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ABSTRACT

Buying environmental services from private landieotdusing tendering mechanisms are usually sulbject

a budget constraint. Auction theory has mostly $ecuon target-constrained auctions and is less well
developed for this type of auction. This paper érama theoretical model specifically developed for
budget-constrained tenders and assesses its cgpacjiredict tendering performance under informatio
limitations typical of those found in field applimns. But this assessment cannot be done without
complementing the model with controlled laboratexperiments. Subject to their external validity,fime

that the model is able to make the correct poliegommendation when comparing the tender to an
equivalent fixed price scheme, even when the acguriits prediction is far from perfect. Howevtre
study suggests that more than a single point estino& bidders’ costs is needed for this to happen,
indicating that it should be worthwhile for poliegiministrators to invest in some information acdios

before deciding to run a tender.
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I. INTRODUCTION AND BACKGROUND

Buying environmental services from private landleotd using tendering mechanisms usually
involves budget-constrained, procurement-type aostiln a budget-constrained (BC) conservationi@uct
or tender, the program’s budget is predetermintegl;risk lies with the number of participants or trea
that might fail to come under contract, i.e. witle {policy’s outcome. The widespread use of the @U@er
format in conservation policy poses a problem w® ektent that auction theory has been well develope
since Vickrey's 1962 paper (less well-known thas miuch-cited 1961 paper), for target-constraingd) (T
auctions, but much less so for budget-constraiB€j guctions (Miller and Weikard, 2002). As a rggual
the field of environmental policy, there is a gagivieen theory and practice. A better theory wolllaha
agencies to improve tender design and perhapseletidther such a mechanism is worth going ahedd wit

or not, given existing alternatives.

This study investigates the predictive capacita ofiodel developed for BC tenders applied to land
conservation programs. By predictive capacity wamigoth the model’s capacity to predict bids anokem
importantly, to predict policy performance in theld. This model was first proposed by Latacz-Lohma
and Van der Hamsvoort (henceforth, LH) in 1997 famther refined in 1998, where policy implementatio
was investigated. To the best of our knowledges, ihito date the only extension of auction theohyctv
captures the particular features of conservatiowees. It does not however conform to the standard
assumptions of auction theory regarding optimal fbranulation, since in a BC tender, in contrasthe
TC, bidders do not know in advance the number afnerfs. Miller and Weikard (2002) show that this
results in multiple Nash equilibria with no dominaolution for choosing an optimal bid. LH (1990
this problem by introducing an exogenous param#éterbidders’ expectation of the highest accepthinle
known the budget constraint and the number of bgld&idders then use this best guess of theirsrio f
their optimal bids. This yields a much simpler miati@n the more standard TC model, but at a coeghat
bidders’ expectations of the highest acceptablechithot be observed, so that the model cannotdat s
policy makers to make ex ante assessments of the w&running a tender for conservation servidés.

model for theformationof bidders’ bid cap expectations is offered.



The purpose of this study is to investigate théditgland credibility of the BGnodelfor assessing
the performance of the BC tendering mechanism,gusi@veral performance criteria. Assessing the
performance of the mechanism itself was investidte Schilizzi and Latacz-Lohmann (2007) who
compared, with repetition, the performance of tl@ dhd TC tenders relative to an equivalent fixedepr
scheme. The focus in the present study is to examimether the BC model is capable of predicting the
performance of the tendering mechanism using bidsligted from the model rather than observed
experimental bids. To the extent that governmeeneaigs have, to date, almost exclusively used e B
format in environmental policy, it seems importemtest any model that might serve to recommenditiee
of this policy instrument. In Australia, for exarapkhe Victoria BushTender and EcoTender consenvati

programs were directly inspired by the BC modeb(®ham et al. 2003).

We investigate the validity and credibility oetBC model in three steps. We first study how well
it can predict experimental bids. We then examihe model's capacity to predict the economic
performance of a BC tender with the information @edilable to the experimenter. We then repeat this
analysis but with an information set typically dable to the policy maker. This requires implemegtihe
model in a controlled laboratory experiment, whel@a on bidders’ expectations of the maximum
acceptable bid (the bid cap) can be acquired. Mherétical gap in the BC model’'s not specifying how
bidders form their bid cap expectations can thuflled in. The first two steps represent the expenter’s
point of view: how does the BC model predict bidcsl golicy performance with full knowledge of the
model’s input variables (costs and bid caps)? Tird step mimics the situation of a policy makerowtas
only limited knowledge of costs and none of bidsafhe role of the experiments is twofold: besifilésg
in the gap left open by the non-specification ofvhioid cap expectations are formed, they allow us to
separately evaluate the model’s limitations dupdor information inputs and those that remain exeter

perfect experimental information.

Submitting auction mechanisms to laboratory expentation with a view to bridge the gap
between theory and practice is not new. Kagel'semyin Kagel and Roth’s (1995jandbook of
Experimental Economicgsemains a key reference for the contributionthefexperimental effort up to that
date, and one finds a comprehensive update in Bladt Smith’s (2008 Handbook of Experimental

Economics Result8ut it is perhaps Lust and Shogren’s (2007) b&oferimental Auctions: Methods and
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Applications in Economic and Marketing Researethich provides the most relevant material and

references for the present study, in particulaptered.

The present study adds to the growing literaturetlom use of laboratory experiments to
complement theory for policy purposes. Vernon L.itBmwho won the Nobel Prize in Economics for
introducing experimental methods into economics iukentified three roles for economic experiments:
testing a pre-existing theory, exploring new grodwadsuggest new theory, and test-bedding new policy
mechanisms. In this study we straddle all threesrgl perhaps a novel combination. In the firsttegt the
BC model's capacity to predict experimental bidsl goolicy performance; in the second, we use
experimental data to derive a model for the foromatof bid cap expectations; and in the third, we
investigate whether theory and experiment combioaa help with deciding if running a tender is a

desirable policy or not.

The remainder of the paper is organised as foll@&estion two presents the BC tendering model.
Section three describes its experimental implentiemtaSection four links the theoretical model ahd

experimental results. Section five provides andudises the results. Section six concludes.



