iso-NOR lines. However since 

the two iso-NOR lines are calculated based on different prices they display different slopes 

rendering them not comparable. To make the comparison possible we measure the distance 

between iso-NOR under observed prices (Iso-NOR
B
 in figure 4) and a parallel version of the iso-

NOR with market prices (Iso-NOR
M

 in figure 4).  This is illustrated by the distance between D 

and C in figure 4
4
 where D is the point on Iso-NOR

M
 corresponding to an equi-proportional 

change in inputs and outputs from point C.We measure the distance between both iso-NOR lines 

by implementing the following procedure. The marketing efficiency of the thj  DMU is defined 

as the hyperbolic distance between maximum NOR with observed prices and maximum NOR 

with spot market prices: 

1
* *j j j j j j j

M r u ME p x ME   1,2,...,j J     (9) 

Where 
j

M  is the NOR DMU j would have obtained had it faced market prices and used the 

corresponding NOR maximizing combination  (i.e.  ), 
jME  is 

marketing efficiency of the jth DMU, 
*j jr u  are revenues obtained by the jth DMU at the NOR 

maximizing point with observed prices, and 
*j jp x  are costs incurred by the jth DMU at the 

NOR maximizing point with observed prices. 

Since NOR with market prices can be lower or higher than NOR with observed prices, 

jME  will not be bounded between zero and one. In fact if observed NOR j  are higher (lower) 

than 
j

M  then 
jME >(<) 1. Purely technical efficiency 

j

vTE   (represented graphically by the 

                                                
4 The illustrated situation assumes actual prices are more favorable than spot market prices and hence Iso-NORB is 

positioned above and to the left of Iso-NORM. If actual prices were less favorable than market prices then Iso-NORM 

would be located above and to the left of Iso-NORB and the marketing efficiency score would be lower than one.  
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distance between ,j j

c DDGSx u  and A), and allocative efficiency j

vAE  (represented graphically by 

the distance between A and C) stay the same. Marketing efficiency is calculated as explained in 

(9) and the new overall efficiency is “adjusted” by factoring in marketing efficiency. Overall 

efficiency with market efficiency, j ME

vE , can be expressed as: 

j ME j j j j j

v v v vE E ME AE TE ME        (10) 

Based on values of 
j

M  we calculate marketing efficiency by solving the implicit Eq. (9) 

for each observation.  

Conventional and expanded measures of economic efficiency and their decomposition are 

calculated for a sample of surveyed dry grind ethanol plants. We first characterize the data 

collected and the plants surveyed, and then calculate their economic efficiency. 

 

Data 

Until recently, no publicly‐available data on the economic and technical performance of the 

current generation of plants was available. Previous studies have calculated input requirements 

and byproducts’ yield per gallon of ethanol produced by plants. Using engineering data McAloon 

et al. (2000) and Kwiatkowski et al. (2006) measured considerable improvement in plant 

technical efficiency between 2000 and 2006. Shapouri, et al. (2005) reported input requirements 

and cost data based on a USDA sponsored survey of plants for the year 2002. Wang et al. (2007) 

and Plevin et al. (2008), reported results based on spreadsheet models of the industry (GREET 

and BEACCON, respectively.) Pimentel et al. (2005) and Eidman (2007) reported average 

performances of plants although they do not clearly indicate the sources of their estimates. 

Finally Perrin et al. (2009) reported results on input requirements, operating costs, and operating 

revenues based on a survey of seven dry grind plants in the Midwest during 2006 and 2007. 
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With the exception of Shapouri et al. and Perrin et al. all of these studies reported values 

corresponding to the average plant (not individual plants) which prevents comparison of relative 

performances. In addition, it is generally believed that the industry has become more efficient 

and technologically homogeneous since 2005. Since the data used in Shapouri et al. was 

collected in 2002 it may not be representative of current technologies in the industry. In contrast 

to Shapouri et al., Perrin et al. surveyed plants in operation during 2006 and 2007 and employed 

a much more restrictive sampling criteria (discussed below) which yielded a modern and 

technologically homogenous sample of plants. This sample is believed to be more representative 

of current technologies and is, hence, our data of choice to assess the economic performance of 

plants and their drivers. 

