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Assessing the potential for beneficial diversification in rain-fed 
agricultural enterprises1  

John Kandulu2 

Abstract 

Climate change and climate variability induce uncertainty in yields, and thus 

threaten long term economic viability of rain-fed agricultural enterprises. Enterprise 

mix diversification is the most common, and is widely regarded as the most 

effective, strategy for mitigating multiple sources of farm business risk. We assess 

the potential for enterprise mix diversification in mitigating climate induced 

variability in long term net returns from rain-fed agriculture. We build on APSIM 

modelling and apply Monte Carlo simulation, probability theory, and finance 

techniques, to assess the potential for enterprise mix diversification to mitigate 

climate-induced variability in long term economic returns from rain-fed agriculture. 

We consider four alternative farm enterprise types consisting of three non-diversified 

farm enterprises and one diversified farm enterprise consisting of a correlated mix of 

rain-fed agricultural activities. We analyse a decision to switch from a non-

diversified agricultural enterprise with the highest expected return to a diversified 

agricultural enterprise consisting of a mix of agricultural enterprises. Correlation 

analysis showed that yields were not perfectly correlated (i.e. are less than 1) 

indicating that changes in climate variables cause non-proportional impacts on yield 

production. We conclude that at best, diversification can reduce the standard 

deviation of net returns by up to about A$110 Ha-1, or 52% of mean net returns; 

increase the probability of below-average net returns by up to about 4% and increase 

the mean of 10% of worst probable annual net returns  by up to A$54/ha.  At worst, 

diversification can reduce the mean of net returns by up to about A$95 Ha-1, or 46%.  

Keywords: climate variability; yield uncertainty; economic returns; rain-fed 

agricultural enterprise, risk, Monte Carlo 

 

 

1. Introduction 
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Australia’s major agricultural regions are characterised by uncertain and variable 

climatic conditions including temperature and rainfall (Furuya and Kobayashi, 2009; 

Wang et al., 2009a). Climate variability is the principal source of risk affecting long 

term economic viability of rain-fed agricultural systems (Marton et al., 2007; 

Iglesias and Quiroga, 2007; Lotze-Campen, 2009). Climate models predict an 

increase in future climate variability and a significant increase in the frequency of 

below-average rainfalls and above-average temperatures in major agricultural 

regions in Australia (IPCC 2007; Naylor et al., 2007; Suppiah et al., 2007). All else 

being equal, this is likely to increase the uncertainty and variability in agricultural 

yields and economic returns, and increase the frequency with which these are below 

average (John et al., 2005; Wang et al., 2009b). Consequently, the viability of farm 

businesses will become increasingly threatened in the long run.  

To manage the severity of the impact of climate variability on net returns, farmers 

routinely adopt mitigation strategies involving various adjustments in enterprise mix, 

and production technologies and techniques (Kelkar et al., 2008). The diversification 

of farm enterprise mixes through the rotation of several different crops and livestock 

(hereafter simply diversification), is widely regarded as the most common and 

effective strategy for mitigating climate-induced variability in net returns from rain-

fed agriculture (Amita, 2006; Correal etal., 2006; Azam-Ali, 2007). Diversification 

can also reduce frequencies of below-average net returns under climate uncertainty 

(Bernhau, 2007).  

Most of the benefit of diversification comes from hedging against market input and 

commodity price fluctuations (Bhende and Venkataram, 1993; Singh, 2000; 

Ramaswami et al., 2003; World Bank, 2004). Notwithstanding variance in market 

input costs and commodity prices (Hazel et al., 1990; Ramaswami et al., 2003), 

climate-induced yield variability is a significant source of farm business risk. We 

propose that diversification may also be beneficial for hedging against climatic 

variability. 



The benefits of diversification are premised on the utilization of imperfectly 

correlated net returns from multiple agricultural enterprises. When the impacts of 

climatic variability differ between multiple agricultural enterprises, losses from 

investments in some activities are offset by gains, or moderated by less severe 

losses, in other activities thereby reducing the impact on overall net returns 

(Ramaswami et al., 2003; Fraser et al., 2005). Conversely, the benefits of 

diversification typically come at a cost of reduced expected net returns (Markowitz’s 

1952; Chan et al., 1998). This is because diversification involves investing in 

multiple activities to mitigate long term uncertainty and variability even when 

investments in alternative non-diversified enterprises may offer higher expected net 

returns in the short term (Cooper et al., 2008). As such, the nature and strength of 

correlated yields across alternative agricultural activities need to be fully understood 

and quantified when assessing the potential benefits of agricultural diversification. 

