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ABSTRACT  

Buying environmental services from private landholders using tendering mechanisms are usually subject to 

a budget constraint. Auction theory has mostly focused on target-constrained auctions and is less well 

developed for this type of auction. This paper examines a theoretical model specifically developed for 

budget-constrained tenders and assesses its capacity to predict tendering performance under information 

limitations typical of those found in field applications. But this assessment cannot be done without 

complementing the model with controlled laboratory experiments. Subject to their external validity, we find 

that the model is able to make the correct policy recommendation when comparing the tender to an 

equivalent fixed price scheme, even when the accuracy of its prediction is far from perfect. However, the 

study suggests that more than a single point estimate of bidders’ costs is needed for this to happen, 

indicating that it should be worthwhile for policy administrators to invest in some information acquisition 

before deciding to run a tender.  

 

Key words: Auctions, procurement, tenders, conservation, economic experiments, model validation   

 

JEL  Classification: C91, C92, D44, Q24, Q28  



 

 3

I. INTRODUCTION AND BACKGROUND 

 

Buying environmental services from private landholders using tendering mechanisms usually 

involves budget-constrained, procurement-type auctions. In a budget-constrained (BC) conservation auction 

or tender, the program’s budget is predetermined; the risk lies with the number of participants or the area 

that might fail to come under contract, i.e. with the policy’s outcome. The widespread use of the BC tender 

format in conservation policy poses a problem to the extent that auction theory has been well developed, 

since Vickrey’s 1962 paper (less well-known than his much-cited 1961 paper), for target-constrained (TC) 

auctions, but much less so for budget-constrained (BC) auctions (Müller and Weikard, 2002). As a result, in 

the field of environmental policy, there is a gap between theory and practice. A better theory would allow 

agencies to improve tender design and perhaps decide whether such a mechanism is worth going ahead with 

or not, given existing alternatives.  

This study investigates the predictive capacity of a model developed for BC tenders applied to land 

conservation programs. By predictive capacity we mean both the model’s capacity to predict bids and, more 

importantly, to predict policy performance in the field. This model was first proposed by Latacz-Lohmann 

and Van der Hamsvoort (henceforth, LH) in 1997 and further refined in 1998, where policy implementation 

was investigated. To the best of our knowledge, this is to date the only extension of auction theory which 

captures the particular features of conservation tenders. It does not however conform to the standard 

assumptions of auction theory regarding optimal bid formulation, since in a BC tender, in contrast to the 

TC, bidders do not know in advance the number of winners. Müller and Weikard (2002) show that this 

results in multiple Nash equilibria with no dominant solution for choosing an optimal bid. LH (1997) solve 

this problem by introducing an exogenous parameter, the bidders’ expectation of the highest acceptable bid, 

known the budget constraint and the number of bidders. Bidders then use this best guess of theirs to form 

their optimal bids. This yields a much simpler model than the more standard TC model, but at a cost, in that 

bidders’ expectations of the highest acceptable bid cannot be observed, so that the model cannot be used by 

policy makers to make ex ante assessments of the value of running a tender for conservation services. No 

model for the formation of bidders’ bid cap expectations is offered. 
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The purpose of this study is to investigate the validity and credibility of the BC model for assessing 

the performance of the BC tendering mechanism, using several performance criteria. Assessing the 

performance of the mechanism itself was investigated in Schilizzi and Latacz-Lohmann (2007) who 

compared, with repetition, the performance of the BC and TC tenders relative to an equivalent fixed-price 

scheme. The focus in the present study is to examine whether the BC model is capable of predicting the 

performance of the tendering mechanism using bids predicted from the model rather than observed 

experimental bids. To the extent that government agencies have, to date, almost exclusively used the BC 

format in environmental policy, it seems important to test any model that might serve to recommend the use 

of this policy instrument. In Australia, for example, the Victoria BushTender and EcoTender conservation 

programs were directly inspired by the BC model (Stoneham et al. 2003).  

  We investigate the validity and credibility of the BC model in three steps. We first study how well 

it can predict experimental bids. We then examine the model’s capacity to predict the economic 

performance of a BC tender with the information set available to the experimenter. We then repeat this 

analysis but with an information set typically available to the policy maker. This requires implementing the 

model in a controlled laboratory experiment, where data on bidders’ expectations of the maximum 

acceptable bid (the bid cap) can be acquired. The theoretical gap in the BC model’s not specifying how 

bidders form their bid cap expectations can thus be filled in. The first two steps represent the experimenter’s 

point of view: how does the BC model predict bids and policy performance with full knowledge of the 

model’s input variables (costs and bid caps)? The third step mimics the situation of a policy maker who has 

only limited knowledge of costs and none of bid caps. The role of the experiments is twofold: besides filling 

in the gap left open by the non-specification of how bid cap expectations are formed, they allow us to 

separately evaluate the model’s limitations due to poor information inputs and those that remain ever under 

perfect experimental information.  

 Submitting auction mechanisms to laboratory experimentation with a view to bridge the gap 

between theory and practice is not new. Kagel’s review, in Kagel and Roth’s (1995) Handbook of 

Experimental Economics, remains a key reference for the contributions of the experimental effort up to that 

date, and one finds a comprehensive update in Plott and Smith’s (2008) Handbook of Experimental 

Economics Results. But it is perhaps Lust and Shogren’s (2007) book, Experimental Auctions: Methods and 
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Applications in Economic and Marketing Research, which provides the most relevant material and 

references for the present study, in particular chapter 9.   

The present study adds to the growing literature on the use of laboratory experiments to 

complement theory for policy purposes. Vernon L. Smith, who won the Nobel Prize in Economics for 

introducing experimental methods into economics, has identified three roles for economic experiments: 

testing a pre-existing theory, exploring new ground to suggest new theory, and test-bedding new policy 

mechanisms. In this study we straddle all three roles in perhaps a novel combination. In the first, we test the 

BC model’s capacity to predict experimental bids and policy performance; in the second, we use 

experimental data to derive a model for the formation of bid cap expectations; and in the third, we 

investigate whether theory and experiment combined can help with deciding if running a tender is a 

desirable policy or not.     

The remainder of the paper is organised as follows. Section two presents the BC tendering model. 