Data by Perrin et al. consists of 33 quarterly reports of input and output quantities and 

prices from a sample of seven ethanol plants in the Midwest. Results of our survey contained 

total expenditures in labor, denaturant, chemicals, and other processing costs and, as a result, we 

calculated implicit quantities of these inputs dividing total expenditures by their corresponding 

price indexes. Not all plants reported data in all quarters so we are left with an unbalanced panel 

data set. We will discuss implications of this in subsequent sections. Observed combinations of 

inputs and outputs are taken to be representative points from the feasible ethanol technology.  In 

this study we use non parametric programming methods (Färe, et al) to infer the boundaries of 

the feasible technology set. We model the technology as a multiple input-output graph and all 

efficiency measures are defined in reference to that graph. 

 

Ethanol Plants: Characteristics 
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Table 1 presents some characteristics of the seven dry grind ethanol plants surveyed. 

According to Table 1 the plants produced an average rate equivalent to 53.1 million gallons of 

ethanol per year, with a range from 42.5 million gallons per year to 88.1 million gallons per year.  

The period surveyed included the third quarter of 2006 until the fourth quarter of 2007 (six 

consecutive quarters).  In addition plants could be differentiated by how much byproduct they 

sold as DDGS (10% moisture) compared to MWDGS (55% moisture.) Variation on this variable 

was significant, averaging 54% of byproduct sold as DDGS, but ranging from one plant that sold 

absolutely no byproduct as DDGS to another plant that sold nearly all byproduct (97%) as 

DDGS. 

Finally, plant marketing strategies are also characterized in Table 1.  In purchasing input 

feedstock, five of the six plants purchased corn via customer contracts signed either with 

elevators or farmers.  Similarly, in selling ethanol, five of the seven plants used third parties or 

agents.  Byproduct marketing across plants displayed a higher degree of variance.  Marketing of 

DDGS was split fairly evenly between spot markets and third parties/agents.  An even higher 

variability was observed for MWDGS, where no one marketing strategy (spot market, customer 

contract, or third party/agent) was significantly more prevalent across plants than others. 

Table 2 displays descriptive statistics of inputs used and outputs produced by the 33 DMUs 

in our sample. As mentioned before the basic observations in this study corresponds to a plant in 

a given quarter; so two quarters of the same plant are considered as two different observations as 

are two plants in the same quarter.  

 

Calculation and Decomposition of Efficiency 
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Conventional measures of economic efficiency and their decomposition, Eq. (7)-(8), are 

calculated for our sample of surveyed dry grind ethanol plants and reported in Table 3.a.
5
 Table 

3.a. shows that the economic efficiency of the average DMU is 0.89 which suggests that there 

may have been some room for improvement in profitability. Almost all the observed inefficiency 

comes from allocative sources as indicated by the average value but also by the dispersion 

observed in this source across DMUs. This in turn means that although most DMUs are 

operating in the technological frontier they are doing so in points that do not coincide with the 

NOR-maximizing point (such as point B in Fig. 3).Based on computed values of 
j

M  (see 

explanation of Eq. 9) we calculate marketing efficiency by solving the implicit Eq. (9) for each 

observation. The FZERO procedure in MATLAB was used in calculations. Technical and 

allocative efficiency are the same as before. Measures of marketing efficiency and adjusted 

overall economic efficiency are also displayed in Table 3. The average of marketing efficiency 

indexes is 0.97. This reveals that, in average, plants contracted less favorable relative prices than 

those observed in spot markets by integrating or managing contracts to sell ethanol and buy corn. 

We should not, however, jump to the conclusion that plants were inefficient in marketing and 

procurement activities. First establishing prices to be obtained some time in advance to the 

quarter in which production takes place provide certainty to plants which is valuable to managers 

either because they are risk averse and/or because “price lock-ins” guarantee a given profitability 

which is commonly used as collateral to raise more capital from investors or banks. These 

benefits of contracting are not factored in here. In addition significant dispersion is observed 

across DMUs as denoted by a standard deviation of 0.09 and a big difference between minimum 

(0.79) and maximum (1.27) values. 

                                                
5 We calculated the value of 

j

vTE  using MATLAB as indicated in the Appendix A. Maximum NOR have also been 

calculated using programming routines in MATLAB. 



 16 

Overall economic efficiency changes when marketing efficiency is included in the 

analysis. The average overall economic efficiency is reduced from 0.89 to about 0.87 which 

implies that contracting prices in advance may have reduced NOR, in average, by as much as 

4%. Furthermore standard deviation increases from 0.07 to 0.1. In light of these results 

marketing efficiency seems to be an important component in overall economic efficiency. 

Allocative efficiency continues to be an important component while technical efficiency does not 

seem to be a significant source of overall economic inefficiency. 

