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Abstract: In recent times, there has been increasing demand in the Canterbury region of New 

Zealand for the abstraction of water from rivers. The impact of this demand has lead to 

unacceptable minimum river flows and has adversely affected river ecology. In an effort to resolve 

these issues dams have been constructed. To evaluate the impact of these dam projects on all river 

values, an ecosystem services approach is developed. This ecosystem services approach coupled 

with various evaluation methods are applied for the purposes of assessing the cost-effectiveness of 

the Opuha Dam and the sustainability of the Opihi river system now modified by the Opuha Dam.  

To evaluate the cost-effectiveness of this dam project cost utility analysis is applied through the 

development of an ecosystem services index (ESI). The index is constructed from the aggregation of 

normalized indicators that represent each ecosystem service and preferential weights of each 

ecosystem service. The evaluation of sustainability is considered both according to weak and strong 

criteria. Weak sustainability is evaluated by a non-declining ecosystem services index over time. 

Strong sustainability is evaluated by the thresholds or safe minimum standards where an ecosystem 

service, as represented by an indicator, should not pass below. Fifteen ecosystem services provided 

by the Opihi river were identified and data for forty-two indicators was compiled to assess the 

provision of these services pre- and post-dam. Fifteen regional and six local stakeholder 

representatives were interviewed to elicit preferential weights for each ecosystem service. 

Assessment of both the ESI and safe minimum standards indicates that since dam construction the 

river has progressed towards both weak and strong sustainability in its provision of ecosystem 

services. The cost-effectiveness of the dam however was poor. While further work remains to refine 

the approach, namely to develop more effective indicators of river ecosystem services, the work 

does present a novel method to evaluate the impacts of dams on river systems. 
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Abstract:  
In recent times, there has been increasing demand in the Canterbury region of New Zealand for the 

abstraction of water from rivers. The impact of this demand has lead to unacceptable minimum 

river flows and has adversely affected river ecology. In an effort to resolve these issues dams have 

been constructed. To evaluate the impact of these dam projects on all river values, an ecosystem 

services approach is developed. This ecosystem services approach coupled with various evaluation 

methods are applied for the purposes of assessing the cost-effectiveness of the Opuha Dam and the 

sustainability of the Opihi river system now modified by the Opuha Dam.  To evaluate the cost-

effectiveness of this dam project cost utility analysis is applied through the development of an 

ecosystem services index (ESI). The index is constructed from the aggregation of normalized 

indicators that represent each ecosystem service and preferential weights of each ecosystem service. 

The evaluation of sustainability is considered both according to weak and strong criteria. Weak 

sustainability is evaluated by a non-declining ecosystem services index over time. Strong 

sustainability is evaluated by the thresholds or safe minimum standards where an ecosystem 

service, as represented by an indicator, should not pass below. Fifteen ecosystem services provided 

by the Opihi river were identified and data for forty-two indicators was compiled to assess the 

provision of these services pre- and post-dam. Fifteen regional and six local stakeholder 

representatives were interviewed to elicit preferential weights for each ecosystem service. 

Assessment of both the ESI and safe minimum standards indicates that since dam construction the 

river has progressed towards both weak and strong sustainability in its provision of ecosystem 

services. The cost-effectiveness of the dam however was poor. While further work remains to refine 

the approach, namely to develop more effective indicators of river ecosystem services, the work 

does present a novel method to evaluate the impacts of dams on river systems. 
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1.0 Introduction  
In recent times, there has been increasing demand in the Canterbury region of New Zealand for the 

abstraction of water from rivers. Much of the abstracted water is used for irrigating agricultural 

land, which enables farmers to intensify their agricultural operations through increased stocking 

rates or a change toward more productive land uses (e.g. sheep farming to dairy farming). While 

much irrigation in Canterbury uses run-of-river water schemes, there is a realization that this water 

supply is scarce and, in some cases, has reached its maximum allocation limits while retaining 

acceptable minimum river flows needed to sustain aquatic health (Dyson et al., 2003; Canterbury 

Mayoral Forum, 2009). This realization has led to the increased interest and subsequent investment 

in projects involving water storage. Water storage can be achieved either through river diversion to 

a nearby off-stream reservoir or river impoundment by way of dam construction. With regards to 

river impoundment, water is stored upstream of the dam through the creation of an artificial 

reservoir, while they also regulate, stabilize and augment minimum river flows downstream (Graf, 

2006). This capacity of dams to increase the supply and reliability of water makes them particularly 

beneficial to farmers, as they are able to plan the irrigation of their farms with confidence allowing 

them to intensify their land use in an attempt to maximize profits.  

 

While river impoundment can result in significant benefits to farmers, it also can come at a ‘cost’, 

especially to river ecology. For example, Losos et al. (1995) found that dams have resulted in more 

degradation of threatened species and their habitats than any other activity involving 

environmental resources. Arguably the impetus for investing in dams has been with (short-term) 

financial returns and not in sustaining the aquatic health of river systems (Dyson et al., 2003). 

Scientists have long recognized the negative impact of land use intensification on rivers. Land use 

intensification often leads to a substantial increase in nutrients (e.g. nitrates) from the increased 

application of fertilizers (Harris et al., 2006). The nutrients applied with intensified agricultural 

practices can, through surface runoff, degrade the ecology of rivers by the excessive proliferation of 

algae amongst other things.  

 

Given the potential benefits and costs from water abstraction and river impoundment, it is essential 

that the overall impact of dams on river systems, and all their associated values, is evaluated. The 

evaluation of dams provides information for learning in accordance with adaptive water resource 

management and improved understanding as to whether the original motivations for dam 

investment remains valid (World Wildlife Fund, 2003). Despite its need, such evaluations are rarely 

performed; even though dams are costly investments that have significant impact on river systems 

that provide much human well-being.  

 

In 2000 the World Commission on Dams was established to examine appropriate means of 

evaluation. A cost analysis of various dam projects revealed that the actual cost of dams often 

exceeds their projected costs. Additionally, non-consumptive uses of water were frequently ignored 

and the benefits from river impoundments often exaggerated (World Commission on Dams, 2000). 

Several authors have thought it inappropriate to only consider those tangible use values that relate 

to the consumptive use of water resources (Cortner & Moote, 1994; Jewitt, 2002; Frame & Russell, 

2009). The exaggeration of some benefits coupled with the ignorance of others signals a critical 

failure in water resource management with regards to discerning the actual return on investment of 

a dam and its impact on the ecology and sustainability of the impounded river system.   

 



 

1.1 Ecosystem Services  
The need to evaluate the multiple values provided by river systems has led to the consideration of 

using an ecosystem services approach. This approach has been popularized by some notable studies 

(e.g. Costanza et al., 1997), including the landmark Millennium Ecosystem Assessment (Capistrano et 

al., 2005). Specifically, ecosystem services are the collection of goods and services provided by 

ecosystems (e.g. rivers) that benefit the well-being of humans (Daily, 1997; National Research 

Council, 2005). Ecosystem services are the connection between ecological processes and humans 

that value them for their well-being.  

 

To date, while numerous researchers have recognized the potential of the ecosystem services 

approach for considering the many values provided by ecosystems, including river systems, the 

relevant literature reveals that only some ecosystem services are regularly considered (e.g. Water 

Supply, Recreational Values) (De Groot et al., 2009). Moreover, there are few studies that have 

examined the change in ecosystem services provided by river systems when evaluating the impacts 

of impoundment (Hoeinghaus et al., 2009). An underlying reason for the uneven distribution of 

research into ecosystem services is that there is still much debate on how to apply and implement 

the approach. In particular, researchers have conflicting views as to the inclusion of intermediate 

ecosystem services in addition to final ecosystem services that provide direct benefits to humans 

(Boyd & Banzhaf, 2007; Fisher et al., 2009). This debate is complex in that the determination as to 

whether an ecosystem service is final or intermediate is context-dependent (Turner et al., 2010). For 

example, the ecosystem service Water Supply may be considered final to a hydroelectric company, 

but only an intermediate ecosystem service to an angler. 

 

Despite a number of classifications devised, the set of ecosystem services established in the 

Millennium Ecosystem Assessment remains the most recognizable and well-developed (Raymond et 

al., 2009). This classification incorporates four classes of ecosystem services including provisioning, 

regulating, cultural and supporting. This paper adopts this classification, however, does not utilise 

supporting services as it was determined that they more resembled ecosystem processes than 

ecosystem services within the context of this study. Hence, the three classes examined are: 

provisioning ecosystem services (e.g. Water Supply), which provide use benefits through goods that 

are obtained from the ecosystem; cultural ecosystem services (e.g. Spiritual Values), which provide 

less tangible non-material benefits including non-use benefits; and regulating ecosystem services 

(e.g. Erosion Control), which provide benefits through controlling and regulating various ecological 

processes.  