Section three describes its experimental implementation. Section four links the theoretical model and the 

experimental results. Section five provides and discusses the results. Section six concludes.  
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II. THE BUDGET-CONSTRAINED BIDDING MODEL 

 

The sealed-bid discriminatory price budget-constrained (BC) model examined in this paper was 

first proposed by Latacz-Lohmann and Van der Hamsvoort (henceforth LH) in 1997. This is the first 

bidding model that attempts to capture the particular features of conservation tenders. They considered 

landholders to hold private information about their opportunity costs of participating in the government’s 

conservation program. These costs arise when management prescriptions divert farmers’ land management 

practices away from their current plan, assumed to be the most profitable one. The government’s problem, 

in order to attract farmers into the scheme, is to compensate them for the lost profits without knowing the 

magnitude of their opportunity costs. Auctions have the property of revealing at least part of this 

information. In order for the landholder to participate in the scheme, the payment he or she receives must be 

at least equal to his or her opportunity cost of participation.  

LH (1997) first assume that landholders’ bidding strategies are predicated on the belief that the 

conservation agency (the procurer) will decide on a maximum acceptable bid, or payment level, β. This is a 

common practice when the agency is subjected to a constrained budget. In actual fact, this maximum bid β 

is determined ex post, after all bids have been received, as the last (highest) bid accepted within the 

available budget. In other words, no individual bids above β will be accepted. β represents an implicit 

reserve price per unit of environmental service, unknown to bidders (and also unknown to the procurer until 

all bids have been received). This external parameter β represents a deviation from standard target-

constrained auction theory, where optimal bids are determined endogenously as a function of the number of 

bidders, the distribution of bidders’ opportunity costs (assumed common knowledge), and the target to be 

achieved. In the BC auction, this target – the number of winners or hectares contracted – is unknown. A 

landholder will tender a bid b if the expected utility in case of participation exceeds his or her reservation 

utility.  

The second assumption in the LH model is that bidders, not knowing the value of the bid cap β, will 

form expectations about it, which can be characterized by the density function f(b) and by the distribution 

function F(b). The probability that a bid is accepted can then be expressed as  
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where p is probability andβ represents the upper limit of the bidder’s expectations about the bid cap, or the 

maximum estimate of the highest acceptable bid. The essence of the bidding problem is to balance out net 

payoffs and probability of acceptance. This means determining the optimal bid which maximizes the 

expected utility over and above the reservation utility.   

Further assumptions are that there are no transaction costs in bid preparation and implementation, 

that payment is only a function of the bid (discriminatory price auction), and that bidders are risk-neutral1. 

A risk-neutral bidder simply maximizes expected payoff. The optimal bid, b*, derived by LH (1997) is 

given by equation (2), where c represents the opportunity costs of participation:  

  b* = c + 
)(

)(1

bf

bF−
        (2) 

LH (1997) further assume that bidders’ individual expectations about the bid cap β, unknown to 

them, are uniformly distributed in the range [β, β ], where the lower and upper bounds represent the 

bidder’s minimum and maximum expectation of the bid cap. A bidder’s expectations are that any bid equal 

to or below β has a probability of 1 of being accepted, and any bid equal to or above β  has a probability of 

zero of getting accepted. Then the expression for the optimal bid becomes (LH, 1997):  

b* = max [
2

1
(c + β ), β ]   s.t.   b* > c       (3’)  

This is true for each of the i bidders, so that expression (3’) also reads as:  

bi
* = max [

2

1
(ci + β i), β i]   s.t.   bi

* > ci      (3”) 

Expressions (3’) and (3”) show that the optimal bidding strategy of a risk-neutral bidder increases 

linearly with both the bidder’s opportunity costs ci and his or her expectations about the bid cap, 

characterized by βi and iβ . Bids thus convey information about opportunity costs, which are private 
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information unknown to the procurer; they thereby reduce the information asymmetry, but not completely: 

the auction’s cost revelation property is blurred by the fact that bids also reflect bidders’ beliefs about the 

bid cap. This creates room for bidders to bid above their true opportunity costs and thereby to secure for 

themselves an information rent.  

  Budget-constrained (BC) tenders differ from the target-constrained (TC) format in that the 

predetermination of the budget and of the outcome is reversed. As discussed by Müller and 

Weikard (2002), TC tenders allow endogenous expectations to form and optimal bids to be 

formulated without the need for exogenous bid caps. Thus, while the TC model is a Nash-

equilibrium model, the BC model is a best-response model. This is because by knowing the target, 

bidders know the number of winners or contracts to be allocated, thereby yielding fewer degrees of 

freedom than the BC auction. Not surprisingly, the TC auctions were modelled much earlier, by 

Vickrey in 1961. Their application to multi-unit sealed-bid procurement tenders, relevant for 

government conservation schemes, were only modelled in 2005 by Hailu et al., who built on 

Harris and Raviv’s (1981) generalization of Vickrey’s approach. In a discriminative (first) price 

setting, both BC and TC models predict that overbidding is an optimal strategy2.   
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III. EXPERIMENTAL IMPLEMENTATION 

 

The purpose of the experiments described below was to assess the capacity of the BC model to 

predict the tender’s economic performance. One wishes to know whether it is a credible tool for informing 

budget-constrained tendering design for allocating conservation contracts. We focus first on the difference 

between the observed experimental bids and those calculated based on equation (3”); secondly, we evaluate 

the performance of the tendering mechanism using bids computed with the BC model as opposed to using 

experimental bids. This should shed some light on whether experimental results can be used for guiding the 

use of BC tendering mechanisms.  

 

Preliminary bidder surveys 

Prior to holding the experiment, we surveyed our experimental subjects along two dimensions: their 

attitude towards environmental conservation, and towards risk. The first question was asked so as to be 

able, after the experiment, to relate the amount of bid shading to environmental attitudes, since the 

tendering experiment was set in a land conservation context. One would assume that in a real policy setting, 

the more environmentally concerned bidders would shade their bids less than the less concerned. Whether 

such a reduction in bid shading would also be observed in laboratory experiments would depend on the 

extent to which the context is effective in influencing participants’ decisions.  

 Bidders’ risk attitudes were measured using a certainty-equivalent method, whereby they 

were asked to state the minimum price they would accept from selling a lottery ticket that had been given to 

them. This measure was also hypothesised to explain possible differences in bid shading, whereby more 

risk-averse bidders would shade their bids less than the less risk-averse. As it turned out, environmental 

attitudes, as measured in this survey, did not appear to be related in any way to bid shading, whereas, as will 

be detailed later, risk attitudes, as measured, did have some impact in the expected direction. The 

implication of this is that contextual effects such as environmental concerns did not affect experimental 

outcomes – a positive feature in terms of experimental control.  
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Experimental setup  

Experiments were first carried out at the University of K, then at the University of P.1 The P 

experiment replicated the K experiment, in order to check for the robustness of results.  