Only the observation corresponding to plant 7
6
 in the fifth quarter (DMU 26) seems to 

achieve allocative efficiency. The same plant achieves high scores of allocative efficiency in 

other quarters (DMUs 13 and 20). Plant 7 is the biggest (measured by production volumes) plant 

in our sample and DMU 26 corresponds in turn to the biggest volume corresponding to that 

plant. Crush margins (price of ethanol relative to corn) where very favorable across the nation in 

the period under analysis here. This amounts to a flat iso-NOR line such as Iso-NOR2
B 

in figure 

3. This would in turn push plants’ NOR maximizing combinations towards a high volume 

allocation such as point D in figure 3. Point D in figure 3 is the graphical equivalent to DMU 26 

in our sample; i.e. an observation that is technically efficient and it is also big enough to, given 

favorable crush margins, achieve allocative efficiency.   

Plant 7 is also the plant that performs the best in terms of marketing efficiency (see Table 

3.b). As displayed in Table 3.b. The average marketing efficiency of this plant is 0.994 followed 

by plants 5 (0.988) and 1 (0.986). The characteristics of these plants vary in many respects. Plant 

1 is one of the biggest plants in our sample but plant 5 is not. Plant 5, on the other hand, is 

vertically integrated (procures the majority of its corn directly from farmers and sells all of its 

ethanol directly to blenders) while plants 1 and 7 are not. Plants 5 and 7 are owned by firms that 

                                                
6 Due to confidentiality issues we cannot identify the State in which this particular plant is located. 
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own other plants as well while plant 1 is not. Plants 1 and 7 are privately owned while plant 5 is 

a farmers’ cooperative. Finally a general improvement in marketing efficiency in time is 

apparent across plants from Table 3.b. The systematic link between marketing performance and 

plant characteristics (size, vertical integration, experience, ownership structure, multi-plant 

status) will be explored in subsequent sections.
 

These results illustrate the importance of accounting for price bargaining in the 

measurement of economic efficiency. The analysis does not, however, incorporate risk aversion, 

production planning, capital management, and stochastic components that may well rationalize 

contracting at prices below spot. We will now proceed to link this measure of marketing 

efficiency to factors that we posit may be potential correlates of marketing success.  

 

Identifying Correlates of Marketing Performance 

Our unit of analysis is the plant. Due to the panel nature of our data, our unit of observation 

corresponds to a plant in a given quarter and we call this unit: DMU or decision making unit. 

Results in Table 3 reveal a significant dispersion of marketing efficiency across DMUs. Figure 5 

displays a histogram showing the approximate distribution of marketing efficiency scores across 

DMUs. The histogram does not take into account one observation deemed as outlier.
7
 A normal 

density function that smoothes out the distribution has been superimposed to the histogram in 

Figure 5. 

The highest frequency of marketing efficiency scores (i.e. most of the “mass” of the 

distribution) appears to be located between 0.95 and 1. This means that plants seem to operate 

under prices that are close but less favorable than spot market prices.  However a significant 

                                                
7 This DMU reported an observed ethanol price of $2.5 per gallon in a time where the market price was $1.60. This 

put its marketing efficiency at 1.27 or more than three standard deviations (0.09) away from the average (0.97).  

Explanations of possible causes of this anomaly were not provided by the plant. 
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degree of variability across DMUs can be observed as well. High dispersion in marketing 

efficiency scores (jointly with differences in allocative efficiency) seem to cause high dispersion 

in overall economic efficiency scores across DMUs. The ability of plants to maximize their 

effective crush margin
8
 relative to the market’s crush margin (which is approximated here by our 

measure of marketing efficiency) becomes especially important for survival in a time where 

market prices are not very favorable. Therefore identifying potential drivers of marketing 

efficiency may shed some light on future entry/survival trends in the ethanol industry. 

There are several characteristics that may affect a plant’s marketing performance in a given 

quarter and, hence, shape the distribution in Figure 5. First, the size of an observation (a plant in 

a given quarter is classified as big if its production is higher than the median in our sample, 

which is 12,930,306 gallons, and it is classified as small otherwise) is thought to affect its ability 

to market ethanol at a higher price (net of transportation costs) and, perhaps, procure corn at 

lower prices. The link between size and marketing performance is explained by reductions in 

transportation cost (per unit) and potential increase in bargaining power.  