 

Given that the ecosystem services approach allows for the consideration of multiple values this 

paper applies the approach to evaluate the cost-effectiveness of a dam and the sustainability of the 

impounded river system. Specifically, the Opuha Dam and the Opihi River are evaluated, which are 

located in the particularly drought-prone region of South Canterbury. The remainder of the paper is 

structured as follows. In Section 2 various evaluation methods are discussed to determine the cost-

effectiveness of dam projects and the sustainability of impounded river systems. This leads to the 

promotion of cost utility analysis and the need to construct an ecosystem services index, which is 

formed through the aggregation of indicators that represent the set of ecosystem services provided. 

With appropriate methods of evaluation determined, Section 3 overviews the Opihi River and the 

Opuha Dam. Then, in Section 4 the two components required for the apt construction of an 

ecosystem services index is considered; that is, indicators that capture each ecosystem service and 



 

preferential weights of each ecosystem service that depict the value of the set of ecosystem services 

to various stakeholder groups. Section 5 presents the evaluation results, which reveal the 

sustainability of the impounded Opihi River and the cost-effectiveness of the Opuha Dam. Lastly, in 

Section 6 conclusions are stated and limitations are discussed.   

 

 

2.0 Evaluation Methods 
While cost-benefit analysis is put forward as the most appropriate method for evaluating 

investments such as dam projects, it is unlikely to be capable of considering all ecosystem services 

affected by a dam. Frequently cost-benefit analysis accounts only for tangible use values that are 

conspicuous. This deficiency arises because only tangible use values are easily captured and 

quantified in monetary terms through the availability of market prices (Young et al., 2004; Farber et 

al., 2006). Because many ecosystem services are less tangible and not currently captured by markets 

they are often undervalued or erroneously given an implicit value of zero (Loomis et al., 2000; 

Navrud, 2001; Dyson et al., 2003; National Research Council, 2005; Troy & Wilson, 2006; Barkmann 

et al., 2008).  

 

In order to tackle this economic problem, environmental economists have devised a number of non-

market valuation methods (e.g. contingent valuation, choice modelling) in the absence of actual 

functioning markets for less tangible values. However, while these non-market valuation methods 

are theoretically advanced, they usually require a painstaking amount of effort in gathering and 

analysing information from a large sample population of affected stakeholders. This can make the 

undertaking of non-market valuation costly, labour intensive and time-consuming (Gowdy, 1997; 

National Research Council, 2005; Baskaran et al., 2010).  

 

In order to reduce these impracticalities of non-market valuation, the benefit transfer method is 

often promoted and employed (e.g. Costanza et al., 1997; Baskaran et al., 2010). This method uses 

monetary values obtained from previous non-market valuations of river systems worldwide and 

transfers these values to monetize less tangible values for the particular river system examined. 

However, numerous errors (e.g. measurement errors, transfer errors) can accrue with the benefit 

transfer method (Rosenberger & Stanley, 2006; Turner et al., 2010). Transfer errors are particularly 

problematic and arise from benefits being less transferable than the method would imply. Indeed, 

those that transfer benefits must assume that all ecosystems of a certain type (e.g. rivers) can be 

treated as if they are much alike. But, empirical evidence indicates that ecosystems are complex 

with dynamics that are path dependent and site-specific (e.g. Jordano et al., 2003). Hence, assuming 

correspondence between ecosystems can lead to the estimation of wildly inaccurate monetary 

values (Carpenter & Brock, 2004; National Research Council, 2005; Spash & Vatn, 2006; Naidoo et 

al., 2009).  

 

 

Fortunately, while not well-known, there are alternative evaluation methods to cost-benefit and 

benefit-transfer analyses that are practical and useful. One appropriate method, which remains 

underutilized by economists, is cost utility analysis. This evaluation method maintains the cost 

function in monetary terms, but measures the outcome (or benefit) function through the 

construction of a single non-monetary metric that aggregates multiple values into a ‘utility’ index. 

The development of an index makes cost utility analysis synonymous with multi-criteria analysis. 



 

Multi-criteria analysis is an overarching term depicting a set of methods many of which are capable 

of weighting and aggregating multiple values together (Munda et al., 1994). The capacity of using an 

index is significant as it allows all (or almost all) values to be evaluated without having to monetize 

less tangible values that are more appropriately left in their own terms (Wainger et al., 2010).  

 

2.1 Indices & Indicators 
In order to establish an index that considers the impacts on ecosystem services from river 

impoundment, there is a need to ascertain changes of ecosystem services over time in quantitative 

terms. While the understanding and measurement of ecosystem services is a critical area of ongoing 

research (Carpenter et al., 2006; De Groot et al., 2009), a suitable means of revealing ecosystem 

service changes in quantitative terms is through the use of indicators. It is with indicators that 

ecosystem services can be captured, which is significant as most ecosystem services are difficult to 

measure directly because of the complexity of ecosystems (World Resources Institute, 2008). Indeed, 

indicators are able to ‚summarize complex information of value to the observer. They condense … 

complexity to a manageable amount of meaningful information …‛ (Bossel, 1999; p. 8). Despite the 

usefulness of indicators for representing ecosystem services, they remain underdeveloped. There 

are no indicators that are fully agreed upon for the monitoring of each ecosystem service for a 

particular ecosystem type, no matter the classification employed. However, De Groot et al. (2009) 

recently highlighted a number of indicators that could partially capture various ecosystem services.  

 

One reason why no well-defined list has been established is that each ecosystem service is difficult 

to adequately capture by a single indicator that is depicted strictly in environmental terms. A means 

of more comprehensively capturing an ecosystem service is the use of multiple indicators from both 

environmental and socio-economic perspectives. In using multiple indicators an ecosystem service 

is represented through the collective communication of all appropriate indicators for that ecosystem 

service. While the methodological development of using environmental and socio-economic 

indicators together opposes the position held by Boyd and Banzhaf (2007), it supports the widely 

promoted view in the sustainability literature of extending evaluations beyond environmental 

perspectives alone (Hacking & Guthrie, 2008). Indeed, by capturing both environmental and socio-

economic indicators, the objective ecosystem dimension and subjective human dimension of an 

ecosystem service is measured. This is significant as ecosystem services captured solely by a single 

monetary metric fail to reveal information about the actual status of the impounded river system 

(Rosenberger & Stanley, 2006). Similarly, when conducting an evaluation with environmental 

indicators alone, as is typical of impact analyses (Lamb et al., 2009), socio-economic realities are 

inherently ignored (Straton, 2006; Winkler, 2006). Therefore, in this paper an effort is made to avoid 

this one-sidedness through endeavouring to represent each ecosystem service by both 

environmental and socio-economic indicators wherever possible.  

 

The indicators used to represent the set of ecosystem services provided, when aggregated, allow for 

the construction of an index, which is henceforth termed the ‘ecosystem services index’. The use of 

indices is not new for evaluating rivers (e.g. Qualitative Macro invertebrate Community Index) nor 

is the idea of an index of ecosystem services; as this concept was originally proposed by Banzhaf 

and Boyd (2005). While indices are widely employed and have been considered an efficient 

instrument for evaluating running waters (Hering et al., 2006), there remains little consensus as to 

how best to construct indices (Saisana & Saltelli, 2008) including those focused on ecosystem 

services. 



 

 

This paper constructs an ecosystem services index by selecting a set of indicators that represent each 

ecosystem service. These indicators  are subsequently normalized onto a standardized scale, and 

preferential weights for each ecosystem service that reflect the preferences of all stakeholders are 

applied. The determination of preferential weights is necessary as stakeholder groups have 

differing priorities as to their importance. Once preferential weights are quantified, an index can be 

estimated by multiplying the weight of each ecosystem service with the average normalized score 

from the selected indicators that represent that ecosystem service. These products are then summed 

together to form an aggregated set of indicators or ecosystem services index of the river system 

evaluated (see Equation 1).  

 

ESI  
n in

w s  

Here ESI is the ecosystem services index; 

wn is the preferential weight w for ecosystem service n; and 

sin is the average normalized score s of the set of indicators i that represent ecosystem service n. 

 

2.2 Cost-Effectiveness & Sustainability  
Cost utility analysis has been promoted for the evaluation of the cost-effectiveness of dam projects. 

In order to perform cost utility analysis an ecosystem services index must be constructed and 

monetary costs of river management and the dam project itself (e.g. dam maintenance costs, dam 

running costs) are required. These monetary costs coupled with the ecosystem services index allow 

cost-utility ratios to be calculated and in turn the cost-effectiveness of the dam project inferred. One 

indication of the cost-effectiveness of the dam evaluated would be if the cost-utility ratio post-dam 

was less than that calculated pre-dam.  

