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Economic and Marketing Efficiency Among Corn Ethanol Plants 

 

Abstract 

We extend data envelopment analysis (DEA) to decompose the economic efficiency of a 

sample of ethanol plants into internal (technical and allocative) and boundary (marketing) 

sources. This decomposition allows us to evaluate the channels through which different plant 

characteristics affect plant performance. Results show that plants are very efficient from a 

technical point of view. Plants with higher production volumes seem to perform better not 

because of economies of scale but because they can secure more favorable prices (higher 

marketing efficiency) and execute production plans accordingly (higher allocative efficiency). 

This may rationalize the increase in the size of the average plant observed in the industry in 

recent years despite evidence of close to constant returns to scale. This suggests that plants may 

have incentives to horizontally integrate. Our results do not seem to point towards the existence 

of strong incentives to vertically integrate. Plants seem to have achieved significant 

improvements in performance through experience and learning-by-doing. Plants that are 

privately owned do not seem to perform better that those owned by farmers’ cooperatives.   

 

 

Key words: corn ethanol, data envelopment analysis, economic efficiency decomposition, 

marketing efficiency, mergers 
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Introduction  

Based on current scientific knowledge ethanol seems to be a viable “clean” substitute of 

fossil liquid fuels (although it can only substitute for fossil fuels at a relatively small scale) even 

considering indirect land use changes associated with increased production (see re-calculations 

by the California Air Resources Board). It may also favor corn (McNew) and livestock producers 

(Van Wart and Perrin). However, in the last few years (especially since 2007) increases in corn 

prices and reductions in oil prices (and hence in ethanol prices) have hit the industry. In addition, 

a considerable amount of volatility in commodity markets has increased uncertainty and shorten 

plants’ planning horizon (Tyner, 2009). As a result the ability of plants to make production and 

marketing decisions that maximize their operating margins becomes critical. Identifying and 

quantifying potential drivers of plants economic performance may be of interest to plant 

managers, government officials, famers, and other stakeholders (e.g. banks, investors, 

environmental agencies). We draw from the theory of the firm (Gibbons, 2005) and the theory of 

the industry’s life cycle (Williamson, 1975 and Stigler, 1951) to shed some light on these 

potential drivers.
1
 In particular we integrate economic efficiency measures and firm/industry 

theories by defining and calculating a new source of economic efficiency (marketing efficiency) 

and linking it to characteristics of the plants hypothesized as drivers of performance by the 

aforementioned theories. 

 

DEA Analysis: Intensive and Extensive Margins 

Performance, as discussed by the theory of the firm (Gibbons), is determined by the 

choice of boundaries (which activities are conducted internally and which are outsourced) and by 

                                                
1 Given available data we can only identify and quantify correlates of economic performance rather than actual 

drivers. However the aforementioned theories propose certain causalities that will guide the correlation analysis in 

this study. We can then discuss the consistency of correlations with causalities proposed by the theories.  
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choices internal to the organization once the boundaries have been set. We call the former, 

efficiency at the extensive margin, and the latter efficiency at the intensive margin. Conventional 

methods of measurement of economic efficiency allow quantification of internal efficiency. We 

propose to extend these methods in a way that permits quantification of efficiency at the 

extensive margin and its role on the overall economic performance of the firm. Once we have 

calculated overall performance and decomposed it into its internal (technical and allocative) and 

boundary (marketing/procurement) sources, we find the statistical link between these sources and 

drivers proposed by the theories of the firm and industry’s life cycle. 

Empirical assessments of the theory of the firm usually link potential drivers to actual 

measures of performance. The most commonly used measures of performance are returns over 

assets (ROA), returns on equity (ROE), and Tobin’s Q (Dybvig et al.) Differential performance 

may be explained by managerial ability but also by constraints faced by plants in the market. 

Studies using ROA, ROE, and Tobin’s Q do not model constraints but rather assume all plants 

face the same constraints which can be distortive if constraints vary across plants.   

Evaluating plants’ performance subject to constraints requires modeling and 

quantification of those constraints. Frontier methods developed in production economics (Coelli 

et al.) provide the tools to quantify technological constraints. Technological frontiers may be 

calculated parametrically or non-parametrically. The latter is especially suitable for small 

samples. Since we have 33 observations in our sample we will pursue a non-parametric 

calculation of the technological frontier. Based on this frontier conventional measures of 

economic efficiency decompose overall efficiency into technical and allocative sources.
2
 

Technical efficiency represents the ability of managers to achieve an engineering optimum. 

                                                
2 A third component sometimes included is a measure of input congestion. This component measures the extent to 

which too much of one input (given quantity of other inputs) reduces the productivity of the plant. 
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Allocative efficiency assumes prices are exogenous (an exception is Cherchye et al. which 

considers non-competitive settings) and measures performance based on the alignment of the 

chosen input-output combination to exogenous prices. Therefore conventional non-parametric 

measurement of performance assumes all sources of inefficiency are internal to the plant. For 

this reason, it can not evaluate performance at the extensive margin; i.e. the ability of the plant to 

increase operating margins by partially controlling prices through the integration/outsourcing 

decision. In the context of the ethanol industry this could be a serious drawback. Decisions by 

plants on whether to conduct marketing and procurement activities internally (vertical 

integration) or externally through contracts and spot markets may partially affect prices that they 

pay and receive. We propose to extend conventional DEA methods to account for increases in 

operating margins (measured by net operating revenues or NOR) due to favorable pricing 

attained through vertical integration, management of contracts and spots, and/or hedging. 

Naturally we call this new measure, marketing efficiency. Obtaining measures of efficiency at 

both the intensive and extensive margins will allow us to identify the channels through which 

drivers of performance proposed by the theory of the firm affect plant success in the corn ethanol 

industry.  

 

Characterization of Technology from Individual Plant Data 

Our data consist of 33 quarterly reports of input and output quantities and prices from a 

sample of seven ethanol plants in the Midwest. We refer to each quarterly observation as a 

decision making unit (DMU.) DMUs are assumed to share a technology that transforms a vector 

of 7 inputs (corn, natural gas, electricity, labor, denaturant, chemicals, and “other processing 

costs”) into 3 outputs (ethanol, dried distiller’s grains with  10% moisture content (DDGS), and 
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modified wet distiller’s grains with 55% moisture content (MWDGS).) Observed combinations 

of inputs used and outputs produced are taken to be representative points from the feasible 

ethanol technology.  In this study we use data envelopment analysis (DEA) to infer the 

boundaries of the feasible technology set from the observed points, following the notation in 

Färe, et al. The production technology can be represented by a graph denoting the collection of 

all feasible input and output vectors: 

7 3, :GR x u x L u  

Where uL , is the input correspondence which is defined as the collection of all input vectors 

Nx  that yield at least output vector Mu . 