There is a general consensus from the finance literature that not considering the 

nature and strength of correlated yields may under- or over-estimate the benefit of 

diversification (Markowitz 1952, 1959; Merton, 1980; Chan et al., 1998, 1999; 

Bangun et al 2006).  

Few studies have considered long term sources of uncertainty and risk such as 

climate, and assessments of enterprise mix diversification as a strategy for mitigating 

climate risks to ensure long term viability of farm businesses are sparse. Lien and 

Hardaker (2009) speculate that this is because relevant historical data necessary for 

long term analyses are usually sparse and that most studies have had to rely on a few 

observations of economic returns. However, in the context of increasingly frequent 

droughts in many of the worlds agricultural regions (Howden et al., 2007; IPCC 

2007; Furunya and Kobayashi, 2009; Lotze-Campen and Schellnhuber, 2009), the 

impact of diversification on avoiding high cost of crop failure in the long term bears 

significant relevance. 



In this study, we assessed the potential for enterprise mix diversification to mitigate 

climate-induced variability in long-term economic net returns from rain-fed 

agriculture. Using a case study in the 11.8 million hectare Lower Murray region in 

southern Australia, we fitted probability density functions to modelled long term 

crop and livestock yield data. We used Monte Carlo simulation to quantify the 

variability in yields and, via a profit function, net returns. We quantified the benefits 

and costs of enterprise mix diversification using techniques from finance theory 

including the probability of break-even and conditional value at risk (CVaR). We 

quantified the trade-off between the reduced variability in returns and reduced 

expected net returns, and discuss the implications of diversification as an adaptation 

strategy for farmers to cope with increasing climatic variability.  

2. Methods 

2.1. Study area 

The Lower Murray region (Figure 1) in southern Australia covers a total area of 

11,871,363 ha. Mean annual rainfall ranges from 200 mm/yr in the drier northern 

areas of the SAMDB to 1,400 mm/yr in the southern Wimmera. Rain-fed agriculture 

is the dominant land use covering over 50% of the region and is an important 

component of the regional economy (Bryan et al. 2007). The average farm size used 

for rain-fed agriculture in the study area is around 1,000ha. Farming systems vary 

greatly across the region depending on climate and soil types. The cropping of 

cereals (wheat, barley), pulses (lupins, beans, peas), and sheep grazing are typical 

farm enterprises. Cropping and grazing rotations vary over the region from 

continuous cropping in the Wimmera and southern Mallee regions, crop/pasture 

rotations in the Mallee and southern SAMDB regions, and continuous grazing in the 

central and northern SAMDB (Bryan et al., 2011). Most farmers engage in some 

form of annual crop/livestock rotation for a number of reasons including protection 



of crops from diseases, management of weeds, diversification, and response to 

economic opportunities. 

Insert Figure 1 about here 

2.2. Modelled farming systems 

We modelled and compared yield and economic outcomes for three non-diversified 

farming systems and one diversified farming system in the study area. The three 

non-diversified farming systems were defined as continuous single-crop farming 

systems of wheat, lupins, and sheep grazing on modified pastures (hereafter, sheep). 

The diversified farming system was defined as a mixed enterprise comprising 

continuous cropping (and grazing) of wheat, lupins, and sheep in equal proportions 

of available farmland in any one year production horizon. We controlled for effects 

of land management on yields thereby ensuring that variability in yields can be 

largely attributed to variability in climate.  

2.3. Crop yield modelling  

We used the Agricultural Production Simulator (APSIM, Keating et al. 2003) to 

predict annual yields for wheat, lupins, and sheep for 138 unique soil/climate zones 

over 116 years. The soils/climate zones were identified by overlaying a layer 

defining 15 soil types (Bryan et al. 2007) and a layer defining 16 climate zones. The 

15 soil types were classified using field-derived soil survey data. Climate zones were 

defined by overlaying climate variables including mean annual rainfall, mean annual 

temperature, and annual moisture index layers. Soil/climate zones were assumed to 

have homogeneous production potential for the purposes of this study. Historical 

daily climate records were acquired for the 116-year period from 1889 to 2005 from 

the SILO data base. Typical land management regimes (sowing windows, fertiliser 

application rates) were defined for the study area based on expert opinion. For full 

details and other applications of this modelling we refer readers to Bryan et al. 