On the corn procurement side, available empirical evidence (Schmigdal et al. 2010), seems 

to suggest that facilities producing larger volumes are less likely to utilize minimum price 

contracts and less likely to transport feedstock by truck-only (a transportation mode considered 

more expensive than rail). Most plants in our sample market their ethanol through third parties 

(i.e. marketers). Higher production volumes may enhance a plant’s ability to bargain more 

favorable conditions with marketers because marketers may better exploit logistical and 

transportation infrastructure at higher volumes. In addition larger facilities may have a higher 

reservation price to enter into an agreement with an ethanol marketer; i.e. they may be able to do 

better than smaller facilities when marketing their own ethanol production. This is because plants 

                                                
8 The crush margin is the difference between ethanol price and corn price. 
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can negotiate over larger volumes, use low cost transportation (i.e. rail), and economically afford 

hiring marketing staff members. Consistently with the latter, Schmigdall et al., 2010 found that 

plants producing larger volumes were more likely to utilize in-house ethanol marketing 

activities. Finally, plants capable of producing larger volumes are also associated with increased 

storage capacity which provides more flexibility in managing crush margins. The possible link 

between the production volume of a plant and its marketing performance may be tested by 

looking at the statistical relationship between our dichotomous measure of size and our measure 

of marketing efficiency.  

It is generally believed that ethanol plants improve performance as they gain experience in 

the market. Perfecting coordination and logistics, and building marketing and information 

networks, are among the reasons why a plant may enhance performance as experience is 

accumulated. Previous empirical (Schmigdal et al.) and anecdotal evidence from specialized 

press suggest that either through better in-house marketing management or by bargaining better 

agreements with marketers, more experienced plants are likely to obtain more favorable net (of 

transportation costs) prices. Therefore experience is expected to increase marketing efficiency. 

We will test this by calculating the marginal effect of experience (measured by the number of 

quarters that the plant was in operation up to the time period corresponding to each observation) 

on marketing efficiency.  

Finally there are other plant characteristics that may affect marketing efficiency such as the 

multi-plant nature of a DMU (i.e. whether a plant is owned by a firm that owns other plants), the 

degree of vertical integration, and the ownership structure. Plants have reported the same 

ownership structure, degree of integration, and multi-plant status for the entire period. Therefore 

these characteristics are non time-varying in nature. Under a panel data set, the marginal effects 
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of factors that are constant through time are identified only if there are no unobservable fixed 

effects affecting marketing efficiency. Since these plants seem to be very homogeneous from a 

technological standpoint and, in addition, they follow standard marketing and transportation 

practices we posit that the aforementioned characteristics summarize the main differences 

between plants. Therefore we calculate marginal effects of integration, multi-plant status, and 

ownership under the assumption of no unobservable fixed effects.  

Verifying the role of potential correlates of efficiency involves regressing calculated 

efficiency scores against a set of proposed exogenous variables. Second stage regressions using 

OLS are usually deemed inappropriate because efficiency scores constitute a limited dependent 

variable (restricted between 0 and 1). Hence linearity carries a misspecification problem. One of 

the advantages of our definition of marketing efficiency is that OLS is not subject to 

misspecification as these scores are not bounded between zero and one.  

In addition Simar and Wilson (1998) have warned against the use of second stage 

regressions as these may be subject to upward bias for small samples (Simar and Wilson, 1998). 

They propose a bootstrapping procedure to correct for this bias. However the upward bias is 

quantitatively relevant when the sample is thought to miss many observations from the actual 

population that could push the technological frontier upwards. This is not likely to be the case in 

our application mainly for two reasons. First the technology in this industry is very homogeneous 

as revealed by the small standard deviation across technical efficiency scores. Second, plants 

included in our sample are thought to be representative of the latest generation technology and, 

hence, are expected to drive the technological frontier in the industry minimizing potential 

upward biases caused by a small sample size. 
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Results and Discussion 

We use conventional linear pooled OLS (POLS) techniques without bootstrapping to 

approximate the marginal effect of drivers on marketing efficiency. The equation to be estimated 

is:  

 

                  (11) 

Equation (11) posits that the marketing efficiency score of plant i in quarter t depends 

linearly on the size of plant i at time t (1 if big, 0 otherwise), experience of plant i at time t 

(quarters in operation up to quarter of observation), integration (a continuous variable bounded 

between 0 and 1 indicating the average of the fraction of corn purchased directly from farmers 

instead of elevators and ethanol sold directly to blenders instead of marketers), the multi-plant 

status of a DMU (1 if multi-plant, 0 otherwise), the ownership structure (1 if cooperative, 0 if 

privately owned firm), the interaction between integration and size, and random noise 

represented by .  