 

Conventional Decomposition of Economic Efficiency 

A given DMU is deemed economically efficient whenever it chooses a feasible (subject 

to the graph) input-output combination that maximizes NOR given prices.  In this section we 

proceed to calculate and decompose economic efficiency assuming that prices are exogenous and 

hence there is no marketing strategy that can affect prices at which ethanol is sold and corn 

procured. 

Assuming variable returns to scale
3
 and strong disposability of inputs and outputs the 

graph can be denoted by: 

33

1

, , : , , 1,  1,...,33j j j j

j

GR V S x u u zM x zN z j           (1) 

Where z  depicts a row vector of 33 intensity variables, M  is the 33x3 matrix of observed 

outputs, ju  is the 1x3 vector of observed outputs corresponding to the jth DMU, N  is the 33x7 
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matrix of observed inputs, and jx  is the 1x7 vector of observed inputs corresponding to the jth 

DMU. 

We define the set of all combinations of inputs and outputs resulting in higher NOR than 

that actually achieved by the thj  DMU as: 

, , :j j j j j j j j j j j j j

g x u x u p x r u p x r u      (2)   

Where jp  is the vector of input prices paid and jr  the vector of output prices received by the jth 

DMU and the subscript g denotes greater than observed NOR. 

We define an iso-NOR line in ethanol and corn space corresponding to the jth DMU as 

those combinations of ethanol and corn that result in the same level of NOR given jp  and jr . 

Fig. 1 depicts this set graphically in the corn and ethanol space (i.e. keeping all other inputs and 

outputs fixed.) The set j

g
 consists of all those points above the iso-NOR line as indicated by the 

arrows with direction northwest. 

In Fig. 1 the feasible technology set is represented by a graph displaying variable returns 

to scale and strong disposability of inputs and outputs as indicated by the arrows moving from 

the frontier (
Eth cu f x ) with direction southeast. As clearly seen in Fig. 1, the set j

g
 includes 

combinations outside the graph and hence not attainable by DMUs in the sample. The subset of 

observations in j

g
 that belong to the graph and are hence attainable by DMUs is depicted by the 

intersection of both sets delimited by the bold lines in Fig. 1: 

, ,j j j

g c Ethx u GR V S         (3) 

The thj  DMU could choose any alternative production plan within the area denoted by 

the bold lines achieving a feasible increase in NOR. 
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We apply in this study a hyperbolic graph efficiency measure which means that the 

technically efficient projection of a given observation to the boundary of the technology set 

follows a hyperbolic path defined by equi-proportional reductions in inputs and increases in 

outputs. The value of the proportionate change necessary to reach the boundary, jTE , is defined 

as the technical efficiency of plant j: 

1, / , min : , ,j j j j j j

v g c EthTE x u V S x u GR V S    (4) 

Where  is a scalar defining the proportionate changes and the rest is as before.  

Technical efficiency defined in Eq. (4) is illustrated in Fig. 2 by the distance from 

,j j

c Ethx u  to point A which corresponds to the technically efficient allocation in corn and ethanol 

space. Note however that point A does not correspond to the maximum feasible NOR level since 

it does not coincide with the point of tangency between the iso-NOR and the graph (point B.) 

The allocation that achieves the maximum level of NOR subject to the graph is called the overall 

economic efficient allocation. 

Technically, we define this maximum feasible level of NOR as: 

,
max      . .  ( , ) ,  j j j j

x u
p x r u s t x u GR V S     (5) 

Where j denotes maximum NOR attainable by j subject to the graph and observed prices, x  is 

the vector of inputs, and u  is the vector of outputs and the rest is as defined before. 

Overall economic efficiency under variable returns to scale, 
j

vE  , is measured by the 

hyperbolic distance between a given observation j and the iso-NOR line corresponding to j . 

The hyperbolic distance is computed through calculation of the reduction of observed inputs and 

equiproportional expansion of observed byproducts such that the iso-NOR corresponding to j  
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is reached. This is illustrated by Fig. 3 where overall environmental efficiency is the distance 

between ,j j

c Ethx u  and point C. 

Since the movement from ,j j

c Ethx u  to C is a hyperbolic one, the measure of overall 

economic efficiency, j

vE ,  is related to maximum NOR in the following manner: 

1

         1,2,...,j j j j j j j

v vE p x E r u j J      (6) 

We can decompose j

vE  into purely technical efficiency j

vTE   (represented graphically by 

the distance between ,j j

c DDGSx u  and A) and allocative inefficiency j

vAE  (represented 

graphically by the distance between A and C.) Overall efficiency can be expressed as: 

j j j

v v vE AE TE           (7) 

Therefore, we can define allocative inefficiency residually as:
3
 

j
j v

v j

v

E
AE

TE
          (8) 

Based on the solution to the problem described in Eq. (5) we calculate overall economic 

efficiency by solving the implicit Eq. (6) for each observation.  

 

 Limitations of Conventional Decomposition and Marketing Efficiency 

Plants’ bargaining or marketing strategies may affect, at least to some extent, the prices 

obtained for ethanol and paid for corn. This fact is ignored by the conventional decomposition of 

efficiency. In order to capture the effect of plants’ pricing strategies (integration, contracts, and 

spots) on performance we introduce the concept of marketing efficiency. Provided we have price 

                                                
3 In this way we minimize stronger assumptions about convexity that may result in artificially low efficiency 

indexes. 
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observations for different plants located in different states and across time, differences among 

prices paid and received by DMUs can be due to spatial patterns, managerial efficiency and 

inflation. The part due to inflation is controlled for by adjusting all prices to a base quarter (3
rd

 

quarter of 2006) using the Producer Price Index (PPI) as calculated by the Bureau of Labor 

Statistics. The managerial and spatial parts however, are more difficult to deal with. 

Managerial differences are due to the fact that plants use different marketing 

arrangements (including spot markets, contracts, and marketers as described in Table 1) to 

procure their inputs and sell their outputs. Since we have one plant per state we have a perfect 

correlation between space and manager and hence distinguishing between managerial and spatial 

sources of price differentials requires quarterly data on prices at the State level. Using these data 

as a basis we introduce in this section a new concept capturing the ability of plant managers to 

obtain prices as favorable as possible in their State.  

We denote market prices (as opposed to prices reported by plants) faced by the jth DMU 

as ,j j

M Mr x . Output market prices faced by the jth DMU, 
j

Mr , consist of ethanol market price 
j

ethr  

and prices directly reported by plants in all other revenue categories (byproducts). Input market 

prices 
j

Mx  consist of corn market prices and prices directly reported by plants in all other cost 

categories. State level data on corn prices is publicly available from USDA NASS Agricultural 

Prices. Ethanol prices, on the other hand, were obtained from 2006 and 2007 publications of 

Ethanol and Biodiesel News magazine (now Ethanol and Biofuels News).  

Using these prices we are now ready to define our novel concept of marketing efficiency. 