(2007, 2008, 2009, 2010, 2011.) and Wang et al. (2009). Of the 138 zones modelled 

across the entire region, we selected one zone to illustrate results from our 

assessment of the potential for beneficial diversification.  

2.4. Quantifying climate-induced yield variability 

To assess benefits from diversification, we treated annual net returns as stochastic. 

This is premised on the assumption that climate, the key variable driving yield 

variability which is the focus of our study, is generally assumed to be stochastic 

(Iglesias and Quiroga, 2007; Furunya and Kobayashi, 2009). Probability theory 

provides a suitable framework for the quantification of climate-driven uncertainty 

and variability in net returns over a given time horizon (Hardaker et al., 2004; Lien 

and Hardaker, 2009).  

We generated frequency histograms for yields Q1i, for each of the three enterprises i, 

where i is an element of I{wheat, lupins, sheep}. We then fitted probability density 

functions to the frequency histograms to characterize climate-induced variability in 

yield outputs using the @RISK software. A total of 414 probability density functions 

were fitted to frequency histograms of the three enterprises in 138 APSIM zones 

across the region. We used the chi-squared statistics, χ2, to measure the goodness of 

fit of each distribution (Iglesias and Quiroga, 2007) using the standard Equation 1.  
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Where k is the number of discrete intervals in a histogram derived from 117 years of 

simulated yield time-series data; Ni is the frequency of observations in each interval; 

and Ei is the expected (theoretical) frequency, asserted by the estimated probability 

density function.  

The distribution with the best fit as measured by the chi-squared statistic was 

selected for use in Monte Carlo simulation of net economic returns. 



2.5. Quantifying variability in economic returns  

To fully account for the effect of climate variability on economic net returns from 

rain-fed agriculture in the study area, we quantified variability in long term average 

net revenue per hectare (Kurukulasuriya, 2007; Deressa, 2009; Bryan et al., 2009) 

while controlling for all other economic factors including costs of production and 

commodity prices after Benhin (2008). We defined economic net returns as revenues 

from sale of commodities produced less the fixed and variable cost incurred in the 

production of agricultural commodities. We used a profit function to calculate net 

economic net returns for wheat, lupins and sheep such that: 

NRi= (P1i×Q1i×TRNi) + (P2i×Q2i ×Q1i)−((QCi×Q1i)+(ACi+FDCi+FOCi+FLCi)) Equation 2 

Net returns to the diversified farm enterprise system, NRd. were calculated as: 
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∈i {wheat, lupins, sheep}    Equation 3 

Table 1 outlines notation descriptions and values used in Equation 2 (Bryan et al., 

2009). The profit function has been found to provide a reasonable estimate of 

economic returns to agriculture (Bryan et al., 2011). 

Insert Table 1 about here 

The benefits of diversification in relation to climatic variability rely on imperfect 

correlation between yields of crops and grazing systems (Correal et al., 2006; 

Iglesias and Quiroga, 2007). Hence, it is important to quantify yield correlations and 

include these in simulation of net returns. We calculated pair-wise Pearson 

correlation coefficients for yields ρi,i between wheat and lupins, wheat and sheep, 

and lupins and sheep from the modelled yield data.  

To quantify climate-induced variability in net returns for each land use, NRi, we 

generated 1000 Monte Carlo simulations (Hardaker and Lien, 2010) of net returns 



using Equation 2 with random samples for the yield parameter Q1i, drawn from the 

modelled probability density functions for yields. To quantify climate-induced 

variability in net returns for the diversified farm enterprise system, NRd, we 

generated 1000 Monte Carlo simulations (Hardaker and Lien, 2010) of net returns 

using Equation 2 with random samples for the yield parameter Q1i drawn from the 

modelled probability density functions for yields, and considering yield correlations 

ρi,i. Frequency histograms were then developed for the average of net returns under 

the three non-diversified enterprises and under the diversified enterprise (see 

Equation 3).  