The K experiment was carried out with first-year students in agricultural economics. The tendering 

setup referred to reductions in nitrogen fertiliser (N) on a wheat crop, in order to meet EU regulations 

regarding limits to nitrate concentration in groundwater (50 mg/liter). This is a serious concern in rural 

areas of northern K, and one which students in K would be aware of and sensitive to. Participants were 

offered would-be contracts for committing themselves to reduce applications of nitrogen fertiliser from their 

currently most profitable level down to a predefined constrained level, equal to 80 kg per hectare. Each 

participant was given a different production function for nitrogen fertiliser in wheat production and thus 

faced a different opportunity cost resulting from the adoption of the nitrogen reduction program. 

Participation costs, labelled in Experimental Currency Units (ECU), were spread uniformly between 5 (the 

lowest-cost bidder) and 264 (the highest-cost bidder). Bidders knew their own opportunity costs but not 

those of rival bidders (see appendix I). Participants were told that not all of them would be able to win 

contracts and that they were therefore competing against each other. To keep things simple, each participant 

could put up just one land unit of wheat, the same area for all participants. They were told that if they won a 

contract, they would be paid the difference between their bid and their opportunity cost.  

Since auctions are very sensitive to information structure, it was important to control for this aspect. 

Bidders were informed of the available budget available. The cost range (5 to 264 ECU) was not given, but 

bidders were told that costs were uniformly distributed. Each bidder knew his or her own opportunity cost 

and was given a rough estimate of where he or she stood compared to rival bidders in terms of opportunity 

costs. This was done by informing bidders in which cost quartile they belonged: lower quarter, second 

quarter, third quarter, upper quarter (see appendix I). No information regarding other bidders was given to 

                                                           

1 K and P are used in lieu of actual institution and location names to preserve anonymity in the reviewing process: they 
will be replaced by the original names in the final version of this paper.  
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participants. In particular, no information about the BC model or even its existence was mentioned. There 

were 44 bidders in the K experiment and 27 in P.  

The budget constraint announced (in ECU) was clearly distinguished from the actual payments 

made at the end of the session (in $ or €). Payments in hard currency would be proportional to gains in ECU 

terms and their gains were calculated as own bid minus participation cost. Bidders were asked two pieces of 

numerical information, their maximum estimate of the “highest acceptable bid” (iβ ), and their bid (bi). We 

made it clear to participants that we wanted them to give us their highest possible estimate of what the cut-

off bid might be. We did not ask for the lower bound βi , as initial trial sessions revealed that asking both 

upper and lower bounds confused many participants. Simulations later carried out with the experimental 

data showed however that such lower bounds would not be binding; rather, the cost constraint, b* > c, 

turned out to be binding for some bidders. The implication for this study of not having data on the βi simply 

means that the validity of the BC model is probably underestimated. With knowledge of both iβ  and βi, its 

capacity to predict bids and tender performance would most likely be enhanced.  

The P experiment was identical to the K experiment. Participants were mostly first-year students in 

K and second-year students in P, with a few third and fourth years as well as a handful of postgraduates – 

all in the area of agriculture or natural resource management. To reflect the different number of participants, 

the budget constraint was modified proportionately, so as to result in the same competition intensity (ratio 

of budget to bidders) in both replicates: 3900 ECU in K and 2300 ECU in P. A slight difference in the P 

experiment was the story told, to maintain high relevance to local conditions: rather than nutrients leaching 

into the groundwater, the problem was eutrophication in the P river following excess surface runoff of these 

nutrients – a socially and politically sensitive issue in P.   

 

IV. LINKING THEORY AND EXPERIMENT FOR POLICY 

 

Modelling the formation of bid cap expectations to fill in a theoretical gap  



 

 12 

In policy applications, data on bid cap expectations (the iβ ) are not available. The BC model cannot 

therefore be directly used for guiding policy, since computing (optimal) bids requires knowledge of the iβ . 

Two approaches are then available. One was chosen by LH in their 1997 paper: assume the iβ  are 

somehow distributed around a single average cost estimate. The other approach is to implement the model 

experimentally and use the experimental data on bidders’ costs (ci) and bidders’ stated expectations iβ  to 

derive an empirical relationship between the two. One can then use this relationship to compute optimal 

bids and use the BC model to assess the tender’s expected performance. The question then is, do the iβ  

depend on bidders’ cost information? This information is twofold, the cost quartile3 to which they belong 

(cQ) and their own private cost (ci).  

Figure 1 reveals that the individual distribution of the iβ  does depend on knowledge of one’s cost 

quartile. On average, high-cost bidders expect the maximum bid cap to be higher than low-cost bidders: 

thus, the K data show the βq increase with cost quartiles (cQ) as 157; 162; 213; and 262. Secondly, across 

bidders, the iβ  approximate a normal distribution within each cost quartile. Note that this is totally 

independent of the BC model’s assumption of a uniform distribution on [βi, iβ ], which holds for an 

individual bidder. Thirdly, the variance of the iβ  falls with higher known costs. This is simply due to the 

smaller margin between one’s known cost (ci) and the maximum acceptable bid iβ  which appears most 

likely to the bidder: thus, in K, the quartile βq/cQ ratios evolve as 11.3; 1.9; 1.3; and 1.1. A similar trend 

obtains with the P data.  

Figure 1 about here   
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Figure 1: Influence of bidder cost information on the distribution of bid cap expectations. 

The P data showed a similar pattern except that Q2 and Q3 curves (rather than Q1 and Q2) overlap. 

 

  One can further ask, how exactly the iβ  might depend on costs. To answer this question, the 

relationship between individual iβ  and the corresponding individual costs ci was investigated. The K data 

yielded the following best-fit linear relationship4: 

β  = 0.34 c + 159 (t statistic = 5.51)***     (4) 

and the P data yielded 

β  = 0.39 c + 171  (t statistic = 3.98)***     (5) 

where the stars indicate significance at the 1% confidence level. A β  computed using the average 

experimental cost of 122.5, valid for both replicates, would yield a value of 201 with the K data and 219 

with the P data, a difference of 9%.  

 Given this difference, we may not yet have a reliable model describing the formation of bid 

cap expectations by bidders who have imperfect knowledge of the cost distribution. For the time being, we 

only have at our disposal some empirical relationships, the external validity of which is not guaranteed. 

More than two replicates would be needed to better understand the difference between relations (4) and (5). 
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We therefore focus on exploring how far the BC model could be useful to policy makers if these 

experimental relationships could be reliably extrapolated to field data5.  