 

The ecosystem services index also provides a means to evaluate the sustainability of the impounded 

river system, where sustainability is defined as aggregated welfare that is non-declining over the 

long-term (Pearce et al., 1990; Neumayer, 2003). Non-declining aggregated welfare ensures that 

future generations are provided with at least the same well-being from ecosystem services as 

present generations. Hence, if the ecosystem services index is non-declining over the long-term then 

the river system can be considered ‘sustainable’ or at least progressing towards sustainability. This 

determination of sustainability reflects the ‘weak’ sustainability criterion because it assumes that all 

ecosystem services are compensatory and, therefore, commensurable and reducible to a single 

metric; in this case an ecosystem services index (see Figure 1). For example, an ecosystem services 

index implies that a high scoring Recreational Values ecosystem service can compensate a low 

scoring Water Regulation ecosystem service.    
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Figure 1: A non-declining index indicates weak sustainability as future generations are provided 

with at least the same well-being as present generations (adapted from Norgaard, 2010).   

 

In allowing for compensation, the ecosystem services index neither is able to consider who 

explicitly gains and losses from the dam project nor consider the criterion of ‘strong’ sustainability. 

Unlike weak sustainability, strong sustainability considers welfare in non-compensatory terms, so 

that the evaluation of strong sustainability by an ecosystem services index is inappropriate 

(Faucheux & O’Connor, 1998). For this reason, strong sustainability recognizes that measuring the 

actual delivery of an ecosystem service through indicators does not necessarily indicate whether the 

ecological processes that produce ecosystem services are sustainable (Mooney et al., 2005). Ideally 

then, both the weak and strong criteria of sustainability should be accounted for when evaluating 

an impounded river system , as claims of sustainability are mistaken unless both the well-being of 

future generations and the ecological processes that produce the set of ecosystem services are 

maintained.   

 

The difficulty with strong sustainability has been in making the criterion practicable (Prato, 2007). 

(Turner et al., 2010). However, Costanza (1991) has maintained that strong sustainability can be 

made operational by translating it in terms of a safe minimum standard, a concept first introduced 

by Ciriacy-Wantrup (1952). Specifically, a safe minimum standard indicates a threshold where an 

ecosystem service represented by a set of indicators should not be breached in order to sustain its 

supply. Beyond the threshold (e.g. below the acceptable minimum river flow) the supply of an 

ecosystem service may change abruptly leading to potential ‘irreversible’ losses (Costanza et al., 

2001; Norgaard, 2010). This concept of a safe minimum standard (or threshold) should not be 

foreign to water resource managers as it is widely applied through the determination of acceptable 

minimum river flows for sustaining aquatic health. Despite this, a critical reason for poor water 

resource management in New Zealand is that thresholds are neither adequately acknowledged nor 

managed for (Land and Water Forum, 2010). Yet, when incorporating the strong sustainability 

criterion into an evaluation thresholds are acknowledged, so that they can be managed for and not 

breached in order to sustain benefits for human well-being. 
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In applying the safe minimum standard, strong sustainability in its most complete form would be 

observed where safe minimum standards for the set of indicators representing all ecosystem 

services have been met and are therefore not breached. It is, of course, unlikely that strong 

sustainability in this most complete form will be demonstrated, especially when one considers that 

approximately two thirds of all ecosystem services provided worldwide are presently degraded 

(Capistrano et al., 2005). Where a safe minimum standard is breached, there are several evaluation 

methods for the determination as to whether the strong sustainability of an impounded river 

system has progressed or regressed since dam construction. One simple method is the checklist 

approach where a count is determined of the number of safe minimum standards breached pre-dam 

compared with the number of safe minimum standards breached post-dam. One difficulty with this 

method is it assumes that all ecosystem services are equally preferred. However, other evaluation 

methods can be applied including refinements of this checklist approach outlined above.  

 

An alternative evaluation method is the lexicographic-based characteristic filtering rule. This 

evaluation method does not assume that all ecosystem services are equally preferred. Rather, in 

using the preferential weights for the set of ecosystem services, a hierarchy of ecosystem services 

can be established from most to least preferred. In establishing a hierarchical ranking of ecosystem 

services the characteristic filtering rule can be applied to assess the strong sustainability of an 

impounded river system. This is possible because the characteristic filtering rule uses the 

hierarchical ranking of ecosystem services to filter each ecosystem service, so that ecosystem 

services are evaluated from most to least preferred. The characteristic filtering rule is applied first to 

the most preferred ecosystem service and establishes whether the safe minimum standards for all 

indicators that represent that ecosystem service have been breached or not, both pre-dam and post-

dam (Earl, 1986; Lockwood, 1996). Where in both periods (i.e. pre-dam or post-dam) all safe 

minimum standards are passed or at least one safe minimum standard for an indicator is breached 

in both periods in any one year, then the safe minimum standards for the next most preferred 

ecosystem service are subsequently evaluated. This process continues until all safe minimum 

standards have been passed for one period, but not the other. When this happens it indicates which 

period has provided the greater progress towards (strong) sustainability.     

 

Where one or more safe minimum standards are breached, it is possible to determine the degree of 

degradation of the ecosystem service by applying the concept of the (strong) sustainability gap 

(Ekins et al., 2003). The sustainability gap refers to the proximity-to-threshold or, more precisely, the 

normalized difference between the present breached score of one or more indicators and their 

corresponding safe minimum standard. The differences between all indicators that represent the 

degraded ecosystem service can be aggregated to indicate the overall degree of degradation of that 

ecosystem service when compared with other degraded ecosystem services.   

 

The assumption, thus far, has been that safe minimum standards can be determined in a 

straightforward manner. But, there is considerable uncertainty about the delivery of ecosystem 

services, let alone ecological processes, given the complexity of ecosystems. This uncertainty makes 

it difficult to determine thresholds precisely, until these thresholds have been already breached 

with potentially irreversible consequences. And indeed, this inability to set thresholds for the 

sustainable management of water resources in New Zealand has been recently acknowledged at 

length (see Land and Water Forum, 2010). Accordingly, the determination of safe minimum 

standards, where they are not already defined formally, requires the careful judgement of experts 

(Turner et al., 2010). Where a threshold remains difficult to determine with any certainty, it may be 



 

stated by a fuzzy number, so as to depict the uncertainty and imprecision in the safe minimum 

standard given. Alternatively, where a safe minimum standard remains difficult to determine, 

regress towards unsustainable states could be indicated simply by undesirable trends in the set of 

indicators that represent the ecosystem service (Ekins et al., 2003).  

 

3.0 The Opihi River Case Study 
The Opihi River is located in South Canterbury. Its headwaters are found in the foothills of the 

Southern Alps at elevations of up to 2200 metres (de Joux, 1982). From these headwaters the river 

flows through the Timaru downlands and over the Canterbury Plains to the coast. The Opihi River 

has three main tributaries that feed into it including the Opuha River, the Tengawai River and the 

Temuka River. The total area of the Opihi Catchment is approximately 181,000 hectares and 245,000 

hectares when the Opuha Catchment is also included (Figure 2). Within these catchments a range of 

land uses take place including grazing, dairy farming and cropping.  

 

 
Figure 2: The Opihi Catchment, the Opuha Catchment and the Opuha Dam. Canterbury region in 

the inset. 

 

The Opihi River provides many ecosystem services. Examples of the set of ecosystem services 

provided by the Opihi River are given in Table 1. This set was determined through the systematic 

consideration of each ecosystem service classified in the Millennium Ecosystem Assessment. All 

ecosystem services except Biological Products and Climate Regulation were found to be relevant to 

the Opihi River.  

 

 

 

 

 



 

Table 1: The set of ecosystem services provided by the Opihi River. 

Class Ecosystem service Examples of ecosystem service  

Provisioning 

ecosystem 

services 

Abiotic Products Gravel extraction for road chip and concrete 

Biological Products Not applicable 

Fibre Flax, driftwood 

Food Game fisheries (e.g. salmon, trout), native fisheries (e.g. 

eel, whitebait, flounder) and other mahinga kai 

Water Supply Irrigation, hydroelectric production, municipal water use, 

industrial water use, stock water use 

Regulating 

ecosystem 

services 

Climate Regulation  Not applicable 

Disease Regulation  Parasite and toxic algae regulation 

Erosion Control  Stabilization of river banks 

Natural Hazard Regulation  Flood and drought protection  

Pest Regulation  Invasive non-native species (e.g. algae, willows, gorse) 

Water Purification  Removal of pollutants 

Water Regulation  River flow regulation (e.g. minimum river flows) 

Cultural 

ecosystem 

services 

Aesthetic Values  Perceived beauty 

Conservation Values  Native biodiversity and habitat, endangered native 

species (e.g. black-billed gull), significant landscapes (e.g. 