As previously discussed size and experience are expected to increase marketing efficiency 

(i.e. >0 and  >0). Integration (conducting marketing activities in-house) may allow plants to 

increase their marketing efficiency by avoiding double marginalization (i.e. avoiding mark-ups 

charged by elevators and ethanol marketers for marketing services). On the other hand 

intermediaries, by pooling volumes and exploiting marketing, logistics and distribution 

infrastructure, may allow their clients to obtain more favorable prices. Integration, hence, is 

expected to be effective in enhancing marketing efficiency only for big DMUs that can, by 

themselves, exploit (marketing) economies of size; i.e. 0 and  >0. 
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The effect of the multi-plant status of a DMU is unknown. First DMUs owned by firms that 

own other plants may achieve better prices if the owner firm is able to exploit marketing 

economies of size (pooling volumes from several plants) and bargain a better deal in terms of 

prices net of transportation cost. On the other hand they may be part of an overall firm-level 

profit maximizing behavior that need not be consistent with plant-level profit maximizing 

behavior. Hence we do not have a prior expectation on the sign of . Finally we have two types 

of ownership structures in our sample; cooperatives and privately owned firms.
9
 Cooperatives 

are usually formed by farmers who, in turn, supply feedstock to the plant. Thus the objective 

function of the plant may incorporate the welfare of farmers which, in turn, may not be 

consistent with higher marketing efficiency scores. As a result we expect that <0. 

Equation (11) proposes 6 independent variables and an intercept which marginal effects are 

to be estimated with 32 observations (the 33 original observations minus the aforementioned 

outlier). It is not surprising then that, as shown by Table 5, a regression including all factors 

yield, mostly, statistically insignificant individual coefficients (as indicated by high individual p-

values) and a globally significant model (see high F-statistic and corresponding p-value of 0.07). 

Our strategy to overcome this problem consist of estimating models corresponding to every 

possible combination of the six (the intercept is included in every model) independent factors 

proposed here and conducting statistical tests for model comparison. We compare models by 

calculating both the Akaike information criteria and the Bayesian information criteria for each 

one of them. These criteria have identified the following as the “best” model:
10

  

                                                
9 Some plants are owned by private firms which are, in turn, owned by public corporations. We do not distinguish 
here between plants owned (at least partially) by public corporations and those that are not. We treat all privately 

owned plants homogeneously in terms of ownership. 
10 The best model, in the Akaike sense, is the one that provides the best combination of goodness of fit and 

parsimony. It is calculated as the model that maximizes information entropy (i.e. a combination of high accuracy 

and low complexity). 
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    (12) 

                          

where p-values (probability of null hypothesis that the coefficient is not different from zero) are 

in parenthesis. 

Before we discuss these results and their implications a note on validity of inference is in 

place. We have seven plants in our sample and six quarters of observations. However not all 

plants have reported data in all quarters so we are left with an unbalanced panel based on which 

we run our pooled ordinary least squares (POLS) regression. POLS estimates of marginal effects 

are consistent and inference valid as long as five conditions hold: population orthogonality 

condition, non-multicollinearity, homoskedasticity, no serial correlation (Wooldridge, 2001), and 

random selection of missing data. We denote our matrix of explanatory variables in t by . 

Therefore  includes observations of all explanatory variables for all plants that reported data in 

t. The population orthogonality condition is expressed as ; and is equivalent to 

saying that  has mean zero and is uncorrelated with each regressor. Non-multicollinearity is 

defined as , where K is the number of model parameters (K=3) and T is the 

number of periods for which data is available (T=6). This condition rules out any linear 

dependencies among the explanatory variables. Homoskedasticity is defined as 

, where . This means that the conditional variance of 

the error does not depend on   and that the unconditional variance is the same in every period. 

Finally the no serial correlation assumption can be defined as . 

This condition restricts the conditional covariances of the errors across different time periods to 

be zero (Wooldridge, p. 171). Finally random selection of missing data requires that there be no 

correlation between the probability of an observation to be missing and the value of the 

dependent variable in that observation.  
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Our first concern is the possibility of endogeneity between marketing efficiency and size. 

Size may affect marketing efficiency through the channels previously discussed but it could be 

argued that marketing efficiency (which reflects how favorable prices actually obtained by the 

plant are relative to market prices) may also affect size. This is because, all else equal, the higher 

the crush margin obtained by the plant the stronger the incentives to increase production volume 

and, possibly, size. However a careful look at our measure of marketing efficiency reveals that it 

should not be expected to be systematically correlated with observed crush margins. Rather it is 

expected to be systematically correlated with the difference between market crush margins (that 

resulting from spot market price) and actually obtained crush margins. This difference is in turn 

determined by plant characteristics as proposed here. Nevertheless we conduct a Haussman test 

of the endogeneity of size running a first stage regression of size against experience and 

observed crush margins. The second stage regression includes size, experience, crush margins, 

and residuals estimated from the first stage regression. The hypothesis of endogeneity of size in 

this context was rejected at all levels of critical values (0.01 to 0.10). 