 

Linking theory and experiment for policy assessment  

 

With estimates of expected bid caps as obtained in the previous section, information on abatement 

costs can be used to compute, using equation (3”), landholders’ optimal bids. Costs being functionally 

linked to quantities abated, they can be considered in tandem. Estimates of quantities abated (N), costs (c) 

and optimal bids (b*) together determine the tender’s performance which can thus be assessed ex-ante. The 

key issue, and the focus of the analysis, is the amount and quality of information on c and N available to the 

policy maker. Will the BC model be able to reliably compute optimal bids and assess tender performance ex 

ante if such information is of poor quality?  

To elucidate this question, we need a benchmark that can help us disentangle the model’s intrinsic 

predictive potential from its sensitivity to the quality of information input. The limit case where costs and 

bid cap expectations are individually known can provide such a benchmark. This is the situation of the 

experimenter. The opposite, worst case scenario is defined by the situation where a policy maker has at his 

disposal only a single point average estimate of abatement and costs; for example, a regional average, with 

no knowledge of local variations. An intermediate case is where the policy maker has available more than 

one point estimate. We shall consider the case of four point estimates, which typically represent landholder 

‘cost-category pools’ in the target region.   

This research strategy is represented in rows 3, 4 and 5 in Table 1. The lower indices a, q and i 

represent, respectively, the poor, the medium and the full information scenarios, which correspond to the 1-

point estimate, the 4-point estimate and the full knowledge of the experimental (Ni, ci) set. The scenario in 

row 3 is of course irrelevant to the policy maker; its purpose is to evaluate the BC model, not the tender 

itself. Rows 1 and 2 in Table 1 define the theoretical and experimental benchmarks, respectively. Row 1 

describes the strategy used by LH (1997) in their theoretical analysis, and row 2 describes the results of its 

experimental implementation. Row 1 is the theorist’s approach; rows 2 and 3 describe the experimenter’s 
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approach; and rows 4 and 5 describe the approach adopted in this paper, linking theory and experiment for 

ex ante policy assessment and taking account of information deficiencies policy makers are usually 

confronted with.    

 

Table 1 about here 

 

A key issue in Table 1 is the computation of the expected bid caps β  from which, together with 

estimates of bidders’ costs, optimal bids (b*) are computed. The bid caps themselves are computed from the 

cost estimates, as per equations (4) and (5), and are represented by the function fe in Table 1. The difference 

between rows 1 and 4 or 5 is that in the latter, one evaluates how well the BC model performs relative to the 

‘true’ performance in row 2, whereas the approach in row 1  just assumes the model is correct. As for row 

3, it evaluates the BC model’s capacity to predict the ‘true’ results of row 2 given full information on costs 

and abatement quantities. The effect of limited information can thus be isolated by comparing predicted 

policy performance in rows 4 or 5 with that in row 3. Again, the purpose of row 3 is purely to allow us to 

disentangle the role of limited information from the intrinsic potential of the model: it is not to be related to 

the policy maker’s information.   

The results of this study are organized in section V according to the rationale of Table 1. Section VI 

then builds on section V to examine under what information conditions the model might make the wrong 

policy recommendation. This is achieved by introducing an alternative but equivalent policy instrument, a 

fixed price scheme with the same budget constraint as the BC tender.   

 

V. HOW WELL DOES THE BC MODEL PREDICT THE TENDER’S PER FORMANCE?  

 

 We assess the performance of the tendering mechanism by using four different criteria, namely: 

outlay per unit of abatement (budget cost-effectiveness); cost of abatement per unit abated (economic 
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efficiency); outlay per unit cost (rate of information rents); and the amount abated relative to the maximum 

possible amount if all bidders had been contracted (policy effectiveness).    

The point of view of the experimenter:  the model’s intrinsic predictive capacity    

  

How well does the BC model predict individual experimental bids?  

In order to assess how well the BC model predicts the tender’s performance, the experimenter must 

first assess how well it can predict the individual experimental bids. This establishes (or not) the model’s 

credibility. The two frames in Figure 2 plot predicted optimal bids against experimentally observed bids for 

the BC tender in replicates K and P. The complete experimental data is provided in Appendix II. Optimal 

bids were computed for each bidder using equation (3”). The 45 degree line represents perfect prediction. 

Two things can be observed. Firstly, prediction is less than perfect. Secondly, the model underestimates the 

experimental bids in K slightly but systematically, the linear fit being everywhere above the 45 degree line, 

whereas (except for the lowest bids) the opposite is true in the P replicate.  

Figure 2 about here   
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Experimental bid prediction (P data)
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Figure 2: Model performance: Theoretically computed versus experimentally observed bids in K and P for a BC 
tender.  The 45 degree lines of perfect fit are shown. The *** indicate significance at the 1% confidence level. 

 

One feature of the model may explain this slight over- or under- bidding: bidders are assumed in 

equation (3”) to be risk-neutral. The bidders in the K experiment were measured to be somewhat risk-prone, 
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with an average certainty equivalent ratio of 108%, slightly greater than the risk neutral 100%. Participants 

in P were clearly risk-averse, with an average certainty equivalent ratio of 78%. The ratios of the average 

experimental bids to the computed bids was 1.08 in the K replicate and 0.88 in the P replicate, indicating 

close agreement between two completely different mechanisms, the hypothetical lottery and the 

experimental tender with real money. This conforms to the expectation that risk-prone bidders ask more 

than if they were risk-neutral and risk-averse bidders ask less.  

In both K and P experiments, the linear fit has a smaller slope than the 45 degree line, with the 

difference more marked in P. The BC model slightly overestimates low bids higher than it does high bids. 

As shown in section 2, the model computes optimal bids which reflect greater bid shading for low cost 

bidders than for high cost bidders.  

Though not perfect, the BC model seems to yield reasonable predictions of the experimental bid 

data. If one relates the average of the absolute differences between computed and experimental bids to the 

overall average bid, the relative error ratio, or the average dispersion around the 45 degree line, is 13% for 

K and 21% for P. The correlation coefficients between the computed and the experimental bids are 91.6% 

for K and 83.4% for P.  

 

Predicting the tender’s performance  

With full cost information, the experimenter evaluates the capacity of the BC model to predict the 

performance of the tender as follows. He first evaluates it with bids computed using the BC model then 

compares this evaluation with the one obtained directly using the experimental data. This provides an upper 

limit to the model’s predictive capacity. The results of this comparison can be read by comparing columns 1 

and 2 of Table 2. The upper half of column 2 provides the four performance measures each in their 

appropriate units. The closer these measures are to the ones in column 1, the better the quality of the 

prediction. The lower half measures this quality in terms of percent deviation from the results in column 1. 