II. THE BUDGET-CONSTRAINED BIDDING MODEL

The sealed-bid discriminatory price budget-constedi (BC) model examined in this paper was
first proposed by Latacz-Lohmann and Van der Hamdv(henceforth LH) in 1997. This is the first
bidding model that attempts to capture the pawictibatures of conservation tenders. They congidere
landholders to hold private information about thgpportunity costs of participating in the govermt®
conservation program. These costs arise when mamaggorescriptions divert farmers’ land management
practices away from their current plan, assumeletthe most profitable one. The government’s prable
in order to attract farmers into the scheme, isampensate them for the lost profits without knayvihe
magnitude of their opportunity costs. Auctions hate property of revealing at least part of this
information. In order for the landholder to paniaie in the scheme, the payment he or she reasiwssbe

at least equal to his or her opportunity cost afipi@ation.

LH (1997) first assume that landholders’ biddintatgies are predicated on the belief that the
conservation agency (the procurer) will decide anaximum acceptable bid, or payment ley&IThis is a
common practice when the agency is subjected tmat@ined budget. In actual fact, this maximum®id
is determinedex post after all bids have been received, as the laghést) bid accepted within the
available budget. In other words, no individual somboveg will be acceptedf represents an implicit
reserve price per unit of environmental servicdnanvn to bidders (and also unknown to the procurgit
all bids have been received). This external param@trepresents a deviation from standard target-
constrained auction theory, where optimal bidsdetermined endogenously as a function of the nurber
bidders, the distribution of bidders’ opportunitysts (assumed common knowledge), and the tardss to
achieved. In the BC auction, this target — the nemdd winners or hectares contracted — is unknodn.
landholder will tender a bid if the expected utility in case of participationceeds his or her reservation

utility.

The second assumption in the LH model is that bgjdet knowing the value of the bid c&pwill
form expectations about it, which can be charameriby the density functioifb) and by the distribution

functionF(b). The probability that a bid is accepted can theexpressed as
6



pib< B)= [ f (b)db=1-F(b) 1)

wherep is probability anqﬁrepresents the upper limit of the bidder’'s expémtatabout the bid cap, or the

maximum estimate of the highest acceptable bid.&9sence of the bidding problem is to balance eut n
payoffs and probability of acceptance. This meaeterchining the optimal bid which maximizes the

expected utility over and above the reservatiolityuti

Further assumptions are that there are no transactists in bid preparation and implementation,
that payment is only a function of the bid (disdriatory price auction), and that bidders are riektraf.
A risk-neutral bidder simply maximizes expected qflyThe optimal bidb’, derived by LH (1997) is
given by equation (2), whererepresents the opportunity costs of participation:

oo, 1F(O)
f (b)

(@)

LH (1997) further assume that bidders’ individugpectations about the bid c#) unknown to
them, are uniformly distributed in the rang8 [,E], where the lower and upper bounds represent the
bidder's minimum and maximum expectation of the dag. A bidder’'s expectations are that any bid kqua
to or belowg has a probability of 1 of being accepted, andladyequal to or abové has a probability of

zero of getting accepted. Then the expressiorhfmoptimal bid becomes (LH, 1997):
* 1 A *
b = max [E (c+ B), Bl s.t. b>c (3)
This is true for each of thebidders, so that expression (3’) also reads as:
* 1 A *
b = max [E (c+ B B S.t. b >c (3

Expressions (3’) and (3”) show that the optimaldiig strategy of a risk-neutral bidder increases

linearly with both the bidder's opportunity costs and his or her expectations about the bid cap,

characterized byj andﬁi. Bids thus convey information about opportunity tepsvhich are private



information unknown to the procurer; they therebgluce the information asymmetry, but not completely
the auction’s cost revelation property is blurrgdtlee fact that bids also reflect bidders’ beliatsout the
bid cap. This creates room for bidders to bid abtngr true opportunity costs and thereby to sedore

themselves an information rent.

Budget-constrained (BC) tenders differ from thgeéarconstrained (TC) format in that the
predetermination of the budget and of the outcomeeversed. As discussed by Miller and
Weikard (2002), TC tenders allow endogenous expieota to form and optimal bids to be
formulated without the need for exogenous bid capsis, while the TC model is a Nash-
equilibrium model, the BC model is a best-respanseel. This is because by knowing the target,
bidders know the number of winners or contractse@llocated, thereby yielding fewer degrees of
freedom than the BC auction. Not surprisingly, @ auctions were modelled much earlier, by
Vickrey in 1961. Their application to multi-unit aled-bid procurement tenders, relevant for
government conservation schemes, were only mod&le2D05 by Hailuet al, who built on
Harris and Raviv’'s (1981) generalization of VicKseppproach. In a discriminative (first) price

setting, both BC and TC models predict tegerbidding is an optimal strategy



[ll. EXPERIMENTAL IMPLEMENTATION

The purpose of the experiments described belowtwassess the capacity of the BC model to
predict the tender’'s economic performance. Oneagigsh know whether it is a credible tool for infangn
budget-constrained tendering design for allocatiogservation contracts. We focus first on the diffice
between the observed experimental bids and thdselated based on equation (3”); secondly, we atalu
the performance of the tendering mechanism usidg tdmputed with the BC model as opposed to using
experimental bids. This should shed some light betiver experimental results can be used for guittiag

use of BC tendering mechanisms.

Preliminary bidder surveys

Prior to holding the experiment, we surveyed oyreginental subjects along two dimensions: their
attitude towards environmental conservation, aneatds risk. The first question was asked so aseto b
able, after the experiment, to relate the amounbidf shading to environmental attitudes, since the
tendering experiment was set in a land conservatotext. One would assume that in a real polityrgg
the more environmentally concerned bidders woulttisttheir bids less than the less concerned. Whethe
such a reduction in bid shading would also be ofeskin laboratory experiments would depend on the

extent to which the context is effective in infleérg participants’ decisions.

Bidders’ risk attitudes were measured using aag@xt-equivalent method, whereby they
were asked to state the minimum price they woutepicfrom selling a lottery ticket that had beevegito
them. This measure was also hypothesised to exptasible differences in bid shading, whereby more
risk-averse bidders would shade their bids lesn tha less risk-averse. As it turned out, enviromiae
attitudes, as measured in this survey, did notapioeebe related in any way to bid shading, wherasasvill
be detailed later, risk attitudes, as measured, hdide some impact in the expected direction. The
implication of this is that contextual effects suamh environmental concerns did not affect experiaden

outcomes — a positive feature in terms of expertaierontrol.
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Experimental setup

Experiments were first carried out at the Universit K, then at the University of PThe P

experiment replicated the K experiment, in ordestteck for the robustness of results.