Technical and allocative efficiency do not change. We introduce, however, marketing efficiency 

as an additional component of overall economic efficiency. Marketing efficiency denotes the 

increase (reduction) in revenue and equi-proportional reduction (increase) in operating cost 
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resulting from the ability of the managers to secure prices more (less) favorable than spot market 

prices. Therefore we are, in fact, comparing two levels of NOR under the same input-output 

allocation but different sets of prices (spot market prices and prices actually obtained).  

Graphically this amounts to measuring the distance between two iso-NOR lines. However since 

the two iso-NOR lines are calculated based on different prices they display different slopes 

rendering them not comparable. To make the comparison possible we measure the distance 

between iso-NOR under observed prices and a parallel version of the iso-NOR with market 

prices.  This is illustrated by the distance between D and C in figure 4.
4
 

We measure the distance between both iso-NOR lines by implementing the following 

procedure. The marketing efficiency of the thj  DMU is defined as the hyperbolic distance 

between maximum NOR with observed prices and NOR obtained under NOR maximizing 

combination and spot market prices: 

1
* *j j j j j j j

M r u ME p x ME   1,2,...,j J     (9) 

Where 
j

M  is the NOR DMU j would have obtained had it faced market prices and used 

NOR maximizing combination (i.e. 
* *j j j j j

M M Mr u p x ), 
jME  is marketing efficiency of the jth 

DMU, 
*j jr u  are revenues obtained by the jth DMU at the NOR maximizing point, and 

*j jp x  are costs incurred by the jth DMU at the NOR maximizing point. 

Since NOR with market prices can be lower or higher than NOR with observed prices, 

jME  will not be bounded between zero and one. In fact if observed NOR j  are higher (lower) 

than 
j

M  then 
jME >(<) 1. Purely technical efficiency 

j

vTE   (represented graphically by the 

                                                
4 We have illustrated a situation in which actual prices are more favorable than spot market prices and hence Iso-

NORB is positioned above and to the left of Iso-NORM. If actual prices were less favorable than market prices then 

Iso-NORM would be located above and to the left of Iso-NORB and the marketing efficiency score would be lower 

than one.  
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distance between ,j j

c DDGSx u  and A), and allocative efficiency j

vAE  (represented graphically by 

the distance between A and C) stay the same. Marketing efficiency is calculated as explained in 

(9) and the new overall efficiency is “adjusted” by factoring in marketing efficiency. Overall 

efficiency with market efficiency, j ME

vE , can be expressed as: 

j ME j j j j j

v v v vE E ME AE TE ME        (10) 

Based on values of 
j

M  we calculate marketing efficiency by solving the implicit Eq. (9) 

for each observation.  

Conventional and expanded measures of economic efficiency and their decomposition are 

calculated for a sample of surveyed dry grind ethanol plants. We first characterize the data 

collected and the plants surveyed, and then calculate their economic efficiency. 

 

Data 

Until recently, no publicly‐available data on the economic and technical performance of the 

current generation of plants was available. Previous studies have calculated input requirements 

and byproducts’ yield per gallon of ethanol produced by plants. Using engineering data McAloon 

et al. (2000) and Kwiatkowski et al. (2006) measured considerable improvement in plant 

technical efficiency between 2000 and 2006. Shapouri, et al. (2005) reported input requirements 

and cost data based on a USDA sponsored survey of plants for the year 2002. Wang et al. (2007) 

and Plevin et al. (2008), reported results based on spreadsheet models of the industry (GREET 

and BEACCON, respectively.) Pimentel et al. (2005) and Eidman (2007) reported average 

performances of plants although they do not clearly indicate the sources of their estimates. 

Finally Perrin et al. (2009) reported results on input requirements, operating costs, and operating 

revenues based on a survey of seven dry grind plants in the Midwest during 2006 and 2007. 
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With the exception of Shapouri et al. and Perrin et al. all of these studies reported values 

corresponding to the average plant (not individual plants) which prevents comparison of relative 

performances. In addition, it is generally believed that the industry has become more efficient 

and technologically homogeneous since 2005. Since the data used in Shapouri et al. was 

collected in 2002 it may not be representative of current technologies in the industry. In contrast 

to Shapouri et al., Perrin et al. surveyed plants in operation during 2006 and 2007 and employed 

a much more restrictive sampling criteria (discussed below) which yielded a modern and 

technologically homogenous sample of plants. This sample is believed to be more representative 

of current technologies and is, hence, our data of choice to assess the economic performance of 

plants and their drivers. 

Data by Perrin et al. consists of 33 quarterly reports of input and output quantities and 

prices from a sample of seven ethanol plants in the Midwest. Results of our survey contained 

total expenditures in labor, denaturant, chemicals, and other processing costs and, as a result, we 

calculated implicit quantities of these inputs dividing total expenditures by their corresponding 

price indexes. Observed combinations of inputs and outputs are taken to be representative points 

from the feasible ethanol technology.  In this study we use non parametric programming methods 

(Färe, et al) to infer the boundaries of the feasible technology set. We model the technology as a 

multiple input-output graph and all efficiency measures are defined in reference to that graph. 

 

Ethanol Plants: Characteristics 

Table 1 presents some characteristics of the seven dry grind ethanol plants surveyed. 

According to Table 1 the plants produced an average rate equivalent to 53.1 million gallons of 

ethanol per year, with a range from 42.5 million gallons per year to 88.1 million gallons per year.  
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The period surveyed included the third quarter of 2006 until the fourth quarter of 2007 (six 

consecutive quarters).  In addition plants could be differentiated by how much byproduct they 

sold as DDGS (10% moisture) compared to MWDGS (55% moisture.) Variation on this variable 

was significant, averaging 54% of byproduct sold as DDGS, but ranging from one plant that sold 

absolutely no byproduct as DDGS to another plant that sold nearly all byproduct (97%) as 

DDGS. 

Finally, plant marketing strategies are also characterized in Table 1.  In purchasing input 

feedstock, five of the six plants purchased corn via customer contracts.  Similarly, in selling 

ethanol, five of the six plants used third parties or agents.  Byproduct marketing across plants 

displayed a higher degree of variance.  Marketing of DDGS was split fairly evenly between spot 

markets and third parties/agents.  An even higher variability was observed for MWDGS, where 

no one marketing strategy (spot market, customer contract, or third party/agent) was significantly 

more prevalent across plants than others. 

Table 2 displays descriptive statistics of inputs used and outputs produced by the 33 DMUs 

in our sample. As mentioned before the basic observations in this study corresponds to a plant in 

a given quarter; so two quarters of the same plant are considered as two different observations as 

are two plants in the same quarter.  