Moreover multicollinearity problems are to be expected if there is a systematic linear 

relationship between experience and size. Different criteria used to test for multicollinearity 

failed to reject the null hypothesis of no multicollinearity.
11

 In addition an Engel test of residual 

heteroskedasticity results in failure to reject the null hypothesis of homoskedasticity.
12

 Finally 

the Durbin-Watson statistic (the DW-stat was 1.88 with a p-value of 0.5) suggests that there is no 

autocorrelation in the error structure. Finally, in the context of our survey, we have no reason to 

believe there is a self-selection problem in missing data. Plants reported the information 

                                                
11 The average variance inflation factor (VIF) was 1.18 and the largest VIF was 1.26. In addition, regression of size 

against experience results in a coefficient of 0.003 with a p-value of 0.77, suggesting that there is no statistical linear 

relationship between size and experience. 
12 The value of the corresponding statistic was 0.22, significantly lower than the critical value at a 0.05 level of 

significance (3.84). 
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requested provided it was readily available. To sum up assumptions required for consistency and 

inference validity based on POLS results seem to hold in this context. We can now proceed to 

discuss the results and its ramifications with some degree of confidence. 

As suggested by equation (12) the increase in size of a DMU from small to big tends to 

increase its marketing efficiency by 0.066.
13

 This result is consistent with (but not a poof of) the 

hypothesis that plants may be able to increase net operating revenues by exploiting bargaining 

and transportation advantages associated with increased size (i.e. operating at a production level 

above the median in the sample). In reality increasing production may (despite enhancing 

marketing efficiency) entail costs or face capacity constraints not captured in our analysis. These 

issues are not factored in here so we need to be cautious before we jump to the conclusion that 

plants should increase size. According to equation (12) accumulation of experience (the passage 

of quarters in operation) tends to increase marketing efficiency by 0.003.
14

 This, of course, does 

not involve a decision that the plant can make to increase marketing efficiency. It rather suggests 

the existence of a vegetative gain in efficiency across time. This result is consistent with visual 

inspection of time evolution of efficiency displayed in Table 3.b. The gain in efficiency may 

actually be quantitatively significant. According to our results plants may increase marketing 

efficiency by as much as 1.2% a year.  

Finally equation (12) suggests that integration, ownership, and multi-plant status do not 

affect marketing efficiency in a statistically significant way. In fact coefficients of these 

independent variables were statistically insignificant across all possible combinations of factors. 

                                                
13 This effect is statistically significant at the 1% level. 
14 This effect is statistically significant at the 10% level. 
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Particularly surprising is the result that even when included as the only regressor each one of 

these factors was statistically insignificant.
15

   

 

Conclusions 

This study exploits data from a survey of ethanol plants and tries to pinpoint the 

conventional and marketing sources of plants’ differential performance and their correlates. 

Results reveal that DMUs are very efficient from a technical point of view as suggested by a 

standard deviation of 1% in technical efficiency. However, our results also show dispersion 

across plants’ overall economic efficiency. Marketing efficiency defined as the ability of plants 

to bargain favorable contract prices (relative to market spot prices) seems to be an important 

source of differential performance.  

Two characteristics may be associated with enhanced plants’ marketing efficiency: size 

and experience. Results are consistent with the fact that as DMUs accumulate experience 

(accumulate quarters in operation in the industry), they might improve in their ability to contract 

favorable prices. Results are also consistent with the hypothesis that bigger plants may be able to 

bargain better relative prices. If this is true, then bigger plants may outperform smaller 

competitors, partly by securing more favorable prices (i.e. achieving higher marketing 

efficiency). This may offer an additional explanation to the increase in the size of the average 

plant observed in the industry in recent years besides technological reasons (i.e. economies of 

scale). Conventional DEA would not capture this potential source of differential performance. 

                                                
15 Results are available from the authors. Although statistically insignificant, values of coefficient estimates seem to 

be consistent with the idea of gains in marketing efficiency from increased size. Integration (which usually results in 

a volume smaller than the volume achieved by marketers pooling production from many plants) was mostly 

associated with decreased marketing efficiency. Multi-plant status (associated with higher volumes since a firm can 

bargain over production from several plants) is associated with higher marketing efficiency. 
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Any change in price would be deemed exogenous and not the result of plants’ characteristics that 

may affect their bargaining power.  