The K experiment was carried out with first-yeardgnts in agricultural economics. The tendering
setup referred to reductions in nitrogen fertiligh) on a wheat crop, in order to meet EU reguketio
regarding limits to nitrate concentration in growader (50 mg/liter). This is a serious concern urat
areas of northern K, and one which students in Kildide aware of and sensitive to. Participants were
offered would-be contracts for committing themsslt@reduce applications of nitrogen fertilisemfrtheir
currently most profitablelevel down to a predefined constrained level, eguaB80 kg per hectare. Each
participant was given a different production fuantifor nitrogen fertiliser in wheat production attlis
faced a different opportunity cost resulting fromme tadoption of the nitrogen reduction program.
Participation costs, labelled in Experimental CaeseUnits (ECU), were spread uniformly betweent (t
lowest-cost bidder) and 264 (the highest-cost bijddgidders knew their own opportunity costs but no
those of rival bidders (see appendix I). Participamere told that not all of them would be ablentio
contracts and that they were therefore competiagnageach other. To keep things simple, eachgiaatit
could put up just one land unit of wheat, the sanea for all participants. They were told thahigy won a

contract, they would be paid the difference betwibeir bid and their opportunity cost.

Since auctions are very sensitive to informationdtire, it was important to control for this aspec
Bidders were informed of the available budget aadd. The cost range (5 to 264 ECU) was not giken,
bidders were told that costs were uniformly disttéal. Each bidder knew his or her own opportunitstc
and was given a rough estimate of where he orteloel €ompared to rival bidders in terms of oppdtiun
costs. This was done by informing bidders in whodst quartile they belonged: lower quarter, second

guarter, third quarter, upper quarter (see appeiddo information regarding other bidders wasegivo

1K and P are used in lieu of actual institution &omhtion names to preserve anonymity in the revigyrocess: they
will be replaced by the original names in the fimatsion of this paper.
10



participants. In particular, no information abolg tBC model or even its existence was mentionedrelh

were 44 bidders in the K experiment and 27 in P.

The budget constraint announced (in ECU) was gledidtinguished from the actual payments
made at the end of the session (in $ or €). Payneritard currency would be proportional to gamg&CU
terms and their gains were calculated as own bidignparticipation cost. Bidders were asked twogsef

numerical information, their maximum estimate o thighest acceptable bid'f(), and their bidlg). We

made it clear to participants that we wanted themive us their highest possidstimateof what the cut-
off bid might be. We did not ask for the lower bdy# , as initial trial sessions revealed that askiothb
upper and lower bounds confused many participa&itaulations later carried out with the experimental
data showed however that such lower bounds woutdbadbinding; rather, the cost constraibt,> c,

turned out to be binding for some bidders. The ioapion for this study of not having data on fheimply
means that the validity of the BC model is probaliglerestimated. With knowledge of bqﬁ andg, its

capacity to predict bids and tender performanceldvowst likely be enhanced.

The P experiment was identical to the K experimBatticipants were mostly first-year students in
K and second-year students in P, with a few third fourth years as well as a handful of postgrauat
all in the area of agriculture or natural resour@nagement. To reflect the different number ofippdnts,
the budget constraint was modified proportionatetyas to result in the same competition inter(sétio
of budget to bidders) in both replicates: 3900 EGWK and 2300 ECU in P. A slight difference in tRe
experiment was the story told, to maintain higkevahce to local conditions: rather than nutrieagshing
into the groundwater, the problem was eutrophigaiticthe P river following excess surface runoftloése

nutrients — a socially and politically sensitiveus in P.

IV. LINKING THEORY AND EXPERIMENT FOR POLICY

Modelling the formation of bid cap expectationgiian a theoretical gap

11



In policy applications, data on bid cap expectaii(lheﬁi) are not available. The BC model cannot
therefore be directly used for guiding policy, reomputing (optimal) bids requires knowledge m:f,Eh

Two approaches are then available. One was chogeltHbin their 1997 paper: assume tlﬂ are
somehow distributed around a single average ctistae. The other approach is to implement the mode
experimentally and use the experimental data oderg] costs€) and bidders’ stated expectatioyj_ﬂs to
derive an empirical relationship between the twae @an then use this relationship to compute optima
bids and use the BC model to assess the tendgyectd performance. The question then is, doﬁihe

depend on bidders’ cost information? This informatis twofold, the cost quartiiéo which they belong

(co) and their own private cost).

Figure 1 reveals that the individual distributidntive ,@, does depend on knowledge of one’s cost

guartile. On average, high-cost bidders expectmbg& mum bid cap to be higher than low-cost bidders:

thus, the K data show th®& increase with cost quartilesgf as 157; 162; 213; and 262. Secondly, across

bidders, theﬁi approximate a normal distribution within each cgsiartile. Note that this is totally
independent of the BC model’'s assumption of a umfalistribution on f, E’i], which holds for an
individual bidder. Thirdly, the variance of th,?i falls with higher known costs. This is simply dwethe

smaller margin between one’s known cas} &nd the maximum acceptable bl_ﬁl which appears most

likely to the bidder: thus, in K, the quartilg/cq ratiosevolve as 11.3; 1.9; 1.3; and 1.1. A similar trend

obtains with the P data.

Figure 1 about here
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K : Expected bid cap distribution
by cost quartiles (n = 126)
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Figure 1: Influence of bidder cost information on the distition of bid cap expectations.

The P data showed a similar pattern except thar@2Q3 curves (rather than Q1 and Q2) overlap.

One can further ask, how exactly tt@ might depend on costs. To answer this question, the

relationship between individue}?i and the corresponding individual costsvas investigated. The K data

yielded the following best-fit linear relationsfip
[ =0.34c + 159 (t statistic = 5.51) (4)
and the P data yielded

[ =0.39c+ 171 (t statistic = 3.98) (5)

where the stars indicate significance at the 1%fidence level. AE computed using the average

experimental cost of 122.5, valid for both replesatwould yield a value of 201 with the K data &1@

with the P data, a difference of 9%.