Two things can be said from this comparison. First, even in the best of all worlds, the BC model’s 

predictive potential is not perfect. Perfection would require zero deviation on all performance criteria. 
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Secondly, however, the deviations remain small across all criteria and across both replicates K and P, never 

exceeding 6%. The BC model can thus be considered to be a credible tool to work with.  

 

Table 2 about here 

 

The point of view of the policy maker:  the role of limited information on bidders’ costs  

 

Information scenarios and cost distribution assumptions  

In contrast to the experimenter, the policy maker will only have limited information on landholders’ 

abatement costs. As per Table 1, we examine two information scenarios, a poor quality one where only a 

single point (overall average) estimate is available on (N, c), and a medium quality one  where four point 

(quartile) estimates are available. (If costs were better known than that, running a tender would be 

pointless.) In either case, the policy maker must make assumptions as to how the single average or the four 

quartile averages are distributed, since the true distribution is unknown. He then simulates bids based on 

that information and his knowledge of the relationship between costs and bid caps as per equations (4) or 

(5), for the K and P data respectively. He finally simulates the selection of bids starting from the lowest 

assumed bid, until the budget constraint is met. Table 3 brings together five possible distribution options 

which, in the absence of any other information, the policy maker might plausibly consider. 

In column 1, N (indexed a and q for each information scenario, respectively) is kept constant and the 

cost per unit of abatement (u=c/N) is uniformly distributed from zero up to a maximum such that the 

initially known average remains unchanged; costs are then distributed accordingly. In column 2, N is also 

kept constant but c is now distributed independently from N. Column 3 is similar except that the distribution 

is triangular instead of uniform. The triangular distribution is often used by decision makers when little 

information is available. We assume it to be symmetric and calibrated from zero to a maximum value that 

allows the resulting distribution to respect the initial average point estimate. Finally, both N and c are 
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distributed, uniformly in column 4 and triangularly in column 5, assuming perfect correlation between N 

and c  and thus a constant cost per unit abated, u. The top half of the table provides the estimated ranges for 

Na and ca; the lower half provides quartile averages for each of the four Nq and cq. There was not much to 

gain from using a triangular distribution in the four-point estimate scenario: due to the importance of 

estimated lower and upper bounds for each quartile6, there were no differences with quartile uniform 

distributions.   

  

Table 3 about here 

 

How well does the BC model predict with limited information? 

The abatement and cost distributions of Table 3 serve as the basis for computing expected bid caps 

and optimal bids, which then determine the expected performance of the tender. Columns 3 to 7 in Table 2 

present results for the five abatement and cost distributions in the poor information scenario, and columns 8 

to 10 do so for the medium information scenario. The upper part of the table provides the expected 

performance for each of the four performance criteria. The lower part measures the quality of the prediction 

relative to the experimental data, measured in percent deviations. We focus only on the absolute deviations.  

Two things emerge. First, the BC model is able to predict tender performance very well in the 

medium information scenario (4-point estimates), but not in the poor information scenario (1-point 

estimate). However, even in the first case the model cannot be considered to be reliable, since it predicts 

well in the K replicate but poorly in the P replicate; it is only reliable for the criterion of economic 

efficiency (costs / kg N). Secondly, and rather surprisingly, cost distribution assumptions do not much 

affect these results. They make virtually no difference in the medium information scenario, and the results 

remain unreliable across all five assumptions in the poor information scenario. The difference between the 

K and P replicates warrants further study, however. The number of P bidders was smaller than those in K 

(27 compared to 44) and the variance of P bids was higher, indicating poorer bidding consistency.  
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VI. WOULD THE BC MODEL RECOMMEND THE RIGHT POLICY?    

 

A model that predicts wrongly can recommend the wrong policy. In particular, it can recommend that 

policy A be preferred to policy B when in fact the opposite would yield better results. This section 

investigates this possibility by considering as an alternative to the tender an equivalent fixed price scheme. 

The equivalence is defined by the constraint that the total budget outlay must remain unchanged. More 

precisely, we are interested in the minimum uniform payment rate (MUP) that can respect this constraint. 

Of course, the number of contracts awarded will differ. They number 26 instead of 29 in the K replicate and 

16 instead of 19 in the P replicate. This can be seen by comparing columns 1 in the top part of Tables 2 and 

4. The top part of Table 4 is structured similarly to Table 2, except that the figures show for both replicates 

K and P the performance of the MUP scheme instead of the BC tender, under the same information and cost 

distribution assumptions.   

 

Table 4 about here 

 

The second horizontal section of Table 4 shows for both replicates K and P whether the BC model 

would recommend running the tender rather than the alternative policy, the posted price scheme with 

minimum uniform price (MUP). If so, a ‘yes’ is shown, otherwise a ‘no’ appears. Except for the fourth 

criterion, the lower the performance measure, the better. The ‘% max N abated’ on the other hand is better 

the higher it is. The ‘?’ indicates an indecisive outcome, insofar as some uncertainty is assumed to surround 

the MUP figures in the top part of Table 4. This uncertainty has been varied from 0 to ± 5%; results shown 

correspond to ± 2.5% uncertainty.  

These results are only an intermediary for examining the core question: will use of the BC model to 

predict the performance of the tender make the wrong recommendation? ‘Wrong’ is defined by a 

recommendation that differs from that made using the experimental data, taken as a benchmark (column 1). 
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If the recommendation is the same (i.e., correct), a ‘1’ shows in the third (bottom) part of Table 4 and the 

corresponding cell is shaded; otherwise, a non-shaded ‘0’ shows.  

With full information (column 2), the model always makes the correct recommendation. Except for 

an indecisive case (which disappears for an uncertainty of less than 2.5%), the model also makes the correct 

recommendation under all cost distribution assumptions in the medium information scenario (columns 8 to 

10). Comparing this result for the P replicate in both tables 2 and 4 shows that the low accuracy of the 

model’s prediction does not prevent it from making the right recommendation. Columns 8 to 10 show that 

the P recommendations are as robust, if not more so, than those of K.  