Opihi Lagoon) 

Educational Values Historical/archaeological values & knowledge systems 

Recreational Values  Sailing, rowing, kayaking, fishing, duck hunting, 

picnicking, swimming, walking 

Spiritual Values  Māori values (e.g. mauri) 

 

All rivers in the Opihi Catchment are rain-fed with peak river flows normally occurring during the 

winter months. The average rainfall during the irrigation season (i.e. September to April) is 

approximately 700 millimetres in the foothills and only 420 millimetres along the coast. This low 

rainfall coupled with strong winds during the summer months, results in the Opihi Catchment 

being severely drought-prone, which impacts negatively on agricultural productivity. In an effort to 

overcome soil water deficiencies, the Levels Plains Irrigation Scheme was established in the 

catchment in 1936. However, the demand for water in the catchment often exceeded its supply, 

which resulted in water used for irrigation purposes being over-allocated. The excessive abstraction 

of water resources often resulted in unacceptable minimum river flows in the Opihi River, which 

coupled with land use intensification caused the decline in water quality. Furthermore, the low 

river flows were unable to keep the coastal river mouth open, which prevented fish migration out to 

sea (Dacker, 1990). The limited fish passage and poor water quality degraded many ecosystem 

services that were once provided in abundance by the river. In reaction to the degradation of 

ecosystem services provided, a local initiative emerged that lead to the construction of the Opuha 

Dam, which was conceived to be a means to augment minimum river flows, enhance water quality 

and in turn improve the delivery of ecosystem services provided by the Opihi River.     

 

3.1 The Opuha Dam  
The Opuha Dam sited on the Opuha River was made fully operational in 1998 and cost NZ$34 

million to construct. This was 21 per cent over projected construction costs (Worrall, 2007). Actual 

operating costs have also been higher than those projected (Harris et al., 2006). The river 

impoundment artificially created the 700 hectare Lake Opuha upstream of the dam and augmented 

minimum river flows downstream of the dam to levels considered acceptable to sustain aquatic 



 

health. The increased supply of water, in turn, has increased the capacity to irrigate agricultural 

land in the Opihi Catchment from 4000 hectares to approximately 16,000 hectares. This increased 

capacity to irrigate has granted farmers with an estimated NZ$12,000,000 surplus per year when 

compared to dryland farms, an estimated NZ$123,000,000 per year in spillover benefits to 

surrounding rural communities and has created an estimated 480 jobs (Harris et al., 2006).  

 

Despite positive signs about the performance of the Opuha Dam, which has been officially 

recognized by way of the Opuha Dam Limited receiving the coveted first prize for Environment 

Canterbury’s (Canterbury Regional Council) biennial resource management awards in 2008, there 

still remain questions about its cost-effectiveness and the sustainability of the impounded Opihi 

River (Hearnshaw et al., 2010). Indeed, Bryan Jenkins, the chief executive of Environment 

Canterbury, has stated that ‚… there are issues that need to be looked at *with dam construction+, 

such as the possible spread of [algae], the mixing of the waters, sustainability and cost‛ (Worrall, 

2007; p. 107). These unanswered questions have arisen largely because less tangible values have 

been ignored and the impact of land use intensification over time on the aquatic health of the Opihi 

River remains unclear. Hence, given that a significant period of time has elapsed since the 

construction of the Opuha Dam, it is appropriate to systematically evaluate its cost-effectiveness 

and the sustainability of the hydrologically modified reach of the Opihi River.  

 

4.0 Indicator Selection   
With an established set of ecosystem services provided by the Opihi River (see Table 1), available 

environmental and socio-economic indicators that have been used to measure particular 

characteristics of the Opihi River were compiled in an effort to represent each ecosystem service. 

This initial compilation was surveyed and verified by experts and amended where necessary, which 

resulted in the removal of some indicators and the inclusion of other previously unidentified 

indicators.  Only those indicators that are applicable to river systems regardless of dam construction 

were retained in the compilation.  

 

A critical problem in the construction of an ecosystem services index is the issue of double counting, 

which arises primarily from the complexity of ecosystems and the resulting interdependence of 

ecosystem services (De Groot et al., 2002; Rodriguez et al., 2006). In particular, double counting may 

be evident when both intermediate and final ecosystem services are valued in that final ecosystem 

services valued would, at least partially, be accounted for in intermediate ecosystem services valued 

(Turner et al., 2010). Double counting is also evident when the indicators used to construct an 

ecosystem services index are used to represent multiple ecosystem services. For example, the 

indicator Clarity has been compiled to capture multiple ecosystem services including Aesthetic 

Values, Recreational Values and Water Purification.   

 

Despite double counting being a critical concern to the legitimate evaluation of ecosystem services, 

it is rarely considered. In fact, Fisher et al. (2009) found that only one of 34 recent studies surveyed 

on ecosystem services raised this issue. Consequently, in this paper an effort is made to adequately 

deal with, , the issue of double counting through the alignment of an indicator to only one 

ecosystem service by a process of indicator selection. By assigning each indicator to only one 

ecosystem service, the problem of summing ecosystem services rather than applying a more 

complicated aggregative function (i.e. multiplicative or non-linear) is considered to be adequately 

dealt with, in spite of ecosystem services being interdependent phenomena.  



 

 

To select the most appropriate fit between indicators and ecosystem services, indicators assigned to 

multiple ecosystem services were evaluated against various scientific criteria previously considered 

in the literature for indicator selection. These criteria include measurability, credibility, sensitivity, 

simplicity, relevance, timeliness, data availability and communicability, which refers to the ability 

of an indicator to convey relevant information about the state of the ecosystem service (Noss, 1990; 

Lorenz et al., 2001; Keeney & Gregory, 2005; Hak, Moldan & Dahl, 2007). Layke (2009) applied the 

criteria of data availability and communicability for the selection of indicators to represent the 

relevant set of ecosystem services. These two criteria were applied here as well. However, the 

additional criterion of indicator cost was also employed in recognition of the scarce funds available 

to monitor ecosystems cost-effectively (Garcia, 1996; Cantarello & Newton 2008). Hence the 

selection of indicators was based on their cost-effectiveness.    

 

The results for the selection of indicators are presented in Table 3 where the criteria of data 

availability, communicability and indicator cost were scored on a one-to-nine scale (where one is 

low and nine is high) by six experts knowledgeable of indicators employed in the monitoring of 

Canterbury river systems. The average scores for the data availability and communicability criteria 

were summed and divided by the average cost score, which provided an account of each indicator’s 

cost-effectiveness. Accordingly, where one indicator was initially compiled to represent two or 

more ecosystem services, the ecosystem service that provided the highest cost-effectiveness for that 

indicator was preferred to represent that ecosystem service. However, in some cases, an indicator 

was subsequently assigned not to that ecosystem service with the highest cost-effectiveness if that 

ecosystem service was already well-represented by other indicators and the competing ecosystem 

service lacked an adequate set of indicators.  

 

The final compilation of indicators that represent each ecosystem service provided by the Opihi 

River is depicted in Appendix 1. While there was an effort to represent each ecosystem service by 

multiple indicators from both environmental and socio-economic perspectives, it is apparent that 

many ecosystem services remain inadequately captured. This limited representation of ecosystem 

services from indicators is especially evident with regards to socio-economic indicators. A similar 

conclusion was reported by Layke (2009), who investigated the use of indicators to capture changes 

in the delivery of ecosystem services.     

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Preferential Weights 



 

It has been established previously that the construction of an ecosystem services index requires two 

components: a set of selected indicators for the representation of each ecosystem service, and 

preferential weights for each ecosystem service. With regards to the latter component, the 

determination of preferential weights requires a suitable multi-criteria analytical method. One 

method that can determine preferential weights, and has proven to be useful for the construction of 

indices, is the analytical hierarchy process (Saaty, 1995). While the capacity of the analytical 

hierarchy process to aid in the construction of indices is recognized in the literature, this is the first 

effort where the analytical hierarchy process is used to construct a comprehensive ecosystem 

services index.  

 

The analytical hierarchy process is a method that decomposes evaluations of preference for values 

(or other criteria) into a hierarchical network (Saaty, 1995). From the hierarchical network 

constructed, pairwise comparisons between values as ecosystem services and their classes can be 

made on a one-to-nine scale, where one represents neutrality or indifference between the pairing 

and nine represents an overwhelming preference for one value over the other. Each pairwise 

comparison on this scale captures the cardinal intensity of preference between the ecosystem service 

pairing examined. Thus, in using pairwise comparisons to indicate preference intensity, the 

inevitable ‘trade-offs’ between each ecosystem service pairings can be mapped. The pairwise 

comparisons of all pairings depict ratios, which can be expressed in a ratio matrix (Equation 2). It is 

in this form that the analytical hierarchy process allows the estimation of preferential weights for 

the set of ecosystem services. While this ratio matrix is computationally demanding to solve, there 

are a number of programmes (e.g. Expert Choice) dedicated to undertaking such evaluations. 
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Here w is the ratios of pairwise comparisons between ecosystem services; and 

A is the determination of preferences from the ratio matrix. 