Given this difference, we may not yet have a bidianodel describing the formation of bid
cap expectations by bidders who have imperfect keage of the cost distribution. For the time beiwg,
only have at our disposal some empirical relatigpsshthe external validity of which is not guarade

More than two replicates would be needed to betteerstand the difference between relations (4)(&nhd
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We therefore focus on exploring how far the BC nhodeuld be useful to policy maker$ these

experimental relationships could be reliably exttaed to field data

Linking theory and experiment for policy assessment

With estimates of expected bid caps as obtaingtiénprevious section, information on abatement
costs can be used to compute, using equation I@iyholders’ optimal bids. Costs being functionally
linked to quantities abated, they can be considereédndem. Estimates of quantities abatdy ¢osts €)
and optimal bidsk() together determine the tender's performance wbishthus be assessedante The
key issue, and the focus of the analysis, is theustnand quality of information amandN available to the
policy maker. Will the BC model be able to relialolympute optimal bids and assess tender perforneance

anteif such information is of poor quality?

To elucidate this question, we need a benchmaikctira help us disentangle the model’s intrinsic
predictive potential from its sensitivity to theality of information input. The limit case wherest® and
bid cap expectations are individually known canvjife such a benchmark. This is the situation of the
experimenter. The opposite, worst case scenadefined by the situation where a policy maker Hasisa
disposal only a single point average estimate afeabent and costs; for example, a regional averaige,
no knowledge of local variations. An intermediagse is where the policy maker has available mae th
one point estimate. We shall consider the casewffoint estimates, which typically represent fawider

‘cost-category pools’ in the target region.

This research strategy is represented in rows &5 in Table 1. The lower indicasqg andi
represent, respectively, the poor, the medium hedull information scenarios, which correspondhe 1-
point estimate, the 4-point estimate and the foflkledge of the experimentall( ¢)) set. The scenario in
row 3 is of course irrelevant to the policy makiés;purpose is to evaluate the Bbde| not the tender
itself. Rows 1 and 2 in Table 1 define the theoetand experimental benchmarks, respectively. Row
describes the strategy used by LH (1997) in theotetical analysis, and row 2 describes the esilits

experimental implementation. Row 1 is the thewisthproach; rows 2 and 3 describe the experimsnter’

14



approach; and rows 4 and 5 describe the approamgtteatlin this paper, linking theory and experimfent
ex ante policy assessment and taking account afrm@Etion deficiencies policy makers are usually

confronted with.

Table 1 about here

A key issue in Table 1 is the computation of theemted bid capsg from which, together with

estimates of bidders’ costs, optimal bils @re computed. The bid caps themselves are comhfrate the
cost estimates, as per equations (4) and (5), @mnepresented by the functiarirf Table 1. The difference
between rows 1 and 4 or 5 is that in the latteg, @valuates how well the BC model performs relaivihe
‘true’ performance in row 2, whereas the approacioiv 1 just assumes the model is correct. Asdar

3, it evaluates the BC model’s capacity to prethiet‘true’ results of row 2 given full informatiam costs
and abatement quantities. The effect of limiteaimfation can thus be isolated by comparing predicte
policy performance in rows 4 or 5 with that in r@wAgain, the purpose of row 3 is purely to allos/ta
disentangle the role of limited information fronetimtrinsic potential of the model: it ot to be related to

the policy maker’s information.

The results of this study are organized in sectiarccording to the rationale of Table 1. Section VI
then builds on section V to examine under whatrmétion conditions the model might make the wrong
policy recommendation. This is achieved by intradgan alternative but equivalent policy instrument

fixed price scheme with the same budget consteaithe BC tender.

V. HOW WELL DOES THE BC MODEL PREDICT THE TENDER’'S PER FORMANCE?

We assess the performance of the tendering mesrhaoy using four different criteria, namely:

outlay per unit of abatement (budget cost-effectdss); cost of abatement per unit abated (economic

15



efficiency); outlay per unit cost (rate of inforrimat rents); and the amount abated relative to thgimmum

possible amount if all bidders had been contrafeticy effectiveness).

The point of view of the experimenter: the modatignsic predictive capacity

How well does the BC model predict individual expemtal bids?

In order to assess how well the BC model prediesténder’s performance, the experimenter must
first assess how well it can predict the individeaperimental bids. This establishes (or not) tloelelis
credibility. The two frames in Figure 2 plot preid optimal bids against experimentally observets for
the BC tender in replicates K and P. The complgpeemental data is provided in Appendix Il. Optima
bids were computed for each bidder using equa®dh The 45 degree line represents perfect premicti
Two things can be observed. Firstly, predictiokess than perfect. Secondly, the model underestsrtae
experimental bids in K slightly but systematicaliye linear fit being everywhere above the 45 dedjree,

whereas (except for the lowest bids) the oppositeue in the P replicate.

Figure 2 about here

Experimental bid prediction (K data) Experimental bid prediction (P data)
350 350
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Figure 2: Model performance: Theoretically computed vemsxserimentally observed bids in K and P for a BC
tender. The 45 degree lines of perfect fit arasshd’ he *** indicate significance at the 1% confid® level.

One feature of the model may explain this sligherexor under- bidding: bidders are assumed in

equation (3”) to be risk-neutral. The bidders ia Khexperiment were measured to be somewhat riskepr
16



with an average certainty equivalent ratio of 108%ghtly greater than the risk neutral 100%. Rgtints
in P were clearly risk-averse, with an averageatety equivalent ratio of 78%. The ratios of the@age
experimental bids to the computed bids was 1.08énK replicate and 0.88 in the P replicate, intica
close agreement between two completely differentchaeisms, the hypothetical lottery and the
experimental tender with real money. This confotmshe expectation that risk-prone bidders ask more

than if they were risk-neutral and risk-averse brddask less.

In both K and P experiments, the linear fit hasralfer slope than the 45 degree line, with the
difference more marked in P. The BC model sliglothgrestimates low bids higher than it does higls.bid
As shown in section 2, the model computes optinidd vhich reflect greater bid shading for low cost

bidders than for high cost bidders.

Though not perfect, the BC model seems to yieldorable predictions of the experimental bid
data. If one relates the average of the absoldfterelnces between computed and experimental bitiseto
overall average bid, the relative error ratio, e aiverage dispersion around the 45 degree lid%s for
K and 21% for P. The correlation coefficients bedwehe computed and the experimental bids are 91.6%

for K and 83.4% for P.