 

Calculation and Decomposition of Efficiency 

Conventional measures of economic efficiency and their decomposition, Eq. (7)-(8), are 

calculated for our sample of surveyed dry grind ethanol plants and reported in Table 3.
5
 Table 3 

shows that the economic efficiency of the average DMU is 0.89 which suggests that there may 

                                                
5 We calculated the value of 

j

vTE  using MATLAB as indicated in the Appendix A. Maximum NOR have also been 

calculated using programming routines in MATLAB. 
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have been some room for improvement in profitability. Almost all the observed inefficiency 

comes from allocative sources as indicated by the average value but also by the dispersion 

observed in this source across DMUs. This in turn means that although most DMUs are 

operating in the technological frontier they are doing so in points that do not coincide with the 

NOR-maximizing point (such as point B in Fig. 3). 

Based on computed values of 
j

M  (see description of Eq. 9) we calculate marketing 

efficiency by solving the implicit Eq. (9) for each observation. The FZERO procedure in 

MATLAB was used in calculations. Technical and allocative efficiency are the same as before. 

Measures of marketing efficiency and adjusted overall economic efficiency are also displayed in 

Table 3. The average of marketing efficiency indexes is 0.97. This reveals that, in average, plants 

obtained less favorable relative prices than those observed in spot markets by integrating or 

managing contracts to sell ethanol and buy corn. We should not, however, jump to the 

conclusion that plants were inefficient in marketing and procurement activities. First integrating 

or contracting provide certainty to plants which is valuable to managers either because they are 

risk averse and/or because “price lock-ins” guarantee a given profitability which is commonly 

used as collateral to raise more capital from investors or banks. These benefits of contracting are 

not factored in here. In addition significant dispersion is observed across DMUs as denoted by a 

standard deviation of 0.09 and a big difference between minimum (0.79) and maximum (1.27) 

values. In fact the two main sources of dispersion in plant performance are the allocative and 

marketing components. 

Overall economic efficiency changes when marketing efficiency is included in the 

analysis. The average overall economic efficiency is reduced from 0.89 to about 0.87. This 

reduction reflects the fact that contracted prices were less favorable than spot market prices faced 
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by DMUs in their States. Furthermore standard deviation increases from 0.07 to 0.1. In light of 

these results marketing efficiency seems to be an important component in overall economic 

efficiency. Allocative efficiency continues to be an important component while technical 

efficiency does not seem to be an important source of overall economic inefficiency. 

These results illustrate the importance of accounting for price bargaining in the 

measurement of efficiency. In this particular case most plants are penalized for operating with 

prices less favorable than spot prices. In fact only one DMU is rewarded for contracting prices 

more favorable than spots. These results suggest that DMUs could have obtained higher NORs 

by waiting and using spot markets to procure corn and sell ethanol. The analysis does not, 

however, incorporate risk aversion, production planning, capital management, and stochastic 

components that may well rationalize contracting at prices below spot. 

We will proceed now to link these measures of performance at the intensive and 

extensive margin to potential drivers proposed by the theory of the firm and the theory of 

industry’s life cycle.  

 

Identifying Drivers of Performance 

The theory of the firm (TF), as unified by Gibbons (2005), and the theory of the 

industry’s life-cycle (ILC) originated by Williamson (1975) and Stigler (1951), combine insights 

from the transaction costs, property rights, rent-seeking, and incentive-based approaches to 

identify drivers of boundary choices by a firm and the impact of those choices on performance 

both at the intensive and extensive margin.  

According to Stigler’s theory of the industry’s life-cycle, plants built at non-initial stages 

of the industry are more likely to maximize economic performance by increasing size and 
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exploiting economies of scale (i.e. they should be operating at ranges of technology displaying 

non-increasing returns to scale). We posit that the ethanol industry is not in its initial stages. It is 

an industry with a high frequency and scale of transactions, with well established upstream-

downstream channels and with a homogeneous and well known technology. Therefore we 

condense Stigler’s argument in the following hypothesis.  

H1 (returns to scale): DMUs in our sample display non-increasing returns to scale (exploit 

economies of scale).  

Returns to scale may be calculated by combining technical efficiency under variable, 

non-increasing and constant returns to scale. Calculation of technical efficiency can be done on 

the basis of a technology displaying constant returns to scale (CRS), decreasing returns to scale 

(DRS), increasing returns to scale (IRS), or variable returns to scale (VRS).  Technical efficiency 

with variable returns to scale has already been defined and measured. Technical efficiency with 

constant returns to scale technology is: 

1, / , min : , / , , 1, 2, ...,j j j j j

cTE x u C S x u GR C S j J   (11) 

We calculated the value of , / ,j j j

cTE x u C S  using MATLAB as indicated in Appendix 

B. 

Technical efficiency with non-increasing returns to scale technology is: 

1, / , min : , / , , 1, 2, ...,j j j j j

nTE x u N S x u GR N S j J   (12) 

We calculated the value of , / ,j j j

nTE x u N S  using MATLAB as indicated in Appendix 

C. 
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Scale inefficiency can be defined in terms of two ratios. The ratio between technical 

efficiency with constant returns to scale as defined in (11) to technical efficiency with variable 

returns to scale as defined in (4): 

1 , , / , / , / ,j j j j j j j j j

c vS x u TE x u C S TE x u V S     (13) 

The second ratio is that between technical efficiency with constant returns (11) and 

technical efficiency with non-increasing returns to scale (12): 

2 , , / , / , / ,j j j j j j j j j

c nS x u TE x u C S TE x u N S     (14) 

As developed by Färe et al. if ratio (13) is lower than one and if, in addition, ratio (14) is 

lower than (equal to) one, the observation shows decreasing (increasing) returns to scale. The 

measures defined in (11) and (12) are calculated with the FMINCON routine in MATLAB. The 

results for all 33 observations are reported in Table 4. This table shows that the majority of 

DMUs (and hence the average DMU) are operating in portions of the technology which are very 

close to displaying CRS; i.e. the average scale efficiency is very close to 1. A total of 19 DMUs 

display CRS, 12 exhibit IRS, and 2 display DRS. Results in Table 4 are consistent with H1. 

Plants operating in the corn-ethanol industry do not seem to display strong increasing returns to 

scale. In fact, most plants seem to be operating at close to constant returns to scale. This is 

consistent with predictions from the Stigler’s theory of the industry’s life cycle for industries at 

non-initial stages of evolution. 

According to the theory of the firm, integration, by avoiding double marginalization
6
, 

may reduce the price at which corn is procured and increase the price obtained for ethanol. 

Conventional DEA would not capture this potential gain. Any change in price would be deemed 

exogenous and not the result of a careful boundary choice by the plant. In the extension 

                                                
6 Integration between an ethanol plant and an elevator reduces procurement costs for the ethanol plant since the 

elevator’s mark-up is not included in the final price of the corn.  
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developed here, however, the effect of integration on prices is captured by our measure of 

marketing efficiency. Through enhanced marketing efficiency, integration may increase overall 

economic efficiency.  