In the poor information scenario, cost distribution assumptions can however make a difference 

(columns 3 to 7 in Table 4). Except for an indecisive case (which disappears for an uncertainty of less than 

2.5%), the model makes the correct recommendation in columns 3 and 4 but not in columns 5, 6 and 7. The 

correct recommendations correspond to average cost estimates distributed uniformly across bidders but with 

a non-distributed abatement quantity (N); that is, the cost per unit abated is also uniformly distributed 

around its overall average. Note that the triangular distributions do not perform well because the ‘true’ 

(experimental) distributions, which underlie the evaluation benchmark, are uniform. A single point average 

allows for a greater latitude in the choice of distribution assumptions and thereby for opportunities to ‘get it 

wrong’.  

 

VI. CONCLUSIONS  

The purpose of this study was twofold. First, it aimed to show how theory and experiments can be 

linked to improve ex-ante policy assessment. Second, it aimed to see whether a model used with limited 

information on input variables can still be useful for making policy recommendations.  

The model for budget-constrained tenders developed by Latacz-Lohmann and Van der Hamsvoort in 

1997 formulated optimal bids by relying on an exogenous variable, the bidders’ expectations on the 

maximum bid that would be acceptable to the policy maker. However, it did not model expectation 

formation, when such expectations are not observable. This study therefore supplemented the theory by 
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implementing the model in a controlled laboratory experiment where bidders were asked to state their bid 

cap expectations along with their bids. The experiments yielded empirical relationships between bidder 

costs and bid cap expectations which could then be used to compute optimal bids.  

Based on these optimal bids and on the available budget, it is possible to measure the performance of 

a tender before actually running it in the field, and thus obtain information on whether a tender would be a 

desirable option or not. This study focused on the fact that the performance measurement will be affected 

by the quality of the information input typically available in the field. Can the theoretical model, 

complemented by its experimental implementation, still be useful under information limitations typical of 

policy environments?  

The results obtained from the experiments have not yet allowed us to produce a reliable model for the 

formation of bid cap expectations. The small but significant difference across the two experimental 

replicates regarding the empirical relationships linking bidder costs to bid cap expectations calls for some 

caution until further replicates are run. Previous experiments by Brookshire et al. (1987) and List and 

Shogren (1998) suggest that, if properly designed, experimental auctions tend to be externally valid. Still, 

the validity of our experimental relationships for use with field data in a policy context is not guaranteed.    

Overall, the study suggests that LH’s 1997 model of a budget-constrained tender will make the 

correct recommendation when comparing the tender to an equivalent fixed price scheme, provided the 

policy maker has several estimates of key input variables, namely averages of abatement quantities and 

costs. This holds even if the accuracy of the model’s predicted performance is far from perfect, in this study 

off by up to 20% either way.    
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Table 1: Use of the BC model for predicting the performance of a BC tender  
 
 Information known 

by  
Costs and  

N abatement 
Bid caps  

β 
Bids 

b 
Evaluation of  

tendering performance 
A 
 

Theoretical model 
(1997 LH paper) 
 

ci, cq and ca 
(q = 3-pt estim) 
with c = f(N) 

β = f(c) 
Assumed uniformly 
distributed ± 40% of 

average cost ca 

 
b* = f {c, β(c)} 

BC model estimates of b* 
but with no info on β or bids. 

Assumes validity of BC model. 

B Experimental 
benchmark 

 
Ni and ci 

(experimental) 

 
βi  

(experimental) 

 
bi  

(experimental) 

Direct use of experimental bids  
(No use of BC model) 

 
1 Experimenter  

(full information) 
Ni and ci  

(experimental)  
i = 44 or 27 

 
Experimental βi  

βi = fe (ci) 

 
bi

* = f (ci, βi) 
BC model estimates of 

bi
* 

(experim. bi serve as benchmark ) 

2 Policy-maker, with 
medium quality 
information 

 
Nq and cq  

(4-pt estimate) 

 
βq = fe (cq) 

 

 
bq

* = f (cq, βq) 
 

BC model estimates of 
bq

*  

3 Policy-maker, with 
poor quality 
information 

 
Na and ca 

(1-pt estimate) 

 
βa = fe (ca) 

 
ba

* = f (ca, βa) 
BC model estimates of 

ba
* 

LEGEND: c = bidders’ participation costs, a function of abatement (N)  
N = amount of Nutrients (fertilizer) abated 
Subscript a = average, single-point estimate  
Subscript q = quartile, four-point estimate (three-point in the LH 1997 paper)  
Subscript i = individual costs, bids or expected bid caps (as known only to the experimenter) 
b* = computed bids, using the BC model  
β = bidder’s expected bid cap (highest expected cut-off bid) 
fe = empirical relationship using individual experimental data  

NOTE: In the 1-point estimate scenario, the policy maker is assumed not to know upper and lower cost bounds. In the 4-point 
estimate scenario, he only knows quartile averages.  
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Table 2 : Estimated BC tendering performance given information on abatement and bidder costs  
Column number (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 Experimenter knowledge     Policy maker’s information scenarios and distribution assumptions  
Information scenarios Experimental BC prediction 1-point estimates 4-point estimates 

Performance criteria bid data (bi) using ci and 
iβ  (Na, ua) (Na, ca) Tr(Na,ca) (Na, ca) Tr(Na, ca) (Nq, ua) (Nq, cq) (Nq, cq) 

K data 29 (*) 31 32 29 30 29 30 29 29 29 

Payment / kg N 2.72 2.58 2.05 2.26 2.23 4.68 3.20 2.78 2.74 2.88 

Opp Cost / kg N 1.67 1.68 1.07 1.38 1.45 2.85 2.08 1.70 1.65 1.73 

Payment / costs 1.62 1.53 2.01 1.64 1.54 1.64 1.54 1.64 1.67 1.67 

% max N abated 0.54 0.58 0.73 0.66 0.68 0.44 0.47 0.53 0.53 0.51 

P data  19 (*) 17 17 17 16 17 16 17 17 17 

Payment / kg N 2.49 2.62 2.34 2.38 2.46 3.70 3.97 3.00 2.99 3.07 

Opp Cost / kg N 1.69 1.76 1.27 1.33 1.30 2.07 2.09 1.69 1.66 1.71 

Payment / costs 1.47 1.49 1.84 1.79 1.90 1.79 1.90 1.78 1.79 1.79 

% max N abated 0.58 0.54 0.63 0.63 0.59 0.40 0.37 0.49 0.49 0.47 

            

    Using experimental bids as benchmark      
K data           

Payment / kg N 1 -5% -24% -17% -18% 72% 18% 2% 1% 6% 
Opp Cost / kg N 1 1% -36% -18% -14% 70% 24% 1% -2% 3% 
Payment / costs 1 -6% 24% 1% -5% 1% -5% 1% 3% 3% 
% max N abated 1 6% 34% 21% 25% -19% -13% -2% -2% -7% 