 

In Figure 3 the constructed hierarchical network is depicted. At its pinnacle is the ecosystem services 

index. The next level contains the classes of ecosystem services and the lower level the set of 

ecosystem services. Extensive use of even lower levels could have been developed that attempted to 

decompose each ecosystem service into further component parts. However, lower levels were not 

employed here, except for the ecosystem service Water Supply, which was decomposed further in 

order to decipher preferential weights for Irrigation over Other Water Supply Uses (e.g. 

hydroelectric production, municipal water supply).  

 

 

 

 

 

 

 

 

 

(Equation 2) 
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Figure 3: The hierarchical network for constructing preferences of ecosystem services. 

 

In an effort to limit the impracticalities found when applying non-market valuation methods, the 

determination of preferential weights is considered to be best carried out by a small number of 

stakeholder representatives. The use of stakeholder representatives as ‘overseers’ of a stakeholder 

group rather than a large stakeholder sample is less costly, conducive with the method of cost 

utility analysis and has been shown to provide a reasonable approximation of preferences obtained 

from larger sampling frames (Colombo et al., 2009). In fact, the surveying of stakeholders may lead 

to less than satisfactory results as stakeholders may neither possess sufficient understanding of the 

ecosystem services provided, nor an adequate grasp of the evaluation methods used (Alvarez-

Farizo & Hanley, 2006; Barkmann et al., 2008). However, it is recognized that the use of stakeholder 

representatives makes absolute claims of representation difficult (Spash, 2007). Hence, the selection 

of stakeholder representatives is critical and must attempt to represent a reasonably equitable and 

proportional microcosm of all affected stakeholder groups (Turner et al., 2010). Moreover, the 

selection of stakeholder representatives needs to account for the fact that preferences of ecosystem 

services may vary at local and regional scales of analysis. Hence, stakeholder representatives 

selected for the determination of preferential weights of ecosystem services included those with a 

local appreciation of the impounded river system evaluated, as well as those with a broader 

perspective that we able to consider preferences for ecosystem services provided by river in a 

regional context (e.g. Canterbury).  

 

Preferences of ecosystem services were collected from 15 regional stakeholder representatives and 

six local stakeholder representatives, who, in each case, represent (or have represented) in a formal 

capacity various important stakeholder groups that are pertinent to water resource management in 



 

the Canterbury region or the Opihi Catchment in particular. The difficult task of selecting 

stakeholder representatives was made easier as many regional stakeholder representatives used 

were already a part of a formal regional group established specifically to address water resource 

issues. While no formalized local group existed, such a group was in the process of development. 

Accordingly, additional stakeholder representatives were chosen that represented many of the 

stakeholder groups that have been of historical importance both regionally and locally.   

 

All stakeholder representatives were informed to provide their preferences from the perspective of 

the present needs of the stakeholders that they represent. The preferences obtained were analysed 

in the computational programme Expert Choice, which provided each stakeholder representative a 

set of preferential weights for each ecosystem service. In addition, an inconsistency measure that 

gauged the degree of intransitivity between preferences throughout all ecosystem service pairings 

was also calculated. This inconsistency measure is significant as it recognizes the presence of 

bounded rationality in preference formation in that people do not always possess consistent or 

transitive preferences as assumed in normative theories of rational choice. The initial average 

inconsistency for stakeholder representatives was 13 per cent. The recommended level of 

inconsistency is about ten per cent. Saaty (1995) recommends that where preferences are higher than 

ten per cent then they should be revised where possible. Hence, some stakeholder representatives 

were asked if they wish to revise highly inconsistent preferences according to various 

computationally-devised remedies. Those stakeholder representatives that choose to revise their 

preferences resulted in a reduction in the average inconsistency to a satisfactory level of 11 per cent.  

 

In Figure 4 the revised average preferential weights for ecosystem services from 15 regional 

stakeholder representatives and six local stakeholder representatives are shown. The ecosystem 

service Water Supply is the most preferred for both regional and local stakeholder representatives. 

This preference supports previous research for ecosystem services provided by rivers within 

Canterbury (MacDonald & Patterson, 2008), and might be expected given the increased demand for 

abstracting water in the region. Of interest the average ratio of Irrigation to Other Water Supply 

Uses was significantly less than one for both local (0.48) and regional (0.70) stakeholder 

representatives. While the ecosystem service Water Supply was given the greatest preference, other 

ecosystem services were found to have relatively high preferential weights. These findings reiterate 

that water resources are valued for many reasons. The preferences held for ecosystem services other 

than Water Supply differ considerably, however, between local and regional stakeholder 

representatives. Regional stakeholder representatives placed greater emphasis on regulating 

ecosystem services. Conversely, local stakeholder representatives placed greater emphasis on 

provisioning and cultural ecosystem services.    
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Figure 4: Preferential weights for ecosystem services from regional (i.e. Canterbury river systems) 

and local (i.e. Opihi River) stakeholder representatives. Ecosystem services from left to right 

progress from Provisioning services through Regulating to Cultural.  

 

 

 

5.0 The Sustainability of the Opihi River 
The evaluation of the sustainability of the Opihi River both pre-dam and post-dam was analysed 

through weak and strong criteria. The evaluation period was between the years 1989 to 2008, which 

provided a timeframe with a number of years both before and after the Opuha Dam construction in 

1997. Indicators were averaged if they were collected from multiple periods throughout the year 

and from multiple monitoring sites along the Opihi River. Ideally, the evaluation period would 

have been extended before the Opihi River was first hydrologically modified by the Levels Plain 

Irrigation Scheme. However, establishing such a ‘natural’ baseline was not possible as many 

indicators had little or no data available before 1989. Conclusions drawn from this paper should 

therefore acknowledge the state of the river under study pre-dam before making assumptions on 

similar findings being applicable to the impacts of dams on unmodified or pristine river systems.  

  

 



 

The strong sustainability criterion was operationalized by amassing safe minimum standards for 

each indicator by collated ‘formal’ pronouncements, such as those indicated in the Opihi River 

Regional Plan (Environment Canterbury, 2000) and the proposed Canterbury Natural Resources 

Regional Plan (Environment Canterbury, 2010). Where safe minimum standards were not 

pronounced, they were elicited by expert judgement. In total three experts were used to elicit safe 

minimum standards. Where safe minimum standards elicited from experts differed then they were 

averaged. The final thresholds for the set of indicators, as safe minimum standards, are detailed in 

Appendix 3. Of note, not all indicators (e.g. Volume of Gravel Extracted) were given safe minimum 

standards. This was because either the elicitation of safe minimum standards was not appropriate 

for these indicators or no such threshold could yet be confidently given. In these cases, a ‘no 

undesirable trend’ in the indicator was used for its evaluation.    

 

The evaluation of strong sustainability in its most complete form would be observed where the safe 

minimum standards for all indicators have not been breached. Strong sustainability in its most 

complete form was not indicated as safe minimum standards were breached for many indicators 

both pre-dam and post-dam on the Opihi River. Accordingly, a checklist approach was first applied 

to evaluate strong sustainability both pre-dam and post-dam by the determination of the number of 

ecosystem services that failed their respective safe minimum standards. Failure was indicated by 

any indicator that represented an ecosystem service breaching its safe minimum standard in any of 

the years that were evaluated. It was determined that nine ecosystem services failed their safe 

minimum standards pre-dam, while eight ecosystem services failed their safe minimum standards 

post-dam. This indicates marginal progress towards (strong) sustainability on the Opihi River since 

the construction of the Opuha Dam. However, as previously indicated, this checklist approach is a 

simple, somewhat unsatisfactory, method of evaluation.  

 

A more refined checklist approach was also applied that considered the percentage of years safe 

minimum standards failed for the set of indicators used to represent each ecosystem service. Table 4 

indicates the percentage of years failed for each ecosystem service provided both pre-dam and post-

dam by the Opihi River and for the ‘Opihi River - Upstream’, which is the part of the Opihi River 

between its headwaters and the confluence where the Opihi River meets the Opuha River. 

Consequently, this upstream part is not directly impacted by the Opuha Dam and thus acts as a 

‘control’. However, the lack of available data for many indicators along the upstream part of the 

Opihi River limited the number of ecosystem services that could be evaluated adequately.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4: Percentage of years failed for ecosystem services provided by the Opihi River and the 

Opihi River - Upstream both pre-dam and post-dam. 