In addition integration may also increase allocative efficiency if it is associated with a 

reduction in input and output price volatility which, in turn, allows managers to plan production 

ahead. In the ethanol industry downstream integration is more likely to reduce price uncertainty. 

Some plants market their own ethanol while others rely on marketers. A common feature of 

different arrangements in the industry between ethanol plants and marketers is that the ethanol 

producer determines its own output level, and then the marketer has to sell the entire production.
7
 

Under integration (the plant sells ethanol directly to blenders or brokers) the producer may 

negotiate price and quantity simultaneously which may allow the production department and the 

marketing department to coordinate and choose the appropriate combination of inputs and 

outputs. To sum up integration may enhance both marketing and allocative efficiency. It may 

increase the former by avoiding double marginalization and the latter by reducing uncertainty. 

This conjecture inspires the following hypothesis.
8
 

H2 (integration - performance): There is a positive correlation between the degree of vertical 

integration of a DMU and both marketing and allocative efficiency.  

The measure of integration is the average of upstream integration and downstream 

integration. The former is calculated as the percentage of total corn purchased directly to farmers 

rather than elevators. The latter is the percentage of ethanol sold directly to blenders and brokers 

instead of marketers. Our data shows that upstream integration is, on average, higher than 

downstream integration; i.e. 53% of corn is purchased directly from farmers while 29% of 

                                                
7 Report on ethanol market concentration, Federal Trade Commission. 
8 Observation 32 was deemed an outlier and removed in testing hypotheses 2-7. The marketing efficiency of that 

observation was higher than the average by more than three times the standard deviation.  
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ethanol is sold directly to blenders. Moreover plants in our sample have declared a mix of 

integration and outsourcing in the corn side (Harrigan 1984, labeled this organizational hybrid 

taper integration) and full or no integration on the ethanol side. 

As displayed in Table 5.a. only allocative efficiency seems to be statistically correlated 

with integration. Furthermore, as shown in Table 6, there is a positive (although rather low) 

correlation between integration and allocative efficiency. Therefore integration seems to improve 

economic efficiency by enhancing the ability of plants to align the input-output combination to 

prices. Integration, per se, does not seem to help plants achieve better relative prices through 

elimination of double marginalization; i.e. there is no statistically significant relationship 

between vertical integration and marketing efficiency. The latter result may be due to the fact 

that while trading through intermediaries (elevators and marketers) implies a surplus loss for 

ethanol plants (due to double marginalization), these intermediaries, by pooling volumes and 

exploiting their size, may be able to obtain better prices than those the individual plant would 

have obtained. If marketers transfer some of the additional surplus obtained from better pricing 

to ethanol plants then plants may see the loss from double marginalization outweighed by this 

transfer. 

Table 5.b. shows the strength of the statistical link between different factors and 

efficiency when different subsets of more than one factor (N-way ANOVA) are tested. This table 

shows that the link between integration and efficiency is not robust; i.e. integration seems to be 

statistically relevant in explaining efficiency in two subsets (Time-Integration, and Time-Size-

Integration) and statistically irrelevant in two other subsets (Integration, and Size-Integration).  

A second factor to be considered here is size. There is a rather large subset of the theory 

of the firm that concerns itself with the link between the size of a DMU and its economic 
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performance. This literature discusses and tests the “Law of Proportionate Effect” (Gibrat’s 

Law). This law depicts that a firm’s growth rate and economic performance (usually measured 

by ROA, ROE or Tobin’s Q) is independent of its size; Gibrat (1931). On the other hand, 

Baumol (1959) hypothesized that performance increases with the size of the firm. There are 

several reasons why a bigger DMU may display a better economic performance than their 

smaller counterparts. Some of the most important reasons range from economies of scale, to 

superior transportation and storage capacity, to a better bargaining power in contracting and 

trading. Audretsch et al. (2002) provides a detailed survey of empirical work on the link between 

firm size and economic performance and highlights the following conclusion: “Both firm size 

and age are (positively) correlated with the survival and growth of entrants” (Geroski, 1995, p. 

434).  

The average capacity in the ethanol industry has steadily increased (Urbanchuk, 2008). 

The increase in average size coupled with the fact that plants in our sample do not seem to be 

obtaining increasing returns to scale (results and discussion of Hypothesis 1) suggests that there 

may be a benefit from increasing size beyond technological reasons. Attainment of more 

favorable prices due to a better bargaining position (as proposed by the literature following 

Baumol) would not be identified by the conventional DEA decomposition but it can be captured 

by the concept of marketing efficiency introduced here. In addition, enhanced storage and 

transportation capacity may translate into higher flexibility in production and increased 

allocative efficiency. Therefore we posit Baumol’s hypothesis of a positive link between size and 

economic performance and test it in the context of the ethanol industry based on our sample. 

H3 (size - performance): There is a positive correlation between, on one hand, size of a DMU 

and, on the other, its marketing and allocative efficiency. 
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According to our results in Table 5.a. the size of a DMU seems to have a statistically 

significant relationship with its economic performance. Moreover, as indicated by positive 

correlation coefficients in Table 6, bigger DMUs attain better economic performance through 

both better price bargaining (marketing efficiency) and better planning of production given 

prices (allocative efficiency). Table 5.b. reveals the robustness of the link between size and 

efficiency. In fact size is statistically correlated with all types of efficiency in all subsets except 

the subset that includes all factors. The latter may be due to the small size of the sample (33) 

relative to the number of explanatory variables included (3).  

Failure to reject H3 denotes a statistical connection between the size of a DMU and its 

performance. On the other hand rejection of H2 seemed to suggest that the benefits obtained by 

DMUs from integration (avoiding double marginalization) where outweighed by better pricing 

achieved by marketers through pooling of volumes. If this were true, bigger DMUs may also be 

able to extract a higher surplus through integration (avoiding double marginalization) and yet, 

they may still be able to bargain favorable prices due to their size. This should make integration 

more effective in enhancing economic efficiency only for bigger plants. This can be tested by 

looking at the statistical relationship between efficiency, and the interaction between integration 

and size. 

H4 (integration*size - performance): There is a positive correlation between the interaction 

term (integration*size) and performance. 

 Given p-values displayed and Table 5.a. and correlation coefficients in Table 6 we fail to 

reject H4. Low p-values in Table 5.a. denote a statistically significant relationship between the 

interacting term integration*size and economic efficiency. Table 5.b. reveals that this link is 

robust across subsets. In addition the positive correlation coefficients between the interacting 
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term and economic efficiency in Table 6, suggests that integration may be more effective in 

enhancing efficiency the bigger the DMU. Results are consistent with the fact that integration 

may allow DMUs to bargain favorable prices while, at the same time, avoiding double 

marginalization.  