P data             
Payment / kg N 1 5% -6% -4% -1% 49% 60% 21% 20% 24% 
Opp Cost / kg N 1 4% -25% -21% -23% 23% 24% 0% -1% 1% 
Payment / costs 1 1% 25% 21% 29% 21% 29% 21% 22% 22% 
% max N abated 1 -6% 9% 9% 3% -30% -36% -15% -15% -18% 

Note: The shaded areas show predictions that deviate less than 10% from the benchmark in column 1.  
Legend: N = quantity abated  

N = one single, non-distributed abatement estimate used; otherwise, uniformly or triangularly distributed 
u =  c/N = cost per unit abated (ua = single 1-point average estimate)  

 c = bidders’ abatement costs 
 Index a = 1-point average estimate 
 Index q = 4-point quartile estimates  
 Tr(.) = triangular distribution; otherwise, uniform distribution  
 (*) = number of bidders selected by BC tender 
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Table 3 : Policy maker’s distribution assumptions for both information scenarios 
 

 Poor information scenario: 1-point (average) estimate  
   (1) (2) (3) (4) (5) 
        

Distribution assumption > Experimental (Na, c/N) (Na, ca) Tr(N a, ca) (Na, ca) Tr(N a, ca) 
K data (44)  data      

Na = 59 Na  range [13 – 93] 59 59 59 [2 – 84] [5 – 114] 

ua = 2.08 ua  range [0.38 - 2.81] [0 - 3.03] irrelevant irrelevant ua = 2.85 ua = 2.08 

ca = 123 ca  range [5 – 261] [0 – 176] [5 – 241] [11 – 236] [5 – 241] [11 – 236] 
        
        
P data (27)        

Na = 59 Na  range [13 - 93 59 59 59 [4 – 113] [8 – 113] 

ua = 2.07 ua  range [0.38 - 2.83] [0 - 4.30] irrelevant irrelevant ua = 2.07 ua = 2.09 

ca = 122 ca  range [5 – 264] [0 – 243] [9 – 235] [17 - 237 [9 – 235] [17 – 237] 
        

        

 Medium information scenario: 4-point (quartile) estimates  

   (1) (2) (3) (4) (5) 

Distribution assumption > Experimental (Nq, c/N) (Nq, cq)  (Nq, cq)  

K data (44)  (N; c) data (N; c) (N; c) --- (N; c) --- 
        
 Q1 averages 28; 24 28; 36 28; 29 --- 23; 29 --- 
 Q2 averages 54; 88 54; 96 54; 90 --- 54; 90 --- 
 Q3 averages 71; 159 71; 153 71; 156 --- 73; 156 --- 
 Q4 averages 86; 228 86; 213 86; 224 --- 90; 224 --- 

        
P data (27)  (N; c)  (N; c) (N; c) --- (N; c)  

        
 Q1 averages 28; 24 28; 35 28; 32 --- 25; 32 --- 
 Q2 averages 54; 88 54; 96 54; 95 --- 56; 95 --- 
 Q3 averages 72; 160 72; 158 72; 166 --- 75; 166 --- 
 Q4 averages 89; 240 89; 215 89; 236 --- 92; 236 --- 

Notes:  u = c/N : the average cost per unit of abatement 
  Index a = single-point overall average 
  Index q = four-point quartile averages  
  c/N refers to ca/Na in the upper part and to cq/Nq in the lower part 
  Underlined N refers to a non-distributed N  
  Tr(.) refers to a triangular distribution; the others are assumed uniformly distributed
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Table 4 : Decision to run the BC tender rather than a fixed-rate minimum uniform price (MUP) scheme   

Column number (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 Experimenter knowledge Policy maker’s information scenarios and distribution assumptions    

Information scenarios Known abatement costs 1-point estimates 4-point estimates 

Performance criteria (same here for both)  (Na, ua) (Na, ca) Tr(Na,ca) (Na, ca) Tr(Na, ca) (Nq, ua) (Nq, cq) (Nq, cq) 
       MUP performance results        

K data 26 (*)  31(*) 26 26 26 26 26 26 26 

Payment / kg N 
3.41 
1.49 
2.29 
0.44 

2.12 2.49 2.52 5.71 4.14 3.30 3.35 3.48 

Opp Cost / kg N 1.03 1.24 1.27 2.85 2.08 1.65 1.59 1.65 

Payment / costs 2.05 2.00 1.99 2.00 1.99 2.00 2.11 2.11 

% max N abated 0.70 0.59 0.59 0.26 0.36 0.45 0.45 0.43 
P data  16 (*)  16(*) 16 16 16 16 16 15 15 

Payment / kg N 
3.36 
1.36 
2.47 
0.43 

2.45 2.45 2.44 4.03 3.94 3.18 3.34 3.46 

Opp Cost / kg N 1.19 1.26 1.29 2.07 2.09 1.65 1.57 1.62 

Payment / costs 2.05 1.94 1.89 1.94 1.89 1.93 2.13 2.13 

% max N abated 0.59 0.59 0.59 0.36 0.37 0.46 0.41 0.40 

     Comparing BC tender to MUP results ( ±±±± 2.5% uncertainty to above figures) : see corresponding columns in Table 2 
K data           

Payment / kg N Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Opp Cost / kg N No No No No No ? ? No No No 

Payment / costs Yes Yes ? Yes Yes Yes Yes Yes Yes Yes 

% max N abated Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

P data               

Payment / kg N Yes Yes Yes Yes ? Yes ? Yes Yes Yes 

Opp Cost / kg N No No No No ? ? ? ? No No 

Payment / costs Yes Yes Yes Yes ? Yes ? Yes Yes Yes 

% max N abated Yes Yes Yes Yes ? Yes ? Yes Yes Yes 
     Using experimental bids as benchmark: Will the BC model recommend the right policy? 

