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Corner solutions in the allocation of environmental 
water: an application of inframarginal economics

Simon Hone1

Inframarginal economics is a combination of marginal and total cost-benefit analysis (across corner 

solutions). It has been applied extensively in analysing trade issues, however, there have been few 

environmental applications. While there is debate over the contribution of inframarginal economics to 

the analysis of aggregate economic phenomena, inframarginal economics is central to understanding 

agent-level decisions. 

This paper applies inframarginal methods to investigate the efficient allocation of water among 

ecosystems. The Australian Government is acquiring billions of dollars of water for environmental uses 

through a number of programs. Allocating this water efficiently will require information on preferences 

and environmental production functions, as well as the development of analytical frameworks capable 

of examining corner solutions. 

Within a general inframarginal framework, this paper investigates the conditions under which corner 

solutions are likely to be efficient. In particular, corner solutions may arise when environmental 

production functions are convex but are also possible under ‘well behaved’ functions.

Introduction
The ecological health of many of Australia's river systems has declined over time. The 

regulation of rivers and diversions for agriculture and other uses have changed flow regimes, 

affecting floodplain and instream habitats. According to Arthington and Pusey (2003), around 

90 per cent of floodplain wetlands in the Murray-Darling Basin no longer exist. In New South 

Wales, around 50 per cent of coastal wetlands have been lost, while around 75 per cent of 

wetlands on the Swan Coastal Plain of Western Australia have also been lost. These changes 

in habitat have contributed to a decline in native fish and bird populations in some areas 

(Davies et al. 2008; Gehrke et al. 2003; Harris and Gehrke 1997; Kingsford 2000; Kingsford 

and Thomas 1995). In the Murray-Darling Basin, approximately half of native fish species are 
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considered threatened, while common carp was the dominant species in Sustainable River 

Audit surveys, accounting for 58 per cent of total fish biomass (Davies et al. 2008). 

Additional water and other resources will probably have to be allocated to environmental uses 

if the declining health of many of Australia's river systems is to be slowed or reversed. This 

could happen a number of ways. In Australia, most environmental water is allocated by 

governments. In the Murray-Darling Basin, a central government agency – the Murray-

Darling Basin Authority – is responsible for determining how much water to allocate to 

thousands of ecosystems across the Basin. Some or all of this water will be sourced through a 

$3.1 billion plan to buy water rights from irrigators and $5.8 billion of investment in water 

infrastructure projects. Economists have also examined the potential for decentralised public 

systems where public water could be sourced and managed by local water trusts or public 

land and river managers (PC 2010, Young 2010). Finally, there could be some role for the 

private sector (individuals, charities and businesses) in restoring degraded river systems, as is 

common in the western United States.

There are two primary motivations for developing an analytical framework to investigate 

efficient  environmental water allocation decisions. First, understanding the nature of the 

allocation problem makes it easier to assess which system, or mix of systems, is most likely to 

resolve the allocation problem. Second, irrespective of the system adopted, understanding the 

allocation problem should lead to more efficient environmental allocation decisions and better 

outcomes for the community. 

What does the literature say about the allocation of environmental water? (The allocation of 

other resources will not be considered.) According to the Productivity Commission's Water 

Buyback study, 'the efficient allocation of water resources occurs when the marginal net 

benefits of water are equated across all uses, including consumptive and environmental uses' 

(PC 2010, p.61). This is similar to the definitions set out in introductory environmental 

economics textbooks, and is most easily demonstrated with a simple diagram. Figure 1 

examines the allocation of a given bundle of water between two ecosystems. The volume of 

water available is given by the distance between the left vertical axis and the right vertical 

axis. The marginal net benefit of watering ecosystem A is given by MBa, which should be 

interpreted left-to-right (from the left vertical axis). The marginal net benefit of watering 

ecosystem B is given by MBb, which should be interpreted right-to-left (from the right 

vertical axis). 
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In the case drawn in PC (2010), both marginal net benefit curves are downward sloping and 

intersect between the vertical axes and above the horizontal axis. Under these conditions, and 

in the absence of other complications, the marginal approach gives the efficient allocation of 

water, and some water is allocated to both ecosystems. But what happens, for example, if the 

marginal net benefit curves are upward sloping or they do not intersect between the vertical 

axes? In this case, the marginal solution either does not exist or represents the least beneficial 

allocation of environmental water, and efficiency requires that some ecosystems receive no 

water. 