2.6. Quantifying potential benefits from diversification  

To assess the benefits of diversification, we considered farmers in the study area as 

investors faced with the challenge of choosing among four alternative farm 

enterprises with uncertain net returns. Financial risk management literature offers 

various measures for assessing potential tradeoffs between expected net returns and 

overall variability in net returns. Specifically, the concept of Conditional Value at 

Risk or CVaR (Rockafellar and Uryasev, 1999, 2001) has been used to assess 

variability of net returns and probabilities of low-end net returns from alternative 

investments. One way to apply CVaR is to calculate the average expected return of 

the lowest 10% of possible outcomes (Rockafellar and Uryasev, 1999; 2001). 

We used four indicators to quantify the expected net returns and variability of net 

returns from each of the four alternative investment options. We calculated the mean 

to indicate the magnitude of expected returns, standard deviation to indicate the 

variation in expected returns. To estimate magnitudes and probability of below 

average economic returns under each of the four options, we calculated the 

probability of breaking even P (NRi,d ≥ 0) and the CVaR of the lowest 10% CVaR0.1.  

3. Results 



We present results from one APSIM zone out of the 138 APSIM zones that we 

modelled for purposes of illustration. This area lies in the moderate to high rainfall 

region with annual rainfall ranging between 500 and 800mm. We selected this area 

because it represents 50th percentile productive capacity for lupins, wheat and 

pasture grazing across the region.  

3.1. Climate-induced yield variability  

Figures 2, 3, and 4 show how the probability density functions were fitted to 

frequency histograms generated from 117 years simulated yield time series data for 

wheat, lupins and pasture respectively.  

Insert figures 2, 3, and 4 about here 

Three probability density functions of various forms were fitted and Chi square 

statistics from goodness of fit tests (Equation 1) ranged from 2.2 to 20.4. In all cases, 

observed frequencies (counts) were not significantly different from the frequencies 

that would be expected using the fitted probability density functions, and estimates 

from the probability density function were consistent with observed data from 

frequency distributions 90% of the time.  

Figures 2, 3, and 4 show that overall, expected yields for lupins are lower than those 

for wheat, and yields are lowest and most variable for pasture grazing sheep. Yields 

of 1.77 for wheat; 1.22 for lupins; and 3.06 tonnes ha-1 would be expected on 

average in the illustrative area. Figures 2, 3, and 4 also shows that variability, 

measured using standard deviation, was estimated at 0.82 tonnes ha-1, or  46% of 

mean for wheat; 0.73 tonnes ha-1, or 60% of mean for lupins; and 3.31 tonnes ha-1, or 

108% of mean for sheep. 



3.2. Correlations 

In Table 2 we outline pair-wise Pearson correlation coefficients calculated for yields 

ρi,i between wheat and lupins, wheat and sheep, and lupins and sheep from the 

modelled yield data for our illustrative APSIM zones. Overall, yields are strongly 

positively correlated for all land used with highest positive correlations between 0.46 

and 0.79. The correlation matrix in table 2 shows that yields are not perfectly 

correlated (i.e. are less than 1) in all the cases. We can deduce, therefore, that there is 

scope for beneficial diversification in the region.   

3.3. Variability in economic net returns 

Figure 5 shows that the relative orders of magnitude for the four economic indicators 

are highly varied across the four farm enterprise systems.  

Insert figure 5 about here 

Overall, sheep has lowest expected net returns of all enterprises at A$30 ha-1, 

followed by lupins at $94 ha-1, and wheat has highest mean net returns at A$204 ha-

1.  The expected net return from the diversified enterprise is A$109 ha-1.  All the 

three non-diversified enterprises have higher values for standard deviation, as a 

proportion of mean, than the diversified enterprise. Lupin has the highest value at 

163% of mean; followed by sheep at 146% of mean; then wheat at 104% of mean. 

The diversified enterprise has the lowest standard deviation at or 95% of mean.  