As indicated by the Federal Trade Commission, incentives for integration and market 

power in the ethanol industry has always been a concern of regulators. Exertion of market power 

in this industry would be economically inefficient for the conventional reasons (loss of economic 

surplus) but also for environmental reasons; i.e. if ethanol production is cut back more fossil 

fuels will be burnt and more gases will be emitted into the atmosphere. Our results do not seem 

to point towards the existence of incentives to vertically integrate (integration did not have a 

statistically significant effect on bargaining power; i.e. marketing efficiency). On the other hand, 

increases in plants’ production size may result in better pricing through either increased 

bargaining power or economies of size in transportation and logistic infrastructure. This may 

suggest potential incentives for increased size or horizontal consolidation (plants may pool 

production with other plants and bargain over pooled volumes which is already becoming a 

common practice in the industry). Calculations from the Federal Trade Commission (FTC) 

indicate a reduction in concentration in the ethanol industry during 2008 and 2009, and an 

increase in concentration in 2010. So far, however, the calculated Herfindahl-Hirschman Indexes 

(HHI) seem to indicate that the corn ethanol industry remains un-concentrated. The apparent 

inconsistency between results obtained here (there seems to be economic benefits from merging 

and pooling production volumes) and those obtained by the FTC may be explained by several 

factors. First, according to the FTC, bankruptcies of a few large firms during 2009 and 2010 had 

a de-concentrating effect in the industry. Second, high profitability triggered a wave of entry into 

the industry that remained very strong until 2009. Entry has a de-concentration effect that may 

have offset consolidation, resulting in a low HHI. Entry has decelerated since 2009. Finally, the 
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FTC measures concentration at the national level. Increases in size and/or consolidation may be 

occurring at smaller regional scales. 
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Appendix A 

The measure in (4) can be computed as the value of  in the following programming problem: 
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Appendix C 

The measure in (10) can be computed as the value of  in the following programming problem: 
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Tables 

 

Table 1.  Characteristics of the seven surveyed plants 

States 

Represented 
Iowa, Michigan, Minnesota, Missouri, Nebraska, S. Dakota, Wisconsin 

 

Annual 

Production 

Rate (m. gal/y) 

Smallest 42.5 

Average 53.1 

Largest 88.1 

 

Number of 

Survey 

Responses by 

Quarters 

03_2006 5 

04_2006 6 

01_2007 7 

02_2007 7 

03_2007 7 

04_2007 2 

Percent of 

Byproduct Sold 

as Dry DGS 

Smallest 0 

Average 54 

Largest 97 

 

Primary 

Market 

Technique 

 Corn Ethanol DDGS MWDGS 

Spot 0 0 3 1 

Customer Contract 4 2 0 1 

Third Party/Agent 3 5 2 2 

 

 

 

Table 2.  Descriptive Statistics: Inputs and Outputs 

  

Corn  

(million 

bushels) 

Natural Gas 

(thousand 

MMBTUs) 

Electricity 

(million kwh) 

Ethanol 

(million 

gallons) 

DDGS 

(thousand 

tons) 

MWDGS 

(thousand 

tons) 

Average 4.8 361 7.8 13.7 21.3 14.5 

Median 4.5 336 7.3 12.9 25 5.5 

Std Dev 0.9 61 1.5 2.8 10 15.4 

Min 3.6 297 6.7 10.6 0 199 

Max 8 569 13.3 22.9 34.2 56.2 

 

 

 

 

 

 

 



  

Table 3.a. Economic Efficiency Decomposition 

DMU 

Conventional 

Overall  

Economic 

Efficiency 

Technical  

Efficiency 

Allocative  

Efficiency 

Marketing 

Efficiency 

Overall 

Economic 

Efficiency  

with 

Marketing  

Efficiency
(a) 