Figure 1: a valid marginal solution in the allocation of environmental water

The inframarginal approach proposed below provides a solution to these problems but does 

introduce additional complexities, and hence, it is reasonable to consider whether the 

marginal approach is likely to represent a good approximation of the underlying problem. 

There are a number of ways of considering this. One approach is to examine the 

environmental production functions (which show the relationship between inputs, such as 

water, and environmental outputs). The environmental benefit functions estimated by Horne 

et al. (2009) (for river flow on the Goulburn River in Victoria) have upward sloping segments 

and other complexities that could render marginal analysis insufficient (figure 2). Indeed, 

these empirically-derived curves look very different to the 'textbook style' curves in figure 1.

An alternative way to assess the applicability of the marginal approach is to consider whether 

the implication — that it would be efficient to water all 30 000 environmental assets in the 

Murray-Darling Basin — is reasonable. It is unlikely that any economist would find such a 

conclusion credible. Indeed, some economists have recognised the necessity to prioritise 
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environmental water allocations by not applying water to some wetlands and riparian forests 

(sometimes known as 'triage' decisions). As such, it is likely to be important to use an 

analytical framework that allows for some ecosystems to go without water. 

Figure 2: an example of an empirically-derived marginal benefit curve

Source: Horne et al. 2009.

Goddard et al. (2009) introduce such a framework in a dynamic programming model with 

stochastic rainfall. Like the model discussed above, the authors examine the allocation of 

water between two ecosystems. In addition, water can be held in storage, introducing a 

marginal user cost. The ecosystems have fixed water requirements, and need to be watered at 

least every five years or suffer irreversible damage. Goddard et al. (2009) calculate the 

optimal management rule based on hypothetical data and find that it is sometimes efficient to 

water only one ecosystem, retaining more water in storage, even when there is sufficient 

water to keep both ecosystems healthy in the short run. This strategy increases the probability 

of the watered ecosystem surviving, but reduces the probability of the other ecosystem 

surviving. The simplified environmental production functions used in Goddard et al. (2009) 

do not allow for a marginal solution (although it can generate interior solutions where both 

ecosystems receive water) or corner solutions caused by convexities in the production 

functions. Thus, while Goddard et al. (2009) provides a valuable example illustrating one 

possible cause of corner solutions, the task of developing a more general framework remains. 

This paper attempts this task, illustrating the framework using quadratic production functions. 

In doing so, it draws heavily on inframarginal economics, especially Cheng et al. (2000). 

Inframarginal economics applies non-classical mathematical programming techniques to 

solve problems that might have corner solutions. It has been applied most extensively to 

examine specialisation in the context of international trade. Cheng et al. (2000) develops a 

simple Ricardian trade model which examines countries' decisions regarding whether to 

produce two goods in an environment characterised by 'increasing returns' (notionally caused 

by learning costs) and exogenous comparative advantage. There are a number of possible 
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'market structures' from autarky at one extreme to complete specialisation at the other. In 

some respects this is similar to the problem at hand — with autarky corresponding to the case 

where both ecosystems are watered and specialisation corresponding to the case where only 

one ecosystem is watered. As a result, this paper adopts a broadly similar analytical approach 

to Cheng et al. (2000).

While the non-linear programming approach used below is entirely conventional, some of the 

applications of inframarginal economics have been criticised by Dixon (2006). Dixon’s main 

argument was that most problems can be adequately addressed with marginal analysis when 

analysed with sufficient aggregation. While this may, or may not, be the case for aggregate 

trade models (see Tombazos (2006) for counter arguments), the model developed in this paper 

examines decision making at a highly disaggregated level where corner solutions are certainly 

plausible. In this sense, the water allocation problem discussed below is more like Rosen 

(1978), which examines the division of labour within a firm.

Model and results
This section introduces a deterministic, single period environmental water allocation model. 