Predicting the tender’s performance

With full cost information, the experimenter evaksmthe capacity of the BC model to predict the
performance of the tender as follows. He first eatds it with bids computed using the BC model then
compares this evaluation with the one obtainedctlireising the experimental data. This providesipper
limit to the model’s predictive capacity. The réswf this comparison can be read by comparingnonul
and 2 of Table 2. The upper half of column 2 pregidhe four performance measures each in their
appropriate units. The closer these measures atketones in column 1, the better the quality & th
prediction. The lower half measures this qualityarms of percent deviation from the results iruooh 1.
Two things can be said from this comparison. Fiesten in the best of all worlds, the BC model’s

predictive potential is not perfect. Perfection ‘ebvequire zero deviation on all performance ciiter
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Secondly, however, the deviations remain smallsscedl criteria and across both replicates K anaeler

exceeding 6%. The BC model can thus be considerbd & credible tool to work with.

Table 2 about here

The point of view of the policy maker: the roldimited information on bidders’ costs

Information scenarios and cost distribution assiongt

In contrast to the experimenter, the policy makék anly have limited information on landholders’
abatement costs. As per Table 1, we examine twayrirdtion scenarios, a poor quality one where only a
single point (overall average) estimate is avadadnh (N, c), and a medium quality one where faintp
(quartile) estimates are available. (If costs wbetter known than that, running a tender would be
pointless.) In either case, the policy maker muskerassumptions as to how the single average dotine
guartile averages are distributed, since the tiggiltlition is unknown. He then simulates bids llase
that information and his knowledge of the relatlipsbetween costs and bid caps as per equatiorar (4)
(5), for the K and P data respectively. He finalynulates the selection of bids starting from thedst
assumed bid, until the budget constraint is meble'@ brings together five possible distributiortiops

which, in the absence of any other information,gbkcy maker might plausibly consider.

In column 1N (indexeda andq for each information scenario, respectively) iptkeonstant and the
cost per unit of abatementi<c/N) is uniformly distributed from zero up to a maximusuch that the
initially known average remains unchanged; coststlaen distributed accordingly. In column 2, N lisoa
kept constant but is now distributed independently frdda Column 3 is similar except that the distribution
is triangular instead of uniform. The triangulastdbution is often used by decision makers whéte li
information is available. We assume it to be symimeind calibrated from zero to a maximum valud tha

allows the resulting distribution to respect théiah average point estimate. Finally, bdthand c are
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distributed, uniformly in column 4 and triangulaily column 5, assuming perfect correlation betwisen
andc and thus a constant cost per unit abatedhe top half of the table provides the estimaedes for

N, andc,; the lower half provides quartile averages forneatthe fourN, andc,. There was not much to
gain from using a triangular distribution in theufgpoint estimate scenario: due to the importance o
estimated lower and upper bounds for each quirtiteere were no differences with quartile uniform

distributions.

Table 3 about here

How well does the BC model predict with limiteddnfation?

The abatement and cost distributions of Table @esas the basis for computing expected bid caps
and optimal bids, which then determine the expeptatbrmance of the tender. Columns 3 to 7 in T&ble
present results for the five abatement and cosillitions in the poor information scenario, antuomns 8
to 10 do so for the medium information scenarioe Tupper part of the table provides the expected
performance for each of the four performance datérhe lower part measures the quality of the iptioh

relative to the experimental data, measured inguerdeviations. We focus only on the absolute deria.

Two things emerge. First, the BC model is able redjzt tender performance very well in the
medium information scenario (4-point estimates)t bot in the poor information scenario (1-point
estimate). However, even in the first case the modenot be considered to be reliable, since itipte
well in the K replicate but poorly in the P replieait is only reliable for the criterion of econmm
efficiency (costs / kg N). Secondly, and ratherpssingly, cost distribution assumptions do not muc
affect these results. They make virtually no défese in the medium information scenario, and tselte
remain unreliable across all five assumptions sgbor information scenario. The difference betwien
K and P replicates warrants further study, howeVhae number of P bidders was smaller than thosé in

(27 compared to 44) and the variance of P bidshigtter, indicating poorer bidding consistency.
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VI. WOULD THE BC MODEL RECOMMEND THE RIGHT POLICY?

A model that predicts wrongly can recommend thengrpolicy. In particular, it can recommend that
policy A be preferred to policy B when in fact tlopposite would yield better results. This section
investigates this possibility by considering asaltarnative to the tender an equivalent fixed psckeme.
The equivalence is defined by the constraint thattbtal budget outlay must remain unchanged. More
precisely, we are interested in the minimumiform payment rate (MUP) that can respect this congtrain
Of course, the number of contracts awarded wifedifThey number 26 instead of 29 in the K repécand
16 instead of 19 in the P replicate. This can les $8 comparing columns 1 in the top part of TaBlesd
4. The top part of Table 4 is structured similadyTable 2, except that the figures show for betblicates
K and P the performance of the MUP scheme instédtedBC tender, under the same information antl cos

distribution assumptions.

Table 4 about here

The second horizontal section of Table 4 showsih replicates K and P whether the BC model
would recommend running the tender rather thanalkernative policy, the posted price scheme with
minimum uniform price (MUP). If so, a ‘yes’ is shawotherwise a ‘no’ appears. Except for the fourth
criterion, the lower the performance measure, #teeh The ‘% max N abated’ on the other hand ttebe
the higher it is. The ‘?’ indicates an indecisivgamme, insofar as some uncertainty is assumeartound

the MUP figures in the top part of Table 4. Thizentainty has been varied from 0#®&%; results shown

correspond ta& 2.5% uncertainty.

These results are only an intermediary for exargitie core question: will use of the BC model to
predict the performance of the tender make the gwrroecommendation? ‘Wrong’ is defined by a

recommendation that differs from that made usimgekperimental data, taken as a benchmark (colymn 1

20



If the recommendation is the same (i.e., correct), shows in the third (bottom) part of Table ddathe

corresponding cell is shaded; otherwise, a nonedhdd shows.