K data              

Payment / kg N Benchmark 1 1 1 1 1 1 1 1 1 

Opp Cost / kg N Benchmark 1 1 1 1 0 0 1 1 1 

Payment / costs Benchmark 1 0 1 1 1 1 1 1 1 

% max N abated Benchmark 1 1 1 1 1 1 1 1 1 
P data              

Payment / kg N Benchmark 1 1 1 0 1 0 1 1 1 
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Opp Cost / kg N Benchmark 1 1 1 0 0 0 0 1 1 

Payment / costs Benchmark 1 1 1 0 1 0 1 1 1 
% max N abated Benchmark 1 1 1 0 1 0 1 1 1 

(*)  Note:  (*) = Number of participants willing to accept a contract, when the MUP paid out is greater than their abatement costs.  
The ‘?’ above mean differences between BC tender and MUP results are less than ± 2.5% and are thus indecisive 
The shaded ‘1’ above mean the same (correct) prediction as obtained with experimental data; ‘0’ means ‘wrong’ or indecisive prediction. 
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APPENDIX I 

Pages 2 and 4 of the Budget-Constrained Tender in P 

(Page 1 provided the ‘story’ and the motivation.) 

 
Individual farm data (page 2)  
to work out the costs of your participation in our P River protection program.  
 
Suppose you are a horticulturalist and producing vegetables for P. Output as a function of N fertiliser use is given 
by the following graph:  

 
       80 kg                   N*=  kg N/ha 
 
The optimal fertiliser amount maximises value of output minus cost of inputs (N fertilisers).  
 
This results in the following:  
 With N = 80  With N* Difference  
 
Net revenue (ECU/ha)  
Experimental Currency Units 

 
 

  
 

 
My costs of participation are ………………… ECU/ha (= the income difference)  
 
Important:  

• Your costs of participation are known only to you and your private adviser; they are not known by the 
environmental authority, or anyone else.  

• Your competitors all have different participation costs. So that you may have a better idea of how you 
compare relative to your competitors, we give you the following information: you are in one of the 
following four quartiles:  

 
 
 

  

                 
        lower quarter        second quarter      third quarter        upper quarter    

 
(Page 3 provided “some advice from your private consultant” )  

Tonnes /ha 

Optimal  

N-Fertilisation 

Contract-limited 

N-Fertilisation 

Loss in yields 
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Bidding sheet (page 4) 
 
Now it is time you put in your bid. Please first write in your full name. We shall need it to pay you your gains if 
you are among the winners.  
 
 
 
Name: ………………………………………………………………………… 

               
 
 
1)  First please write down the highest possible bid you believe will be accepted. This must be your best guess:  
 
 
 
Highest acceptable bid (best guess):  ............................................................ ECU/ha 
 
ECU = Experimental Currency Units 
 
2) Now please write in the amount we must pay you so that you accept to participate in our P River protection 
program:   
 
 
 
Your bid: ..........................................................................................................  ECU/ha 
 
 
 
The selection of participants will be made on the ground of their bid in ECU/ha. The lowest bid will be selected 
first, then the second lowest, then the third lowest, and so on until the available budget of 2300 ECU is exhausted.  
 
 
For paying the winners in real money ($), the following rules hold:  
 

• The successful bidders will be paid, not their bid, but the gains from their participation in the program, that 
is: bid minus participation costs.  

 
• Unfortunately, because of limited research funds, we cannot pay out the full value of the gains, but only a 

fixed percentage of the gains. This percentage will be calculated after the end of the bidding session. Of 
course, the higher your gains, the higher your proportional payment. For this session the funds we have 
available for payment to this group total an amount of approx. $300.   
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APPENDIX II : Raw experimental data from both repli cates (ci, iβ  and bi)   

Data are ordered by bids (bi), with indication of selection cut-off line.  
   K     P  

# ci iβ  bi  ci iβ  bi 

          
1 18 50 48   13 275 25 
2 15 300 60   9 100 50 
3 31 85 61   18 400 55 
4 54 80 63   33 148 60 
5 5 75 75   5 100 65 
6 11 100 85   39 80 69 
7 77 105 100   49 130 70 
8 35 250 100   56 200 100 
9 59 125 100   87 160 119 
10 81 120 100   108 190 128 
11 27 120 109   27 400 150 
12 49 135 130   137 155 154 
13 98 140 130   65 160 160 
14 39 150 133   103 180 160 

15 108 150 140   157 85 162 

16 44 145 144   171 250 180 
17 137 148 148   164 250 186 
18 65 300 150   116 300 190 

19 119 175 150   186 195 191 

20 144 170 160   179 210 191.01 

21 150 188 166   125 300 200 
22 6 200 170   237 245 245 
23 131 180 170   203 500 253 

24 114 178 177   229 400 260 
25 186 195 194   249 280 264 
26 171 200 198   258 150 268 
27 103 250 200   264 175 275 
28 125 200 200      
29 177 210 200      

30 216 219 219      
31 9 275 225      
32 210 140 230      
33 221 235 233      
34 224 250 235      
35 205 240 239      
36 191 250 240      
37 234 246 245      
38 157 256 255      
39 182 350 260      
40 255 270 264      
41 249 279 274      
42 237 295 283      
43 261 290 285      
44 200 295 290      

 
Note: The post-marginal bid in P of 191.01 was indeed put in as such by the participant.   

The iβ  refer to the highest acceptable bids estimated by the participants.   
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1 This is not an essential assumption and could be relaxed to include risk aversion, as done by LH (1997). However, it 

would not add much to the present argument and might confuse matters unnecessarily.   
2 By contrast, uniform (second-price) sealed-bid auctions should in theory lead to bidding one’s true opportunity costs, 

both in TC and BC tenders; but they have rarely been used in conservation contracting programs, mainly because of the 

potential for the policy maker to ex post manipulate bids.  
3 This notation cQ differs from the one used later (cq), in that the former represents the bidder’s information whereas the 

latter represents the policy maker’s information. cQ represents the knowledge a bidder has of his belonging to one of the 

four cost quartiles;  cq will represent the quartile pool’s average cost as estimated by the policy maker.  
4 For this purpose, the complete data set of three repetitions in both replicates was used, as there was no visible trend 

across them. The data from the second and third repetition were not otherwise used, as they had been generated for a 

purpose different from the one focused on in this paper.  
5 This hinges on how well the experiment is calibrated to the policy context, namely w.r.t. to key parameters defining 

auction design (budget-to-bidders ratio, cost spread, etc.). We do not elaborate any further here on external validity and 

experimental calibration in policy test-bedding, an area that, in spite of Brookshire et al.’s (1987) and List and 

Shogren’s (1998) early work, has only seriously begun to be investigated in recent years. See e.g. Schramm (2005), 

Garcia & Wantchekon (2009), Boly (2009), Bardsley (2010) and, for an overview, Lusk & Shogren (2007), in particular 

chapter 9.   
6 It is always possible, given quantile averages, to compute lower and upper bounds around each average, once a 

distribution has been chosen.  