 

 

Ecosystem Service  

Percentage of Years Failed 

Opihi River Opihi River - Upstream 

Pre-dam Post-dam  Pre-dam Post-dam  

Abiotic Products 0 0 --- --- 

Fibre 0 0 --- --- 

Food 3.3 20.5 0 25 

Water Supply  37.5 0 --- --- 

Disease Regulation  0 18.2 12.5 9.1 

Erosion Control  50 36.4 62.5 27.3 

Natural Hazard Regulation  11.1 0 --- --- 

Pest Regulation  0 0 --- --- 

Water Purification  27.3 26.7 50.8 35.4 

Water Regulation 69.6 18.2 --- --- 

Aesthetic Values 50 54.5 62.5 59.1 

Conservation Values 3.3 2.6 --- --- 

Educational Values 0 0 --- --- 

Recreational Values 41.7 33.3 --- --- 

Spiritual Values  0 0 --- --- 

Total Percentage of Years Failed 19.6 14.0 * * 

    *Not calculated due to insufficient data 

 

Table 4 indicates the percentage of years failed decreases on the Opihi River post-dam when 

compared with the Opihi River pre-dam. Of the set of ecosystem services provided, the ecosystem 

services Water Supply and Water Regulation improved markedly post-dam. These findings provide 

further evidence that since the construction of the Opuha Dam the ecosystem services provided by 

the Opihi River have progressed towards strong sustainability. However, three cautionary 

observations are noted. First, the percentage of years failed increases post-dam for the ecosystem 

services Food, Disease Regulation and Aesthetic Values. Secondly, while not revealed in Table 4, the 

percentage of years failed rose considerably from 25 per cent pre-dam to 70 per cent and 90 per cent 

post-dam for the indicators Number of Anglers and Number of Salmonids Caught, respectively. 

Finally, the indicator Nitrate Concentration failed 45 per cent of years post-dam, yet did not fail at 

all pre-dam. This noticeable change in the percentage of years failed for this indicator suggests, 

despite a diluting effect from augmented minimum river flows, that nitrates have increasingly 

entered the river presumably from intensified land use in the Opihi Catchment.   

 

Previously, the application of the characteristic filtering rule was proposed for evaluating the strong 

sustainability criterion. This method was applied for evaluating the Opihi River pre-dam and post-

dam according to the hierarchical ranking of ecosystem services determined by the preferential 

weights determined in Figure 4. In applying the characteristic filtering rule, the most preferred 

ecosystem service Water Supply was evaluated. In evaluating Water Supply, it was observed that 

the indicators that represent this ecosystem service passed all safe minimum standards post-dam, 

but breached some safe minimum standards pre-dam (see Appendix 4a). This finding further 

indicates that the Opihi River post-dam has progressed towards strong sustainability.  

 

Further analysis using the characteristic filtering rule was developed to indicate the strong 

sustainability pre-dam and post-dam for the various classes of ecosystem services provided. This 



 

level of analysis is significant, as it allows for ‘triple bottom-line’ type of evaluations often applied 

to environmental, social and economic dimensions of sustainability (Hacking & Guthrie, 2008). 

Hence, similar to a triple bottom-line evaluation, but in line with the ecosystem services approach 

undertaken in this paper, each class of ecosystem services were evaluated independently. 

Provisioning ecosystem services were not evaluated as this analysis is inferred from the evaluation 

of the ecosystem service Water Supply performed previously. With regards to regional preferences 

of regulating ecosystem services the ecosystem service Water Purification was the most preferred. 

The evaluation of this ecosystem service indicated that safe minimum standards were breached 

both pre-dam and post-dam. Hence, given that both periods failed, the next most preferred 

ecosystem service Natural Hazard Regulation was evaluated. For this ecosystem service it was 

found that all safe minimum standards passed post-dam, yet one safe minimum standard failed 

pre-dam (see Appendix 4b). With regards to local preferences, the most preferred regulating 

ecosystem service was Natural Hazard Regulation. Hence, the same finding for the analysis of 

regional preferences is observed with local preferences. The analysis of cultural ecosystem services 

applying the characteristic filtering rule was inconclusive. This was because all ecosystem services 

both pre-dam and post-dam had some failures in safe minimum standards.  

 

The sustainability gap, which is applied to ecosystem services that have breached their safe 

minimum standard, is a measure of the degree of degradation of each ecosystem service. The 

sustainability gap was established in three steps. First, the quantitative output of each indicator is 

normalized on a 0-to-100 scale. For some indicators (e.g. Irrigated Area), zero and 100 represent the 

historical minimum point and the historical maximum point, respectively, where the historical 

maximum point is the optimal state. However, not all indicators follow this positive progression. 

Other indicators (e.g. Total Nitrogen Concentration) follow a negative progression where the 

optimal state is found at the historical minimum point. While still other indicators (e.g. pH Levels 

and Water Temperature) have an optimal state, not at the extremes of their historical quantitative 

output, but between their minimum and maximum thresholds given as safe minimum standards. 

The second step establishes the present state and safe minimum standard of the indicator on the 0-

to-100 scale, which allows the determination of the sustainability gap by calculating the difference 

between the present normalized score and the normalized safe minimum standard. The final step 

calculates the sustainability gap for each degraded ecosystem service by aggregating the 

normalized degree of degradation from all indicators that represent that ecosystem service.    

 

Figure 5 indicates the sustainability gap or degree of degradation for the various ecosystem services 

that breached their safe minimum standards both pre-dam and post-dam. It is shown that the 

sustainability gap of degraded ecosystem services were more degraded pre-dam than post-dam. In 

fact, for some ecosystem services there has been a significant decrease in their degree of degradation 

post-dam. For example, the degree of degradation for the ecosystem service Water Regulation has 

more than halved since the construction of the Opuha Dam.   
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Figure 5: The sustainability gap or degree of degradation of ecosystem services that breached 

their safe minimum standard (SMS) (i.e. 0 degree of degradation).  

 

5.1 Weak Sustainability and the ESI 
Weak sustainability of the impounded Opihi River was evaluated using the ecosystem services 

index, which has the form indicated previously in Equation 1. However, the evaluation of weak 

sustainability was analysed by dividing the ecosystem services index by the number of indicators 

used to construct the index in that year. This ensured that missing data for indicators would not 

impact the inferences obtained from the ecosystem services index. In addition, while preferential 

weights for ecosystem services were determined, it was assumed that indicators that capture each 

ecosystem service were of equal weight. However, indicator weightings could have been potentially 

given for the construction of the ecosystem services index according to their cost-effectiveness.  

 

Sensitivity analysis was performed prior to the application of the ecosystem services index. For the 

sensitivity analysis, each ecosystem service was removed from the index to determine the 

percentage change and dominance that ecosystem service had on the constructed ecosystem service 

index. An indication of the dominance of any one ecosystem service in an index is important, as a 

well-constructed index should not be dominated by the quantitative output of only a single or a few 

of its indicators (Saisana & Saltelli, 2008). From the sensitivity analysis it was observed that the 

ecosystem service Water Supply had the greatest impact on the ecosystem service index, though the 



 

percentage change after its removal was less than 20 per cent. This percentage change was 

considered sufficiently small to conclude that the ecosystem services index constructed was multi-

dimensional. However, closer inspection of the indicators of each ecosystem service revealed that 

the indicators Irrigated Area and Economic Impact from Irrigation that partially represent the 

ecosystem service Water Supply were completely positively correlated. Given this correlation the 

environmental indicator Irrigated Area was removed from the ecosystem services index.    

 

Figure 6 depicts the average ecosystem services index per indicator over the evaluation period. It is 

shown that whether the ecosystem services index is constructed using local or regional preferences 

that the aggregated set of ecosystem services provided by the Opihi River increases over the 

evaluation period. This positive long-term trend, therefore, indicates evidence of the weak 

sustainability of the impounded Opihi River. In fact, all index points for local preferences are 

greater post-dam than pre-dam indicating a ‘step’ change in the aggregated set of ecosystem 

services provided by the Opihi River since dam construction.  
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Figure 6: Average ecosystem services index per indicator for the ecosystem services provided by 

the Opihi River.  

 

In keeping with the ecosystem services approach to triple-bottom-line evaluations, each class of 

ecosystem service was evaluated independently by aggregating only those ecosystem services 

relevant to that class into an ecosystem services index. Figures 7a-c depict the average ecosystem 

services index per indicator for provisioning ecosystem services, regulating ecosystem services and 

cultural ecosystem services, respectively. In each case, it is demonstrated that the aggregated class 

set of ecosystem services increases over the evaluation period. This, therefore, further indicates 

evidence of the weak sustainability of the impounded Opihi River. However, while all classes of 

ecosystem services were increasing, the local preferences for regulating ecosystem services were 



 

only marginally increasing. This suggests that this class of ecosystem service is vulnerable to a 

transition towards an unsustainable state indicated by a declining ecosystem services index.   
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Figure 7a: Average ecosystem services index per indicator for the provisioning ecosystem 

services provided by the Opihi River.  
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Figure 7b: Average ecosystem services index per indicator for the regulating ecosystem services 

provided by the Opihi River.  
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Figure 7c: Average ecosystem services index per indicator for the cultural ecosystem services 

provided by the Opihi River.  