With full information (column 2), the model alwaysakes the correct recommendation. Except for
an indecisive case (which disappears for an uringrtaf less than 2.5%), the model also makes treect
recommendation under all cost distribution assuomgtin the medium information scenario (columns 8 t
10). Comparing this result for the P replicate othbtables 2 and 4 shows that the low accuracyhef t
model’'s prediction does not prevent it from makihg right recommendation. Columns 8 to 10 show that

the P recommendations are as robust, if not mgréhan those of K.

In the poor information scenario, cost distributiassumptions can however make a difference
(columns 3 to 7 in Table 4). Except for an inde@istase (which disappears for an uncertainty of flean
2.5%), the model makes the correct recommendati@olumns 3 and 4 but not in columns 5, 6 and & Th
correct recommendations correspond to averageestistates distributed uniformly across biddersviith
a non-distributed abatement quantity);(that is, the cost per unit abated is also umifgrdistributed
around its overall average. Note that the triangdiatributions do not perform well because theétr
(experimental) distributions, which underlie theleration benchmark, are uniform. A single pointrage
allows for a greater latitude in the choice of msttion assumptions and thereby for opportuniteeget it

wrong'’.

VI. CONCLUSIONS

The purpose of this study was twofold. First, ihad to show how theory and experiments can be
linked to improveex-antepolicy assessment. Second, it aimed to see whatiheodel used with limited

information on input variables can still be usd@ulmaking policy recommendations.

The model for budget-constrained tenders develtyyedatacz-Lohmann and Van der Hamsvoort in
1997 formulated optimal bids by relying on an exuges variable, the bidders’ expectations on the
maximum bid that would be acceptable to the poliegker. However, it did not model expectation

formation, when such expectations are not obsesvaltis study therefore supplemented the theory by
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implementing the model in a controlled laboratoxperiment where bidders were asked to state their b
cap expectations along with their bids. The expenit® yielded empirical relationships between bidder

costs and bid cap expectations which could theumskee to compute optimal bids.

Based on these optimal bids and on the availaldgddtuit is possible to measure the performance of
a tender before actually running it in the fielddahus obtain information on whether a tender wdé a
desirable option or not. This study focused onféle that the performance measurement will be tdtec
by the quality of the information input typicallyailable in the field. Can the theoretical model,
complemented by its experimental implementatioii, [ useful under information limitations typicaf

policy environments?

The results obtained from the experiments have/@ballowed us to produce a reliable model for the
formation of bid cap expectations. The small bgn#icant difference across the two experimental
replicates regarding the empirical relationshipgiftig bidder costs to bid cap expectations calisstome
caution until further replicates are run. Previaxperiments by Brookshire et al. (1987) and Lisdl an
Shogren (1998) suggest that, if properly desigegderimental auctions tend to be externally vehtill,

the validity of our experimental relationships tme with field data in a policy context is not guseed.

Overall, the study suggests that LH's 1997 modehdbudget-constrained tender will make the
correct recommendation when comparing the tendeant@®quivalent fixed price scheme, provided the
policy maker has several estimates of key inpuiabées, namely averages of abatement quantities and
costs. This holds even if the accuracy of the misgekdicted performance is far from perfect, iis ttudy

off by up to 20% either way.
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Table 1: Use of the BC model for predicting the pdormance of a BC tender

Information known Costs and Bid caps Bids Evaluation of
by N abatement B b tendering performance
A Theoretical model G, ggand g B =f(c) BC model estimates of b
(1997 LH paper) (q =3-ptestim)  Assumed uniformly b’ = f {c, B(c)} but with no info orp or bids.
with ¢ = f(N) distributedt 40% of Assumesvalidity of BC model.
averagecost g
B Experimental Direct use of experimental bids
benchmark N; and ¢ i b; (No use of BC model)
(experimental)  (experimental)  (experimental)
1 Experimenter N; and ¢ BC model estimates of
(full information) (experimental)  Experimentap; b’ =f(c, B) b
i =44 or 27 Bi =1 (c) (experim. hserve as benchmark )
2 Policy-maker, with BC model estimates of
medium quality Nq and g By = e (cy) by = f (Cq Bg) by
information (4-pt estimate)
3 Policy-maker, with BC model estimates of
poor quality Naand g Ba="f.(C) by = (Ca Pa) ba
information (1-pt estimate)
LEGEND: ¢ = bidders’ participation costs, a funatiof abatement (N)

N = amount of Nutrients (fertilizer) abated

Subscripta = average, single-point estimate

Subscripftg = quartile, four-point estimate (three-point i thH 1997 paper)

Subscripti = individual costs, bids or expected bid capsk(asvn only to the experimenter)

b" = computed bids, using the BC model

B = bidder’s expected bid cap (highest expectedifutid)

fe = empirical relationship using individual experima& data
NOTE: In the 1-point estimate scenario, the pofiwaker is assumeaubtto know upper and lower cost bounds. In the 44poin
estimate scenario, he only knows quartile averages.
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Table 2 : Estimated BC tendering performance givelinformation on abatement and bidder costs

Column number (1) (2) (3) (4) (5) (6) (7) | (8) (9) (10)
Experimenter knowledge Policy maker’s informaiton scenarios and distribution assumptions
Information scenarios  Experimental BC prediction pdint estimates 4-point estimates

Performance criteria bid data) _ USiNgGandf | (N, w)  (NaG)  Tr(Nac) (NaG)  TrNac) | (NeWw)  (Nec) (NG

Kdata 29 31 32 29 30 29 30 29 29 29
Payment / kg N 2.72 2.58 2.05 2.26 2.23 4.68 3.20 2.78 2.74 2.88
Opp Cost/ kg N 1.67 1.68 1.07 1.38 1.45 2.85 2.08 1.70 1.65 1.73
Payment / costs 1.62 1.53 2.01 1.64 1.54 1.64 1.54 1.64 1.67 1.67
% max N abated 0.54 0.58 0.73 0.66 0.68 0.44 0.47 0.53 0.53 0.51

P data 19 17 17 17 16 17 16 17 17 17
Payment / kg N 2.49 2.62 2.34 2.38 2.46 3.70 3.97 3.00 2.99 3.07
Opp Cost/ kg N 1.69 1.76 1.27 1.33 1.30 2.07 2.09 1.69 1.66 1.71
Payment / costs 1.47 1.49 1.84 1.79 1.90 1.79 1.90 1.78 1.79 1.79
% max N abated 0.58 0.54 0.63 0.63 0.59 0.40 0.37 0.49 0.49 0.47