The model seeks to maximise returns, Π , by allocating a given bundle of water, W , between 

two ecosystems, A and B. 

Maximise:

( ) ( )ABBBAA WWgPWWfP ,, +=Π (1)

Subject to:

WWW BA ≤+ (2)

0, ≥BA WW (3)

where AP  and BP  are the values of a unit of output from ecosystems A and B (assumed to be 

constant), while ( )BA WWf ,  and ( )AB WWg ,  are twice differentiable environmental 

production functions that relate the volumes of water applied to ecosystems A and B, AW  and 

BW , to environmental output. To illustrate technical interdependence between the 

ecosystems, the volume of water applied to one ecosystem is allowed to influence the output 

of the other ecosystem. This kind of interdependence could be a result of return flows or 

similar phenomena. 
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Configurations
In this model there are four possible configurations: (i) water both ecosystems, (ii) only water 

ecosystem A, (iii) only water ecosystem B, and (iv) water neither ecosystems. The water 

constraint is assumed to be binding. This rules out configuration (iv) and simplifies the 

analytics for the other configurations. 

First order conditions
This problem gives rise to the following Khun-Tucker conditions:

0≤−+ λWABWAA gPfP ; 0≥AW ; ( ) 0=−+ λWABWAAA gPfPW ;

0≤−+ λWBAWBB fPgP ; 0≥BW ; ( ) 0=−+ λWBAWBBB fPgPW ;

0=−− BA WWW (4)

where WAf , WAg , WBf  and WBg  are the partial derivatives of ( )BA WWf ,  and ( )AB WWg ,  

with respect to AW  and BW , and λ  is the Lagrangian multiplier.

To examine the parameter subspace and solution values associated with different 

configurations a specific function form for the environmental production functions is 

assumed. For illustrative purposes, a quadratic relationship is assumed between the water 

inputs and environmental outputs:

( ) 2
543

2
210 5.5., BBBAAABA WaWaWWaWaWaaWWf +++++= ;

( ) 2
543

2
210 5.5., AAABBBAB WbWbWWbWbWbbWWg +++++= (5)

where 50 ,, aa   and 50 ,, bb   are parameters.

The first step is to evaluate:

• the conditions under which there is an interior stationary point, 

• the values of AW  and BW  associated with that point (if it exists), and 

• the conditions under which the corners are local maxima or minima. 
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Both AW  and BW  would exceed zero under any interior stationary point. Thus, the 

complementary slackness conditions in (4) imply that the marginal conditions would hold 

with strict equality and the problem reduces to the standard marginal problem:

0=−+ λWABWAA gPfP

0=−+ λWBAWBB fPgP

0=−− BA WWW (6)

Substituting in the partial derivatives of (5) and solving for the values of AW  and BW  

associated with the interior stationary point (if it exists):

( )[ ] ( )[ ]
D

bbWbbPaaWaaP
X BA

A
32415341 −+−−−+−

=

( )[ ] ( )[ ]
D

aaWaaPbbWbbP
X AB

B
32415341 −+−−−+−

= (7)

where

[ ] [ ]523523 22 bbbPaaaPD BA −−+−−= (8)

An interior stationary point exists when 0>AX  and 0>BX . D  can be either positive or 

negative. If 0>D , the following conditions apply for an interior stationary point:

( )[ ] ( )[ ]32415341 bbWbbPaaWaaP BA −+−>−+−  

( )[ ] ( )[ ]32415341 aaWaaPbbWbbP AB −+−>−+− (9)

On the other hand, the inequalities are reversed if 0<D  and the following conditions apply:

( )[ ] ( )[ ]32415341 bbWbbPaaWaaP BA −+−<−+−  

( )[ ] ( )[ ]32415341 aaWaaPbbWbbP AB −+−<−+− (10)

If (9) or (10) are satisfied, the stationary point will occur at AA XW =  and BB XW = .
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To identify the conditions under which the corners are local maxima or minima, the problem 

must be solved four times, as both a maximisation and minimisation problem at each corner. 

We will briefly examine the results for corner A (the conditions for corner B are 

symmetrical). The maximisation problem for the corner where only ecosystem A is watered is 

similar to (6) except that the second equation is characterised by a weak inequality.