Despite the individual and/or joint effect of integration and size on efficiency, there is a 

branch of the empirical literature on the theory of the firm that looks at the potential link between 

the size of a firm and its integration decision (Hortacsu et al.). If integration is in fact more 

effective in enhancing efficiency the bigger the DMU, we would expect that bigger DMUs 

would be more likely to integrate vertically than their smaller competitors. As a result of this 

conjecture we posit the following hypothesis. 

H5 (size - integration): There is a positive correlation between the size of a DMU and its degree 

of vertical integration.  

An analysis of variance (ANOVA) between size and integration reveals that there is a 

statistically significant relationship between these factors at a 1% significance level.
9
 In addition 

the correlation coefficient between both variables is 0.31. Therefore we fail to reject H5. Results 

from testing H3-H5 seem to suggest that size operates on economic efficiency through at least 

two channels. First, it operates directly by enhancing the ability of plants to bargain better prices 

and by increasing allocative efficiency. Second, it seems to operate on efficiency by both 

increasing the likelihood of integration and the effectiveness of integration on enhancing 

efficiency.
10

 Therefore there seems to be non-technological benefits from increasing size that 

                                                
9 The ANOVA results in a p-value of 0.002. 
10 This effect is non-linear in the sense that integration may be modeled as a function of size and this function, 

interacted with size itself, affects efficiency.  



 24 

may rationalize the recent trend of increase in average plant size in the industry.
11

 Finally, a word 

of caution is in place here. Results from testing of H3 and H4 suggested that integration may 

enhance efficiency when plants are big. But testing of H5 revealed a correlation between size and 

integration. As a result the correlation between the interaction term and efficiency may be 

confounding the effect of size with the effect of integration given size.
12

  

According to the organizational approach to the theory of the firm, since different 

ownership structures imply different governance schemes, ownership may affect the internal 

efficiency and performance of plants. We have two types of ownership structures in our sample; 

cooperatives and privately owned firms.
13

 Cooperatives are usually formed by farmers who, in 

turn, supply feedstock to the plant. Thus the objective function of the plant may incorporate the 

welfare of farmers which, in turn, may not be consistent with the plants’ NOR maximization. As 

a result we posit the following hypothesis. 

H6 (cooperative status - performance): There is a negative correlation between the cooperative 

status of a DMU and its economic performance. 

As indicated by Table 5.a. the cooperative status of a DMU does not seem to be 

statistically linked to its performance. Therefore we reject H6. This suggests that managers in 

cooperatively owned plants may not incorporate the welfare of their members (farmers) in their 

objective function. It is also possible that these plants incorporate members’ welfare but they 

                                                
11 Another potential reason for changes in the integration decision is experience. According to the theory of the firm 

(Qian), plants tend to increase integration as they gain more experience. We can not test this based on our sample as 

plants have declared the same level of integration throughout the period under analysis. 
12 If efficiency does in fact depend on size (e.g. E(size)) and, in addition, integration depended on size (e.g. I(size)) 
modeling efficiency as a function of the interaction would result in E (size*I(size)). This may well be capturing the 

overall effect of size and not of integration through size. 
13 Some plants are owned by private firms which are, in turn, owned by public corporations. We do not distinguish 

here between plants owned (at least partially) by public corporations and those that are not. We treat all privately 

owned plants homogeneously in terms of ownership. 
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may be increasing efficiency through another source that partially outweighs NOR losses. In fact 

DMUs corresponding to cooperatively owned plants in our sample tend to be of bigger size. 

Another source of efficiency improvement is learning-by-doing. Usually firms enhance 

efficiency as they learn more about their own technology and the functioning of the markets in 

which they operate. Since our sample includes observations from 7 plants during 6 quarters, 

learning-by-doing should be captured by increases in average efficiency across time. Therefore 

to find out whether learning seems to be improving efficiency among plants in our sample we 

posit and test and following hypothesis. 

H7 (time - performance): There is a positive correlation between time and economic 

performance. 

Based on results in Table 5.a. and 6 we fail to reject H7. In fact time and all types of 

efficiency (overall, allocative, and marketing) seem to be statistically significantly correlated at 

1% level of significance. Table 5.b. seems to confirm the robustness of this link; time is 

significantly correlated with all types of efficiency in all subsets. Moreover the correlation 

coefficients in Table 6 show that time (or learning) seems to enhance allocative efficiency more 

than marketing efficiency. This result may be explained by the fact that allocative efficiency is a 

source of internal efficiency in the plant. It represents the ability the marketing and the 

production departments to coordinate activities and align prices paid and received with a specific 

production plan. This internal source of performance should be expected to increase as plants 

gain more experience and shake out initial inefficiencies. On the other hand, marketing 

efficiency is a boundary source of performance. The ability of plants to obtain more favorable 

prices depends on their bargaining power which may not be significantly affected by experience 

but rather by other factors such as size as demonstrated above. 
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Average Effect of Size, Time, and Integration  on Efficiency 

Results from the ANOVA are consistent with the hypotheses that time and size may 

increase overall economic efficiency through both the intensive (allocative) and extensive 

(marketing) margins. In order for us to have a better grasp of the quantitative effect these factors 

may have on efficiency we partition the sample into big and small DMUs, DMUs belonging to 

first and second half of the period under analysis, and DMUs with a degree of integration above 

the median (0.30) and below the median. We have calculated average efficiency for each 

subgroup and compare them. Results are presented in Table 8.  

Consistently with the positive correlation in Table 7, overall economic efficiency seems 

to have improved through time as indicated by row 13 of Table 8. This improvement is mostly 

explained by increases in both marketing and allocative sources as opposed to technical 

efficiency. Overall efficiency is calculated to increase about 7% from the first half of the period 

to the second when marketing efficiency is ignored. When marketing efficiency is included in 

the analysis the increase in overall efficiency is in the order of 9%.  

In the DEA methodology, high allocative efficiency occurs when there is an alignment 

between prices and scale of production; given a technological frontier, low (high) prices tend to 

support low (high) production scales. Spot prices were extremely favorable at the beginning of 

the period and smoothly deteriorated afterwards. We hypothesis that the increase in allocative 

efficiency during the period under analysis may be explained by the fact that plants’ capacity 

was, in average, too small for prices as favorable as those at the beginning of the period. 

Although some plants increased capacity during the period, average capacity did not completely 

adjusted to initial prices so that, as prices deteriorated, they became more aligned with existing 
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average capacity. Increases in marketing efficiency across time suggest that plants improved 

their ability to bargain more favorable prices as they gained more experience in the market. 

In addition results in Table 8 suggest that increases in size (from small to big) increase 

overall efficiency by 7% without considering marketing efficiency, and 11.5% when marketing 

efficiency is accounted for. This improvement is achieved both through bargaining of better 

prices and increases in allocative efficiency presumably through reductions in price uncertainty. 

This in turn may reconcile two empirical facts in the industry; lack of evidence of increasing 

returns to scale and increases in average plant size. 