 

From the series of analysis undertaken it is contended that the impounded Opihi River has 

progressed towards weak and strong sustainability since the construction of the Opuha Dam. This 

conclusion supports the belief reported in interviews with many experts and stakeholder 

representatives that since dam construction the overall aquatic health of the Opihi River has 

improved. Three cautionary observations, however, are noted. First, the various evaluation 

methods applied, while able to evaluate the sustainability of Opihi River, are not able to infer the 

causal mechanism that has led to this progression towards sustainability. While it may be 

hypothesized that the Opuha Dam is the underlying causal mechanism for this progress, this 

reasonable hypothesis has not been scientifically validated. Secondly, the evaluation of the 

ecosystem services Fibre, Pest Regulation and Spiritual Values were inadequately captured, as each 

of these ecosystem services were only represented by a single indicator that did not vary 

throughout the period of evaluation. Finally, as stated previously, the evaluation period adopted in 

this paper may be too short a timeframe to infer with confidence the sustainable state of the Opihi 

River. Moreover, there may be lag effects from the impact of land use intensification on the aquatic 

health of the river that are yet to be revealed, which highlights the ongoing need to continue to 

evaluate the river in the future. With regards to future evaluations, it may be necessary to update 

preferential weights from stakeholder representatives and normalized scores from indicators as 

new historical quantitative output extends beyond the extremities of the data previously analysed. 

Where this is so, then all previous index output should also be readjusted accordingly so that 

previous evaluations are measured against current weighting and scoring parameters.  

 

 

 

 



 

5.2 The Cost-Effectiveness of the Opuha Dam 
The evaluation of the cost-effectiveness of the Opuha Dam was performed by cost utility analysis. 

Annual operational cost data relating to the Opuha Dam (i.e. dam running costs, dam maintenance 

costs) and the Opihi River (i.e. river management costs) were aggregated for each year of the 

evaluation period. River management costs included only the management cost of opening the river 

mouth of the Opihi River to the sea by bulldozer. Additional river management costs that are 

observed on the Opihi River, but were not practically available, include pest management costs, 

riparian management costs and flood control management costs. Monitoring costs were ignored as 

these costs do not produce or modify the delivery of ecosystem services provided by the river 

system. Aggregated costs coupled with the ecosystem services index determined in each year 

provided the basis for the calculation of cost-utility ratios per year. Figure 8 shows these cost-utility 

ratios for the Opihi River over the evaluation period.      
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Figure 8: Cost per ecosystem service index for the Opihi River.  

 

From Figure 8 it is evident that the cost per ecosystem service index is many orders of magnitude 

less pre-dam than post-dam for the Opihi River. The lower cost per ecosystem services index pre-

dam might be expected given that ecosystem services provided by ‘natural’ river systems are 

produced by nature for free, yet obviously river systems that are hydrologically modified by way of 

dams or other artificial means are not.   

 

Despite the poor cost-effectiveness of the Opuha Dam, it is noteworthy that since dam construction 

progress towards sustainability has been indicated for the Opihi River. Hence, without the 

construction of the Opuha Dam it is plausible that many degraded ecosystem services once 

provided by nature for free would be lost, which if retrievable in the future would presumably be at 

an even greater cost than that evidenced with the construction of the Opuha Dam. Moreover, 

despite the poor cost-effectiveness of the Opuha Dam, it may be a cost-effective investment relative 



 

to other dams also constructed for the purposes of water storage and irrigation in the Canterbury 

region (e.g. Highbank Dam). Such analysis might reveal reasons as to why one dam is more cost-

effective than another.  

 

 

 

6.0 Conclusion  
In this paper various evaluation methods were applied in accordance with the ecosystem services 

approach in order to evaluate the cost-effectiveness of the Opuha Dam and the sustainability of the 

impounded Opihi River. From the analysis it was observed that since the construction of the Opuha 

Dam the Opihi River has progressed towards weak and strong sustainability. However, the cost-

effectiveness of the Opuha Dam was poor relative to that established pre-dam.  

In order to determine with greater precision the cost-effectiveness of dam projects and the 

sustainability of impounded river systems using the various evaluation methods applied that 

incorporate indicators, there is a need to establish a more comprehensive and potentially 

standardized set of indicators. Improving the use of indicators to better represent ecosystem 

services provided by rivers requires the development of: one, more indicators, especially socio-

economic indicators, for many ecosystem services; two, cost-effective monitoring practices that 

bring about indicators with long and uninterrupted data series collected at multiple spatio-temporal 

scales; and three, scientifically defensible indicators that track the delivery of the ecosystem service 

more closely, rather than acting only as a ‘proxy’ that is poorly correlated with its associated 

ecosystem service. One can foresee that progress in developing indicators that more closely 

correlate with the ecosystem service that they are intended to represent will occur as the ecosystem 

services approach adopted in this paper becomes more widely integrated in water resource 

management. Alternatively, rather than developing scientifically defensible  indicators that more 

closely correlate with ecosystem services, it might be beneficial to decompose ecosystem services 

further so as to diminish the abstraction of many ecosystem services to more tangible phenomena. 

For example, the ecosystem service Recreational Values could be decomposed into each recreational 

activity (e.g. swimming) that makes up this value, which in turn allows indicators (e.g. Number of 

Swimmers in River) to better correlate with this ecosystem service.  

While further work remains to refine the ecosystem service approach demonstrated here, namely to 

develop more effective indicators of river ecosystem services, the work does introduce a novel 

method to evaluate the impacts of dams on river systems which may significantly aid future river 

management decisions. 
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7.0 Appendices 
 

Appendix 1a: Indicators compiled to represent provisioning ecosystem services provided by the 

Opihi River. 

Class Ecosystem service Environmental indicators  Socio-economic indicators 

Provisioning 

ecosystem 

services 

Abiotic Products Mean River Bed Level (m) Profitability of Gravel Resource ($) 

Volume of Gravel Extracted (m3)  

Fibre Number of Fibrous Species  Number of People Actively 

Collecting Fibrous Materials 

Total Biomass of Fibrous Species 

(kg) 

 

Food Annual Periphyton Cover (%) Commercial Fishery Employment 

Average Weight of Fish Caught (kg) Cultural Health Index 

Benthic Community Metabolism 

(R2) 

Fish Taste 

Biochemical Oxygen Demand 

(mg/l) 

Number of People Actively 

Collecting Food 

Days River Mouth Closed  

Dissolved Oxygen Level (ml/l) 

Number of Mahinga Kai Species  

Number of Salmonids Caught 

pH Level 

Presence of Riparian Vegetation  

Spawning Numbers  

Turbidity (NTU) 

Water Temperature (0C) 

Water Supply Irrigated Area (ha) Economic Impact from Irrigation ($) 

River Flow Variability (σ2)  

Total Volume of Water Takes (m3) 

Note: (1) Lightly shaded sections reflect known available indicators. (2) Darkly shaded sections reflect 

indicators selected to represent each ecosystem service. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix 1b: Indicators compiled to represent regulating ecosystem services provided by the 

Opihi River. 

Class Ecosystem service Environmental indicators  Socio-economic indicators 

Regulating 

ecosystem 

services 

Disease Regulation  Annual Periphyton Cover (%)  

Number of Fish Kills 

Erosion Control  Area of Riparian Vegetation (km2)  

Turbidity (NTU) 

Natural Hazard 

Regulation 

Number of Flood Flows Number of Flood Event Fatalities 

Irrigated Area (ha) Total Cost of Flood Event ($) 

Pest Regulation  Area Covered by Invasive Species 

(km2) 

 

Number of Pest Species 

Water Purification  Annual Periphyton Cover (%) Total Cost of Water Treatment ($) 

Benthic Community Metabolism 

(R2) 

 

Clarity (m) 

Conductivity (mS/m) 

Cryptosporidium Levels 

Dissolved Organic Carbon (mg/l) 

Dissolved Reactive Phosphorus 

(mg/l) 

E.coli Levels (unit/100ml) 

Ephemeroptera, Plecoptera and 

Trichoptera Taxa Percentage (%) 

Faecal Coliforms (unit/100ml) 

Qualitative Macroinvertebrate 

Community Index 

Macrophyte Maximum Cover (%) 

Nitrate Concentration (mg/l) 

pH Level 

Area of Riparian Vegetation (km2) 

Total Nitrogen Concentration (mg/l) 

Total Phosphorus Concentration 

(mg/l) 

Toxicant Level (ug/l) 

Water Regulation  

 

Days River Mouth Closed  

Minimum River Flows (m3/s) 

Number of Flood Flows 

Number of Flushing Flows 

  



 

Appendix 1c: Indicators compiled to represent cultural ecosystem services provided by the Opihi 

River. 
Class Ecosystem service Environmental indicators  Socio-economic indicators 

Cultural 

ecosystem 

services 

Aesthetic Values  Algal Mat Colour (0-100 scale*) Willingness to Pay for Riverside 