Using experimental bids as benchmark

K data
Payment / kg N 1 -5% -24% -17% -18% 72% 18% 2% 1% 6%
Opp Cost/ kg N 1 1% -36% -18% -14% 70% 24% 1% -2% 3%
Payment / costs 1 -6% 24% 1% -5% 1% -5% 1% 3% 3%
% max N abated 1 6% 34% 21% 25% -19% -13% 2% 2% 7%

P data
Payment/ kg N 1 5% -6% -4% -1% 49% 60% 21% 20% 24%
Opp Cost/ kg N 1 4% -25% -21% -23% 23% 24% 0% -1% 1%
Payment / costs 1 1% 25% 21% 29% 21% 29% 21% 22% 22%
% max N abated 1 -6% 9% 9% 3% -30% -36% -15% -15% -18%

Note: The shaded areas show predictions that éeldas than 10% from the benchmark in column 1.
Legend: N = quantity abated
N = one single, non-distributed abatement estimseeluotherwise, uniformly or triangularly distribdt
u = c/N = cost per unit abated, &i1single 1-point average estimate)

¢ = bidders’ abatement costs
Index a = 1-point average estimate
Index q = 4-point quartile estimates

Tr(.) = triangular distribution; otherwise, unifardistribution

(*) = number of bidders selected by BC tender
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Table 3 : Policy maker’s distribution assumptions ér both information scenarios

Poor information scenario: 1-point (average) estimie

@ [ @ 3) @) (5)

Distribution assumption > Experimental (N, c/N) (N, ©) Tr(N,, ) (Na, G) Tr(N, c)
K data (44) data
N,= 59 N range [13 -—93] 59 59 59 [2 —84] [5 - 114]
u, = 2.08 y range [0.38-2.81] [0-3.03] irrelevant irrelevant  ,@2.85 y=2.08
c, =123 ¢ range [5-261] [0-176] [5-241] [11 — 236] [5-241] [11-236]
P data (27)
Na=59 N, range [13-93 59 59 59 [4 —113] [8 —113]
U, = 2.07 y range [0.38-2.83] [0-4.30] irrelevant irrelevant  ,@2.07 y=2.09
c, =122 G range [5 - 264] [0 —243] [9 —235] [17 - 237 [9-235] 17-237]

Medium information scenario: 4-point (quartile) esimates

(1) (2) ) (4) (5)
Distribution assumption > Experimental (N, ¢/N) (N, ) (Ng, &)
K data (44) (N; c) data (N; ¢ (N; c) --- (N; c)
Q1 averages 28; 24 28; 36 28; 29 - 23; 29
Q2 averages 54: 88 54: 96 54: 90 54: 90
Q3 averages 71; 159 71; 153 71; 156 73; 156
Q4 averages 86; 228 86; 213 86; 224 90; 224
P data (27) (N; ¢ (N; c) (N; c) (N; c)
Q1 averages 28; 24 28; 35 28; 32 - 25; 32
Q2 averages 54; 88 54; 96 54; 95 56; 95
Q3 averages 72; 160 72; 158 72; 166 75; 166
Q4 averages 89; 240 89; 215 89; 236 92; 236

Notes: u = c/N :the average cost per unit of einant
Index a = single-point overall average
Index q = four-point quartile averages
c/N refers to gN, in the upper part and tg/bly in the lower part
Underlined Nrefers to a non-distributed N
Tr(.) refers to a triangular distribution; théets are assumed uniformly distributed
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Table 4 : Decision to run the BC tender rather thara fixed-rate minimum uniform price (MUP) scheme

Column number 1) 2 3) 4 (5) (6) ©) (8) (C)] (10)
Experimenter knowledge Policy maker’s informationscenarios and distribution assumptions
Information scenarios Known abatement costs 1-point estimates 4-point estimates
Performance criteria (same here for both) _a Y (N; ©) Tr(N,,C) (N, ©) Tr(Ng, C) (Ng, W) (Ng, @) (Ng @)
MUP performance results

K data 26 (%) 31(%) 26 26 26 26 26 26 26
Payment/ kg N 2.12 2.49 2.52 5.71 4.14 3.30 3.35 3.48
Opp Cost/ kg N ijé 1.03 1.24 1.27 2.85 2.08 1.65 1.59 1.65
Payment / costs 229 2.05 2.00 1.99 2.00 1.99 2.00 2.11 2.11
% max N abated 0.44 0.70 0.59 0.59 0.26 0.36 0.45 0.45 0.43

P data 16 (*) 16(*) 16 16 16 16 16 15 15
Payment/ kg N 2.45 2.45 2.44 4.03 3.94 3.18 3.34 3.46
Opp Cost/ kg N igg 1.19 1.26 1.29 2.07 2.09 1.65 1.57 1.62
Payment / costs 2.47 2.05 1.94 1.89 1.94 1.89 1.93 2.13 2.13
% max N abated 0.43 0.59 0.59 0.59 0.36 0.37 0.46 0.41 0.40

Comparing BC tender to MUP results & 2.5% uncertainty to above figures) : see correspaling columns in Table 2

K data
Payment / kg N Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Opp Cost/ kg N No No No No No ? ? No No No
Payment / costs Yes Yes ? Yes Yes Yes Yes Yes Yes es Y
% max N abated Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

P data
Payment / kg N Yes Yes Yes Yes ? Yes ? Yes Yes Yes
Opp Cost/ kg N No No No No ? ? ? ? No No
Payment / costs Yes Yes Yes Yes ? Yes Yes Yes Yes
% max N abated Yes Yes Yes Yes ? Yes Yes Yes Yes

Using experimental bids as benchmark: Will tha8C model recommend the right policy?