1 0.82 0.977 0.84 0.81 0.66 

2 0.84 1 0.84 0.90 0.76 

3 0.79 0.985 0.80 0.89 0.70 

4 0.72 1 0.72 0.90 0.64 

5 0.80 1 0.80 0.90 0.72 

6 0.85 0.979 0.87 1.05 0.89 

7 0.95 1 0.95 0.93 0.88 

8 0.82 1 0.82 1.06 0.88 

9 0.83 1 0.83 0.92 0.76 

10 0.80 0.997 0.80 1.06 0.84 

11 0.86 1 0.86 0.99 0.85 

12 0.94 1 0.94 1.03 0.97 

13 0.96 1 0.96 1.02 0.98 

14 0.95 1 0.95 0.95 0.90 

15 0.91 1 0.91 0.98 0.89 

16 0.92 1 0.92 0.87 0.81 

17 0.90 1 0.90 0.93 0.84 

18 0.88 1 0.88 0.99 0.87 

19 0.88 1 0.88 1.02 0.89 

20 0.996 1 0.996 0.97 0.97 

21 0.93 1 0.93 0.93 0.87 

22 0.92 1 0.92 0.95 0.87 

23 0.93 1 0.93 0.79 0.74 

24 0.89 1 0.89 0.98 0.87 

25 0.91 1 0.91 1.02 0.93 

26 1 1 1 0.99 0.99 

27 0.96 1 0.96 0.99 0.95 

28 0.95 1 0.95 1.01 0.96 

29 0.92 1 0.92 0.98 0.91 

30 0.94 1 0.94 0.99 0.93 

31 0.912 0.993 0.92 1.04 0.95 

32 0.80 1 0.80 1.27 1.02 

33 0.94 1 0.94 1.03 0.97 

Average 0.891 0.998 0.893 0.97 0.868 

Std Dev 0.07 0.01 0.07 0.09 0.10 

Min 0.72 0.977 0.72 0.79 0.64 

Max 1 1 1 1.27 1.02 
(a)

 Calculated as Overall Economic Efficient times Marketing Efficiency 



  

Table 3.b. Efficiency Scores Grouped by Plants and Quarters 

  Plant 1 Plant 2 Plant 3 

QUARTER AE ME AE ME AE ME 

1 0.820 0.805 0.842 0.842 0.790 0.888 

2 0.847 1.051 0.946 0.946 0.824 1.065 

3 0.939 1.030 0.948 0.948 0.913 0.977 

4 0.879 1.019 0.932 0.932 0.916 0.949 

5 0.913 1.024 0.960 0.960 0.947 1.011 

6 NA NA NA NA NA NA 

Average 0.879 0.986 0.926 0.926 0.878 0.978 

 Ranking Fifth Third Second Sixth Sixth Fourth 

 

  Plant 4 Plant 5 Plant 6 Plant 7 

QUARTER AE ME AE ME AE ME AE ME 

1 0.716 0.897 0.800 0.903 NA NA NA NA 

2 0.796 1.060 0.859 0.990 0.829 0.918 NA NA 

3 0.902 0.935 0.881 0.988 0.925 0.818 0.961 1.023 

4 NA NA 0.888 0.980 0.934 0.744 0.996 0.975 

5 0.941 0.990 0.912 1.033 0.924 0.981 1.000 0.985 

6 NA NA 0.941 1.031 NA NA NA NA 

Average 0.839 0.970 0.880 0.988 0.903 0.865 0.986 0.994 

  Seventh Fifth Fourth Second Third Seventh First First 

 

Table 4. Correlates of Marketing Efficiency 

Factor 
Coefficient 

Estimate 
P-value

1
 

Regression  

Statistics 

Intercept 1.025 0.00 
R-square

 
=0.35 

Size (Big/Small) 0.013 0.82 

Experience 0.004 0.08 

F=2.27 Integration -0.481 0.23 

Multi-plant 0.009 0.81 

Cooperative 0.224 0.32 
p-val

2
=0.07 

Size*Integration 0.106 0.33 
1 

Denotes the probability that the corresponding coefficient is not significantly different from zero. 
2 Denotes the probability that the model is jointly insignificant to explain marketing efficiency. 

 

Table 5. Potential Drivers of Marketing Efficiency 

Factor Coefficient Estimate P-value
1
 Regression Statistics 

Intercept 0.908 2.34E-28 R-square
 
=0.35 

Size (Big/Small) 0.059 0.009 F=6.12 

Experience 0.003 0.076 p-val
2
=0.006 

1 
Denotes the probability that the corresponding coefficient is not significantly different from zero. 
2 Denotes the probability that the model is jointly insignificant to explain marketing efficiency. 



  

Figures 

 
Fig. 1 – Iso-NOR and Sets 

 

 
Fig. 2 - Technical Efficiency 

 

 

Fig. 3 - Decomposition of Overall Economic Efficiency 
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Fig. 4 - Decomposition of Overall Economic Efficiency with Marketing 

Efficiency 
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Fig. 5 – Distribution of Marketing Efficiency Scores 

 