Property ($) Annual Periphyton Cover (%) 

Clarity (m)  

Macrophyte Maximum Cover (%) 

Area of Riparian Vegetation (km2) 

Turbidity (NTU) 

Conservation Values  Area Covered by Invasive Species 

(km2) 

 

Area Covered of Native Vegetation 

(km2) 

Native Biodiversity  

(Shannon Diversity Index) 

Number of Threatened Native Bird 

Species  

Number of Native Fish Species 

Present  

Number of Significant Landscapes  

Number of Braided River Islands  

Qualitative Macroinvertebrate 

Community Index  

Width of Braided River Channels  

(m) 

Educational Values  Number of Studies about River 

Number of School Visits 

Number of Signs with Educational 

Content 

Recreational Values  Annual Periphyton Cover (%) Number of Swimmers in River 

Clarity (m) Number of Anglers 

E. coli Levels (units/100ml) Number of Recreational Facilities 

Constructed  

Minimum River Flows (m3/s) Number of Duck Hunters 

Number of Salmonids Caught Number of White Water Kayakers 

Turbidity (NTU) Willingness to Pay for 

Recreational Activities  

Spiritual Values  Native Biodiversity 

(Shannon Diversity Index) 

Cultural Health Index 

 

Number of Mahinga Kai Species 

*Algal Mat Colour was represented on a 0-100 numeric scale where 0 represents Black, 50 represents Brown, 

100 represents Green.  

 

 

 

 

 

 
  



 

Appendix 2: The selection of indicators for representing each ecosystem service was deciphered 

by their cost-effectiveness. Note that shaded sections indicate preferred ecosystem services to be 

represented by the indicator. Also note that * indicates where an indicator was allocated to an 

ecosystem service for which it is not the most cost-effective. This was done due to the paucity of 

indicators for representing that ecosystem service. 

Indicator  Ecosystem service  Communicability  

(1-9 scale) 

Data 

availability 

 (1-9 scale) 

Annual cost 

(1-9 scale) 

Indicator cost-

effectiveness 

Annual 

Periphyton Cover  

Aesthetic Values 7 5.67 3 4.22 

Disease Regulation* 5 3.56 

Food 4 3.22 

Recreational Values 8 4.56 

Water Purification 4.3 3.32 

Clarity  Aesthetic Values 7 6.33 2.3 5.80 

Recreational Values 7 5.80 

Water Purification 1 3.19 

Days River Mouth 

Closed  

Food 7 6.33 3 4.44 

Water Regulation 7 4.44 

Dissolved Oxygen 

Level  

Food 7 7 3 4.67 

Water Purification 7 4.67 

E. coli Level Recreational Values 6.3 7.67 5 2.79 

Water Purification 7 2.93 

Irrigated Area Water Supply 8 9 2 8.5 

Natural Hazard 

Regulation  

3 6 

Minimum River 

Flows 

Water Regulation 5 7 3 4 

Recreational Values 5 4 

Number of Flood 

Flows  

Natural Hazard 

Regulation 

9 8.33 4.33 4 

Water Regulation 6.33 3.39 

Number of 

Mahinga Kai 

Species 

Food 9 5 3 4.67 

Spiritual Values* 5 3.33 

Number of 

Salmonids Caught  

Food  9 7 5 3.2 

Recreational Values 9 3.2 

Qualitative 

Macroinvertebrate 

Community Index 

Conservation 

Values 

7 7 6.33 2.21 

Water Purification 6.33 2.11 

pH Level Water Purification 7 7 3 4.67 

Food 5 4 

Turbidity Erosion Control* 4 7 4.33 2.31 

Food 2 1.85 

Aesthetic Values 5 2.54 

Recreational Values 4 2.31 

 

 

 

 

 

 

 



 

Appendix 3: Safe minimum standards for indicators sourced from formal pronouncement or 

expert judgement. SMS were set at 1996 levels (pre-dam). 

Ecosystem Service  Indicator  Safe Minimum Standard 

Threshold Source 

Abiotic Products  Mean River Bed Level 40.93m Boyle & 

Surman, 2007 

Fibre Number of Fibrous Species  No decline  Expert 

Food Biochemical Oxygen Demand  Maximum 1mg/l Expert 

Dissolved Oxygen Levels  Daily minimum 8ml/l Expert 

Number of Salmonids Caught 500 caught Expert 

Spawning Numbers No undesirable trend Expert 

Water Temperature Daily minimum 4C & 

maximum 20C 

ECan, 2010; 

Expert 

Water Supply  Economic Impact from Irrigation No decline  CMF, 2010 

River Flow Variability No increase CMF, 2010 

Total Volume of Water Takes No undesirable trend  CMF, 2010 

Disease Regulation  Annual Periphyton Cover Maximum 30% Expert 

Erosion Control  Turbidity Maximum 2 Expert 

Natural Hazard 

Regulation  

Number of Flood Event Fatalities No fatalities Expert 

Number of Flood Flows No floods Expert 

Pest Regulation  Number of Pest Species  No increase Expert 

Water Purification  Conductivity  No decline Expert 

Dissolved Reactive Phosphorus  Maximum 0.006mg/l ECan, 2010 

E.coli Level Maximum 550 E. coli 

units/100ml 

ECan, 2010 

Ephemeroptera, Plecoptera and Trichoptera Taxa 

Percentage 

Minimum 50% Expert 

Faecal Coliform Level Maximum 550 

coliform units/100ml 

Expert 

Nitrate Concentration Maximum 0.47mg/l ECan, 2010 

pH Level Minimum 6.5pH & 

maximum 8.5pH 

ECan, 2010 

Total Phosphorus Concentration  Maximum 0.015mg/l Expert 

Total Nitrogen Concentration  Maximum 0.47mg/ l ECan, 2010 

Water Regulation  Minimum River Flows  Monthly minimum at 

2.5m3/s 

ECan, 2000 

Days River Mouth Closed Maximum 5 days Expert 

Number of Flushing Flows  5 flushes  Expert 

Aesthetic Values  Algal Mat Colour No Black Mats Expert 

Clarity  Minimum 5m Expert 

Conservation 

Values  

Qualitative Macroinvertebrate 

Community Index 

Minimum 5 ECan, 2010 

Number of Threatened Native Species No decline Expert 

Number of Significant 

Landscapes 

No decline CMF, 2010 

Number of Native Fish Species No decline CMF, 2010 

Educational Values  Number of Publications about River No decline Expert 

Recreational Values Number of Recreational Facilities Constructed No decline CMF, 2010 

Number of Anglers 500 anglers Expert 

Spiritual Values  Number of Mahinga Kai Species  No decline Expert 

 

 

 

 



 

Appendix 4a: The characteristic filtering rule used to evaluate the ecosystem service Water Supply. 

Indicator 

Year 

Economic Impact from 

Irrigation ($) 

River Flow Variability 

(σ2) 

Total Volume of Water 

Takes (m3) 

SMS No decline (>2,280,000) No increase (<230.9)  No undesirable trend 

 

 

 

Pre-

dam 

1989 2,280,000 137.6 --- 

1990 2,280,000 153.5 --- 

1991 2,280,000 244.8 --- 

1992 2,280,000 702.7 --- 

1993 2,280,000 21.7 --- 

1994 2,280,000 61.1 1,337,266 

1995 2,280,000 833.8 1,747,373 

1996 2,280,000 230.9 2,149,885 

 1997 Construction of Opuha Dam 

 

 

 

 

 

Post-

dam 

1998 9,120,000 37.8 --- 

1999 9,120,000 56.8 --- 

2000 9,120,000 201.9 --- 

2001 9,120,000 93.7 2,585,578 

2002 9,120,000 82.1 2,192,418 

2003 9,120,000 143.6 2,709,809 

2004 9,120,000 73.1 2,752,716 

2005 9,120,000 125.0 3,117,856 

2006 9,120,000 142.3 2,652,294 

2007 9,120,000 37.0 2,402,120 

2008 9,120,000 75.8 3,364,796 

*Darkly shaded sections denote years where the safe minimum standard (SMS) is breached. 

 

Appendix 4b: The characteristic filtering rule used to evaluate the ecosystem service Natural Hazard 

Regulation. 

Indicator 

Year 

Number of Flood Event Fatalities Number of Flood Flows 

SMS No fatalities (= 0) No floods (= 0) 

 

 

 

Pre-

dam 

1989 0 0 

1990 0 0 

1991 0 0 

1992 0 0 

1993 0 0 

1994 0 1 

1995 0 0 

1996 0 0 

 1997 Construction of Opuha Dam 

 

 

 

 

 

Post-

dam 

1998 0 0 

1999 0 0 

2000 0 0 

2001 0 0 

2002 0 0 

2003 0 0 

2004 0 0 

2005 0 0 

2006 0 0 

2007 0 0 

2008 0 0 
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