K data
Payment / kg N Benchmark 1 1 1 1 1 1 1 1 1
Opp Cost/ kg N Benchmark 1 1 1 1 0 0 1 1 1
Payment / costs Benchmark 1 0 1 1 1 1 1 1 1
% max N abated Benchmark 1 1 1 1 1 1 1 1 1

P data
Payment / kg N Benchmark 1 1 1 0 1 0 1 1 1
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Opp Cost/ kg N Benchmark 1 1 1 0 0 0 0
Payment / costs Benchmark 1 1 1 0 1 0 1
% max N abated Benchmark 1 1 1 0 1 0 1

Note:  (*) = Number of participants willing to accept antract, when the MUP paid out is greater tharr thieatement costs.
The ?" above mean differences between BC tender and Kidilts are less than2.5% and are thus indecisive
The shaded ‘1’ above mean the same (correct) prediction as obtained with experimental data; ‘0’ means ‘wrong’ or indecisive prediction.
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APPENDIX |

Pages 2 and 4 of the Budget-Constrained Tender in P

(Page 1 provided the ‘story’ and the motivatiyn.

Individual farm data (page 2)
to work out the costs of your participation in ourP River protection program.

Suppose you are a horticulturalist and producingetables for P. Output as a function of N fertiligee is given
by the following graph:

Tonnes /ha Contract-limited
.......... . I :
I |
Loss in yields +/_\
E Optimal
8dkg " N kg N/ha

The optimal fertiliser amount maximises value offpott minus cost of inputs (N fertilisers).

This results in the following:

WithN=80 | With N Difference
Net revenue (ECU/ha)
Experimental Currency Units
My costs of participation are ..................... ECU/ha (= theincome difference)

Important:
* Your costs of participation are known only to yawdayour private adviser; they are not known by the
environmental authority, or anyone else.
* Your competitors all have different participatioasts. So that you may have a better idea of how you
compare relative to your competitors, we give yba following information: you are in one of the
following four quartiles:

lower quarter second quarter irdthuarter upper quarter

(Page 3 provided “some advice from your private caltent”)
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Bidding sheet (page 4)

Now it is time you put in your bid. Please firstitgrin your full name. We shall need it to pay yaur gains if
you are among the winners.

1) First please write down the highest possibleybid believe will be accepted. This must be yout gasss:

Highest acceptable bid (beSt QUESS): .....vuieeeeeiieiiiiiiiiieeeeeee e ECia

ECU = Experimental Currency Units

2) Now please write in the amount we must pay youhsd you accept to participate in our P River prtits
program:

00 10 | o] o ECU/ha

The selection of participants will be made on theugd of their bid in ECU/ha. The lowest bid wik lselected
first, then the second lowest, then the third |ldnwasd so on until the available budget of 2300 E€Exhausted.

For paying the winners ireal money ($) the following rules hold:

» The successful bidders will be paid, not their bigk, the gains from their participation in the mang, that
is: bid minusparticipation costs.

» Unfortunately, because of limited research funds,cannot pay out the full value of the gains, iy @
fixed percentage of the gains. This percentage heilcalculated after the end of the bidding ses<idn
course, the higher your gains, the higher your qriignal payment. For this session the funds weshav
available for payment to this group total an amafrapprox. $300
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APPENDIX II : Raw experimental data from both repli cates €, Z’i and by)
Data are ordered by bids ), with indication of selection cut-off line.

K P

# Ci Ei bi a ﬁi bi
1 18 50 48 13 275 25
2 | 15 30C 6C 9 10C 5C
3131 8 61 18 40C 55
4154 80 63 33 148 60
5 5 75 7t 5 10C 65
6 | 11 10C 8% 3¢ 8C 69
7 77 105 100 49 130 70
8 | 35 25C 10C 56 20C 10C
9 | 59 12t 10C 87 16C 11¢
10| 81 120 100 108190 128
11| 27 12C 10¢ 27 40C 15C
12| 49 13t 13C 137 158 154
13| 98 140 130 65 160 160
14| 39 15C 13¢ 10z 18C 16C
15| 108 150 140 157 85 162
16 | 44 14t 144 171 25C 18C
17 | 137 148 148 164250 186
18| 65 30C 15C 11€ 30C 19C
1¢ | 11¢ 178 15C 18€¢ 19t 191
20| 144 170 160 179210 191.01
21| 150 188 166 125300 200
22| 6 200 170 237245 245
23131 180 170 203500 253
24 | 114 17¢ 177 22¢ 40C 26C
25| 186 195 194 249280 264
26 | 171 20C 19¢ 25¢ 15C 26¢
27 | 10z 25C 20C 264 178 27%
28 | 125 200 200

29 | 177 21C 20C

30| 216 219 219

31| 9 275 225

32210 140 230

33221 235 233

34 | 224 250 235

35| 205 240 239

36 | 191 250 240

37 | 234 246 245

38| 157 256 255

39| 182 350 260

40 | 255 270 264

41| 249 279 274

42 | 237 295 283

43 | 261 290 285

44 | 200 295 290

Note The post-marginal bid in P of 191.01 was indeetip as such by the participant.
The Z?i refer to the highest acceptable bids estimatethéyparticipants.
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! This is not an essential assumption and coulcelexed to include risk aversion, as done by LH {)98iowever, it
would not add much to the present argument andtromifuse matters unnecessarily.

2 By contrast, uniform (second-price) sealed-bidtians should in theory lead to bidding one’s trygortunity costs,
both in TC and BC tenders; but they have rarelynhes=d in conservation contracting programs, mdielyause of the
potential for the policy maker &x postmanipulate bids.

% This notatiorcq differs from the one used lateg), in that the former represents the bidder’s imfation whereas the
latter represents the policy maker’s informatiapirepresents the knowledge a bidder has of his beigrto one of the
four cost quartilesg, will represent the quartile pool's average coststgmated by the policy maker.

* For this purpose, the complete data set of thegetitions in both replicates was used, as theenmavisible trend
across them. The data from the second and thiretitiegm were not otherwise used, as they had besergted for a
purpose different from the one focused on in tlaiggr.

® This hinges on how well the experiment is caliddato the policy context, namely w.r.t. to key paegers defining
auction design (budget-to-bidders ratio, cost gpretc.). We do not elaborate any further herexaereal validity and
experimental calibration in policy test-bedding, area that, in spite of Brookshiet al’s (1987) and List and
Shogren’s (1998) early work, has only seriouslyumetp be investigated in recent years. See e.g.a8uh (2005),
Garcia & Wantchekon (2009), Boly (2009), Bardsl2@X0) and, for an overview, Lusk & Shogren (2007 particular
chapter 9.

® It is always possible, given quantile averagescdmpute lower and upper bounds around each aveomge a

distribution has been chosen.
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