From testing of H3 and H4 integration appeared to increase efficiency of big DMUs. We 

discussed then that the correlation between the interaction term and efficiency may have been 

confounding the effect of size with the effect of the interaction given size. Results in the last row 

of Table 8 seem to confirm our suspicions. Integration does not seem to increase overall 

efficiency (or its components) when we focus our attention on big DMUs with high and low 

levels of integration. 

These results are obtained based on quarterly observations from different plants. So an 

interesting question to ask is whether these results are robust within plants; i.e. is there any 

evidence of learning-by-doing when we look at the evolution of individual plants rather than 

averages of the whole population? Is there any evidence that plants have increased their 

efficiency by increasing size? The answers to these questions can be found in Table 9. 

Plants in our sample (as opposed to DMUs) are, in average, 12% more efficient in price 

bargaining when they increase size from small to big. They are also, in average, 7% more 

allocative efficient when they increase size. Finally results suggest that plants became more 
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efficient both in price bargaining (12%) and production planning given prices (10%) in time. 

This is consistent with our hypothesis of learning-by-doing in the corn ethanol industry. 

 

Conclusions 

This study exploits data from a survey of ethanol plants and tries to pinpoint the internal 

and boundary sources of plants’ performance and their drivers. Results reveal that DMUs are 

very efficient from a technical point of view as suggested by a standard deviation of 1% in 

technical efficiency. However, our results also show dispersion across plants’ overall economic 

efficiency. Bigger DMUs seem to perform better than smaller ones not because of economies of 

scale but because they can secure more favorable prices (higher marketing efficiency) and 

execute production plans accordingly (higher allocative efficiency). This may rationalize the 

increase in the size of the average plant observed in the industry in recent years. 

As indicated by the Federal Trade Commission, integration and market power in the 

ethanol industry has always been a concern of regulators. Exertion of market power in this 

industry would be economically inefficient for the conventional reasons (loss of economic 

surplus) but also for environmental reasons; i.e. if ethanol production is cut back more fossil 

fuels will be burnt and more gases will be emitted into the atmosphere. Our results do not seem 

to point towards the existence of incentives to vertically integrate. On the other hand, increases 

in size of a DMU seem to result in better pricing through bargaining. This may suggest potential 

incentives for horizontal consolidation. Calculations from the Federal Trade Commission (FTC) 

indicate a reduction in concentration in the ethanol industry during 2008 and 2009, and an 

increase in concentration in 2010. So far, however, the calculated Herfindahl-Hirschman Indexes 

(HHI) seem to indicate that the corn ethanol industry remains un-concentrated. The apparent 
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inconsistency between results obtained here (there seems to be economic benefits from merging 

and pooling production volumes) and those obtained by the FTC may be explained by several 

factors. First, according to the FTC, bankruptcies of a few large firms during 2009 and 2010 had 

a de-concentrating effect in the industry. Second, high profitability triggered a wave of entry into 

the industry that remained very strong until 2009. Entry has a de-concentration effect that may 

have offset consolidation, resulting in a low HHI. Entry has decelerated since 2009. Finally, the 

FTC measures concentration at the national level. Increases in size and/or consolidation may be 

occurring at smaller regional scales.  
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Appendix A 

The measure in (4) can be computed as the value of  in the following programming problem: 
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Appendix B 

The measure in (9) can be computed as the value of  in the following programming problem: 
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Appendix C 

The measure in (10) can be computed as the value of  in the following programming problem: 
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Tables 

 

Table 1.  Characteristics of the seven surveyed plants 

States 

Represented 
Iowa, Michigan, Minnesota, Missouri, Nebraska, S. Dakota, Wisconsin 

 

Annual 

Production 

Rate (m. gal/y) 

Smallest 42.5 

Average 53.1 

Largest 88.1 

 

Number of 

Survey 

Responses by 

Quarters 

03_2006 5 

04_2006 6 

01_2007 7 

02_2007 7 

03_2007 7 

04_2007 2 

Percent of 

Byproduct Sold 

as Dry DGS 

Smallest 0 

Average 54 

Largest 97 

 

Primary 

Market 

Technique 

 Corn Ethanol DDGS MWDGS 

Spot 0 0 3 1 

Customer Contract 5 2 0 1 

Third Party/Agent 0 5 2 2 

 

 

 

Table 2.  Descriptive Statistics: Inputs and Outputs 

  

Corn  

(million 

bushels) 

Natural Gas 

(thousand 

MMBTUs) 

Electricity 

(million kwh) 

Ethanol 

(million 

gallons) 

DDGS 

(thousand 

tons) 

MWDGS 

(thousand 

tons) 

Average 4.8 361 7.8 13.7 21.3 14.5 

Std Dev 0.9 61 1.5 2.8 10 15.4 

Min 3.6 297 6.7 10.6 0 199 

Max 8 569 13.3 22.9 34.2 56.2 

 

 

 

 

 

 

 

 



  

Table 3. Economic Efficiency Decomposition 

DMU 

Conventional 

Overall  

Economic 

Efficiency 

Technical  

Efficiency 

Allocative  

Efficiency 

Marketing 

Efficiency 

Overall 

Economic 

Efficiency  

with 

Marketing  

Efficiency
(a) 

1 0.82 0.977 0.84 0.81 0.66 

2 0.84 1 0.84 0.90 0.76 

3 0.79 0.985 0.80 0.89 0.70 

4 0.72 1 0.72 0.90 0.64 

5 0.80 1 0.80 0.90 0.72 

6 0.85 0.979 0.87 1.05 0.89 

7 0.95 1 0.95 0.93 0.88 

8 0.82 1 0.82 1.06 0.88 

9 0.83 1 0.83 0.92 0.76 

10 0.80 0.997 0.80 1.06 0.84 

11 0.86 1 0.86 0.99 0.85 

12 0.94 1 0.94 1.03 0.97 

13 0.96 1 0.96 1.02 0.98 

14 0.95 1 0.95 0.95 0.90 

15 0.91 1 0.91 0.98 0.89 

16 0.92 1 0.92 0.87 0.81 

17 0.90 1 0.90 0.93 0.84 

18 0.88 1 0.88 0.99 0.87 

19 0.88 1 0.88 1.02 0.89 

20 0.996 1 0.996 0.97 0.97 

21 0.93 1 0.93 0.93 0.87 

22 0.92 1 0.92 0.95 0.87 

23 0.93 1 0.93 0.79 0.74 

24 0.89 1 0.89 0.98 0.87 

25 0.91 1 0.91 1.02 0.93 

26 1 1 1 0.99 0.99 

27 0.96 1 0.96 0.99 0.95 

28 0.95 1 0.95 1.01 0.96 

29 0.92 1 0.92 0.98 0.91 

30 0.94 1 0.94 0.99 0.93 

31 0.912 0.993 0.92 1.04 0.95 

32 0.80 1 0.80 1.27 1.02 

33 0.94 1 0.94 1.03 0.97 

Average 0.891 0.998 0.893 0.97 0.868 

Std Dev 0.07 0.01 0.07 0.09 0.10 

Min 0.72 0.979 0.72 0.79 0.64 

Max 1 1 1 1.27 1.02 
(a)