The probability of breaking even, P (NR ≥ 0), is highest under the diversified 

enterprise at 88%, and is lowest for lupins at 69%. For sheep and wheat, P (NR ≥ 0) 

is 84% and 84% respectively. The value of the mean of 10% of worst probable 

annual net returns, CVaR0.1, is lowest under lupins at. That is, a loss of $100 ha-1on 

average would be expected 10% of the time. The CVaR0.1 for wheat is -A$89 ha-1; 



and for the diversified enterprise, CVaR0.1 is estimated at -A$35 ha-1. Sheep has the 

highest CVaR0.1 at -A$8 ha-1. 

3.4. Benefits of diversification 

 To assess potential benefits from diversification, we consider a decision to switch 

from a highest expected return non-diversified farm enterprise system to the 

diversified farm enterprise system in ach of the nine locations. In Figure 5, the 

highest expected return non-diversified farm enterprise system is wheat.  

Figure 5 shows that there is potential for beneficial diversification and there may be 

a case for considering a decision to switch from wheat to the diversified farm 

enterprise system. Whilst wheat is estimated to have the highest expected net returns 

at A$204 ha-1, wheat also has the most variable net returns with standard deviation 

values estimated at 104% of mean. In this location, the decision to switch to the 

diversified farm enterprise system is estimated to result in lower net returns than 

wheat at A$109 ha-1 however, the variability in net returns, standard deviation, 

would also be lower at 94%. In switching to a diversified farm enterprise system, 

expected returns would be reduced 46%, but the orders of magnitude of standard 

deviations of net returns would be reduced even more, by 52%. Further, the 

probability of break even will be increased by 4%, and the value of CVaR0.1 is 

estimated to increase by about 61%. The diversified enterprise benefits from a 

combination of risk-reducing characteristics of sheep, and high expected return 

characteristics of wheat. Together these characteristics moderate losses in years with 

unfavourable climate to compensate for high-return and high-variability properties 

of wheat and reduce the likelihood of extremely low net returns. 

4. Discussion 

Using a case study in the Lower Murray region in southern Australia, we have 

demonstrated the potential for beneficial diversification as a strategy for mitigating 



the impacts of climate-driven variability in net returns from investments in rain-fed 

agriculture. Enterprise mix diversification can be beneficial and we quantified the 

trade off between the benefit of reduced variability and the cost of reduced expected 

net returns. To compare the impacts of climate variability with and without 

diversification, we quantified variability, expected net returns, and probability and 

severity of below-average net returns across the alternative diversified and non-

diversified agricultural investment options taking explicit account of correlations 

between yields.  

Our study findings are consistent with findings from previously cited studies that 

state that there is potential for beneficial diversification from investments in multiple 

agricultural activities that respond differently to variability in climate.  

Table 2 shows that yields are imperfectly correlated as different activities respond 

differently to variability in climate in the study location. Our findings are also 

consistent with the expectation that the benefit of reduced variability from 

diversification comes at a cost of reduced expected net returns when alternative non-

diversified activities offer higher expected net returns. 

At best, diversification can reduce the standard deviation of net returns by up to 

about A$110 Ha , or 52% of mean net returns (see Figure 5); increase the 

probability of below-average net returns by up to about 4% and increase the value of 

CVaR0.1 by orders of magnitude of up to about A$54/ha.  At worst, diversification 

can reduce the mean of net returns by up to about A$95 Ha , or 46%.  

However, there are some limitations to this study. First, only equal proportions of 

combinations of 3 investments with equal allocations, 0.33ha, are considered in the 

diversified investment option. Whilst this is sufficient for answering key questions 

raised in this study, this is not an exhaustive list of possible strategies and may be 

suboptimal as it may represent an over (under) investment in some activities 

depending on individual’s risk-return preferences. A logical extension to this study 

-1

-1



would be to look at more systematic ways of determining optimal diversifications 

strategies taking into account risk profiles of farmers (Pannell et al 2000).  

The main reason farmers diversify is to hedge against short term variability in input 

and commodity price (Kingwell, 1994; Pannell et al 2000; Barkely and Peterson, 

2008; Cooper et al., 2008; Lien and Hardaker, 2009) .This study holds these and 

other sources of risk except yield, constant to assess the potential for enterprise mix 

diversification to mitigate climate-induced variability in long-term economic net 

return only to the extent that these are affected by variability in yields. Future studies 

may build on this study and explore relative importance of all key sources of farm 

income risk to assess potential for beneficial diversification considering multiple 

sources of farm business risk.  