 Calculated as Overall Economic Efficient times Marketing Efficiency 



  

Table 4. Returns to Scale of DMUs 

DMU 

Technical 

Efficiency 

VRS 

Technical 

Efficiency 

NIRS 

Technical 

Efficiency 

CRS 

Scale  

Efficiency 

CRS/VRS 

Category 

 

1 0.977 0.955 0.955 0.977 IRS 

2 1 1 1 1 CRS 

3 0.985 0.976 0.976 0.991 IRS 

4 1 1 1 1 CRS 

5 1 1 1 1 CRS 

6 0.979 0.977 0.977 0.997 IRS 

7 1 1 1 1 CRS 

8 1 0.985 0.985 0.985 IRS 

9 1 1 1 1 CRS 

10 0.997 0.991 0.991 0.994 IRS 

11 1 1 1 1 CRS 

12 1 1 1 1 CRS 

13 1 1 1 1 CRS 

14 1 1 1 1 CRS 

15 1 0.953 0.951 0.951 DRS 

16 1 0.979 0.979 0.979 IRS 

17 1 1 1 1 CRS 

18 1 0.949 0.949 0.949 IRS 

19 1 1 1 1 CRS 

20 1 1 1 1 CRS 

21 1 1 1 1 CRS 

22 1 0.975 0.975 0.975 IRS 

23 1 0.993 0.993 0.993 IRS 

24 1 1 1 1 CRS 

25 1 1 1 1 CRS 

26 1 1 1 1 CRS 

27 1 1 1 1 CRS 

28 1 0.967 0.967 0.967 IRS 

29 1 0.944 0.944 0.944 IRS 

30 1 1 1 1 CRS 

31 0.993 0.983 0.983 0.990 IRS 

32 1 1 1 1 CRS 

33 1 1 0.976 0.976 DRS 

Average 0.998 0.997 0.996 0.999  

 

 

 

 

 

 



  

Table 5.a. Potential Drivers of Economic Efficiency with Marketing Efficiency 

Factor 

Overall 

Efficiency 

(Prob>F
1
) 

Allocative 

Efficiency 

(Prob>F
1
) 

Marketing 

Efficiency 

(Prob>F
1
) 

Integration 0.30 0.08 0.30 

Size*Integration 0.01 0.06 0.05 

Time (Quarter:1-6) ~ 0 ~ 0 0.01 

Cooperative 0.81 0.64 0.89 

Size (Big/Small) ~ 0 0.01 0.01 
1 

This column displays the p-values of the hypothesis that the corresponding variable has no effect on 

overall economic efficiency; i.e. the closest this value to zero the stronger the effect of the treatment 
variable on efficiency. 
 

 

Table 5.b. Correlates of Overall Economic Efficiency, Allocative Efficiency, and 

Marketing Efficiency 

 
Time Size Integration Size*Integration 

OE
(a) 

AE
(b)

 ME
(c)

 OE
(a)

 AE
(b)

 ME
(c)

 OE
(a)

 AE
(b)

 ME
(c)

 OE
(a)

 AE
(b)

 ME
(c)

 

Time ~ 0 ~ 0 0.01 - - - - - - - - - 

Size - - - ~ 0 0.01 0.01 - - - - - - 

Integration - - - - - - 0.30 0.08 0.30 - - - 

Size*Integration - - - - - - - - - 0.01 0.06 0.05 

Time-Size ~ 0 ~ 0 0.02 ~ 0 0.05 0.04 - - - - - - 

Time-

Integration 
~ 0 ~ 0 ~ 0 - - - ~ 0 ~ 0 0.01 - - - 

Size-Integration - - - 0.01 0.08 0.01 0.60 0.17 0.22 - - - 

Time- 

Size*Integration 
~ 0 ~ 0 0.03 - - - - - - ~ 0 ~ 0 0.11 

Time-Size-

Integration 
~ 0 ~ 0 ~ 0 0.39 0.56 0.26 0.01 0.01 0.04 - - - 

(a) 
Adjusted Overall Economic Efficiency, 

(b)
 Allocative Efficiency, 

(c)
 Marketing 

Efficiency 

 

 

Table 6. Correlation between Efficiency Sources and Factors 

Factor 
Overall 

Efficiency 

Allocative 

Efficiency 

Marketing 

Efficiency 

Time 0.74 0.75 0.39 

Size 0.57 0.43 0.45 

Integration N/A 0.07 N/A 

Integration*Size 0.34 0.25 0.27 

 

 

 



  

Table 7. Average Effect of Time, Size, and Integration on Performance 

  
Marketing 

Efficiency 

Technical 

 

Efficiency 

Overall  

Efficiency 

 with 

Marketing 

Efficiency 

Allocative 

Efficiency 

Overall 

 Efficiency 

Average 0.974 0.998 0.868 0.893 0.891 

Average - Big 0.993 0.999 0.914 0.922 0.921 

Average - Small 0.953 0.997 0.820 0.863 0.860 

Big / Small 1.042 1.002 1.115 1.068 1.070 

Average - 1 0.879 0.993 0.697 0.800 0.794 

Average - 2 1.001 0.996 0.850 0.853 0.850 

Average 3 0.968 1.000 0.895 0.924 0.924 

Average first half 0.949 0.996 0.814 0.859 0.856 

Average 4 0.941 1.000 0.869 0.924 0.924 

Average 5 1.002 0.999 0.944 0.943 0.942 

Average 6 1.152 1.000 0.994 0.871 0.871 

Average second half 1.032 1.000 0.936 0.913 0.912 

Second half/First half 1.087 1.003 1.150 1.062 1.066 

Average – Big 

Integrated 0.985 0.997 0.896 0.909 0.918 

Average – Big Non-

Integrated 1 1 0.931 0.931 0.918 

Integrated/Non-

Integrated 0.985 0.997 0.963 0.978 1 

 

Table 8. Average Effect of Time and Size per Plant 

Efficiency Source 

Factor 

Marketing  

Efficiency 

Allocative 

Efficiency 

Average Size Effect (per plant) 1.12 1.07 

Average Time Effect (per plant) 1.12 1.10 

 

 

 

 

 

 

 

 

 



  

 

Figures 

 
Fig. 1 – Iso-NOR and Sets 

 

 
Fig. 2 - Technical Efficiency 
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Fig. 3 - Decomposition of Overall Economic Efficiency 

 

 

 

 

 
Fig. 4 - Decomposition of Overall Economic Efficiency with Marketing 

Efficiency 
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