Further, our study used historical time series data and therefore assumes that 

historical climate patterns will continue into future. The impact of climate change on 

net returns from yields and the effectiveness of diversification in mitigating 

variability in long term net returns from agriculture will vary depending on 

assumptions about future climate change. Future climate variability and uncertainty 

in climate and yields is assumed to be partly based on historical data however, there 

is need to use other information and judgments to improve the relevance of the 

results. As an extension to this study, several climate scenarios may be considered in 

assessment of potential for beneficial diversification. Subjective probabilities 

capturing effects of climate change on future climate variability can be used to 

incorporate the effects of climate change in the assessment (Hardaker and Lien, 

2010).  

Further strategies for adapting to future climate change might involve including 

other enterprises with less correlated yields in the diversification of farm enterprise 

systems. Specifically, there are new opportunities to diversify farm enterprise 

through provision of ecosystem services to benefit from emerging eco-markets (for 



example through management of remnant native vegetation, agro forestry for carbon 

and biodiversity markets) increase the potential for beneficial diversification as a 

strategy for mitigating climate-induced income risk. 

5. Conclusion 

Diversified farming systems offer farmers a potential strategy for hedging against 

climatic risk in economic returns. In the context of increasing climate variability and 

frequency of droughts in many of the worlds agricultural regions (Howden et al., 

2007; IPCC 2007; Furunya and Kobayashi, 2009; Lotze-Campen and Schellnhuber, 

2009), and emerging markets for ecosystem services, diversification may grow in 

significance and relevance as a strategy for avoiding high cost of crop failure and 

managing long term farm income risk.  
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Table 1 Notation descriptions and values for NRI calculations (See Equation 2) 

Notation Definition value 

    Wheat Lupins Sheep 

P1 Price of Primary Commodity Farmed ($/tonne or $/DSE) 257 211 22 

Q1 Quantity of the primary product (t/ha, DSE/ha) 

TRN Turn-off Rate (number of sheep sold as portion of total herd, = 1 for cropping) 1 1 0.31 

P2 Price of Secondary Commodities ($/kg of wool, only applies to sheep) 0 0 4.0 

Q2 Quantity of Secondary Commodity (kg of wool/ha) 0 0 2.73 

QC Quantity Costs ($/tonne or $/DSE) 0 0 4.0 

AC Area Costs ($/ha) 149 96 3 

FDC Fixed Depreciation Costs ($/ha) 19 13 2 

FOC Fixed Operating Costs ($/ha) 48 31 4 

FLC Fixed Labour Costs ($/ha) 35 23 3 

 

 

Table 2 Pair-wise linear correlation coefficients between wheat and lupins, wheat 

and sheep, and lupins and sheep from simulated yield time series data.  

 Lupin Wheat Sheep 
Lupin 1   
Wheat 0.79 1  
Sheep 0.46 0.54 1 



   

Figure 1. Location and land use in the Lower Murray study area. 



 

Mean 1.772129
Median 1.64488
Std. Deviation 0.828314
Skewness 0.9348
Kurtosis 4.3108
Chi-Sq Statistic 20.4186  

Figure 2. Probability density functions fitted to simulated yield time series data for 

wheat (tonnes/ha) 

Mean 1.219555
Median 1.077939
Std. Deviation 0.72858
Skewness 1.1948
Kurtosis 5.1414
Chi-Sq Statistic 2.2414  
 
Figure 3. Probability density functions fitted to simulated yield time series data for 
lupins (tonnes/ha) 
 



Mean 3.0574
Median 2.196
Std. Deviation 3.3128
Skewness 7.4762
Kurtosis 3.8853
Chi-Sq Statistic 9.487  
 
Figure 4. Probability density functions fitted to simulated yield time series data for 
pasture grazing sheep (DSE/ha) 
 
 
 
 
 
 
 
 

Mean Stdev P(NR ≥ 0) CVaR0.1

Lupin 94 154 69% -100
Wheat 204 213 84% -89
Sheep 30 44 83% -8
Diversified 109 102 88% -35

 
 
Figure 5. Potential net economic returns under alternative non-diversified and 
diversified enterprise farm systems.  
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