0=−+ λWABWAA gPfP

0≤−+ λWBAWBB fPgP

0=−− BA WWW (11)

Watering only ecosystem A will be a local maximum when:

( )[ ] ( )[ ]32415341 aaWaaPbbWbbP AB −+−≤−+− (12)

To solve the corresponding minimisation problem some of the inequalities in (4) must be 

reversed. Watering only ecosystem A will be a local minimum when:

( )[ ] ( )[ ]32415341 aaWaaPbbWbbP AB −+−≥−+− (13)

Second order conditions 
The second step is to evaluate:

• whether there is the potential for more than one stationary point, and

• the conditions under which the allocation problem is concave or convex.

One way of doing this is to examine the second order total differential of (1). 

222 2 BWBWBBAWAWBAWAWA dWhdWdWhdWhd ++=Π (14)

where WAWAh , WAWBh , WBWBh  are the second partial derivatives with respect to the variables 

AW  and BW . If, as above, the water constraint is assumed to be binding, we can take the total 

differential of (2) and impose the following restriction on the relationship between AdW  and 

BdW :
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BA dWdW −= (15)

Substituting (15) into (14):

( ) 22 2 AWBWBWAWBWAWA dWhhhd +−=Π (16)

Adopting the specific functional forms assumed in (1) and (5):

( ) ( )[ ] 2
523523

2 22 ABA dWbbbPaaaPd −−+−−−=Π (17)

The terms inside the square brackets are equal to the denominator in (7) ( D ). The sign of 

Π2d  does not depend on the values of AW  and BW . This means that it is not possible for 

there to be more than one stationary point. (17) also allows us to determine whether the 

problem is convex or concave. In particular, the problem will be concave when 0>D  and 

convex when 0<D .

Solutions
The third step is to identify all possible 'problem types', and then determine the parameter 

subspace and solution values associated with different configurations. There are four possible 

'problem types':

• Interior stationary point and   0>D . The problem is concave, and hence the 

stationary point corresponds to a local maximum. Since there is only one stationary 

point, this must also be a global maximum. This is the only 'problem type' that results 

in an interior solution. It is illustrated in Figure 3 which shows Π  for different 

combinations of AW  and BW  that satisfy the water constraint. 

• Interior stationary point and   0<D . The problem is convex, and hence the stationary 

point corresponds to a local minimum. Since there is only one stationary point, the 

global maximum associated with (10) must be a corner — more specifically, the 

corner with the higher value. In figure 4, Π  is higher at point c than point d and so 

the optimal strategy is to only water ecosystem A. Returning to the algebraic 

example, in the context of an interior stationary point being a minimum, it will be 

optimal to only water ecosystem water A when:
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( ) ( ) ( ) ( )WbbPWaaPWbbPWaaP BABA 21545421 5.05.05.05.0 +++>+++ (18)

and only water ecosystem B when:

( ) ( ) ( ) ( )WbbPWaaPWbbPWaaP BABA 21545421 5.05.05.05.0 +++<+++ (19). 

• One of the corners is a local maximum and   0>D . The problem is concave, and the 

existence of a corner as a local maximum rules out the possibility of an interior 

stationary point (as it has been established that there are either zero or one stationary 

points). Hence, any feasible movement away from the corner which is the local 

maximum will reduce Π  and the that corner will also be a global maximum. This 

possibility is shown in figure 5 for the case where it is optimal to only water 

ecosystem A. 

• One of the corners is a local minimum and   0<D . The problem is convex, and the 

existence of a corner as a local minimum rules out the possibility of an interior 

stationary point (as in the case above). Hence, any feasible movement away from the 

corner which is the local minimum will increase Π  and the opposite corner will be a 

global maximum. This possibility is shown in figure 6 for the case where it is optimal 

to only water ecosystem B. 

Figure 3: illustrative interior solution
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Figure 4: illustrative corner solution with interior stationary point

Figure 5: illustrative corner solution without interior stationary point, 0>D

Figure 6: illustrative corner solution without interior stationary point, 0<D

It is now possible to examine the parameter subspace and solution values associated with 

different configurations (table 1). 
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Table 1: parameter subspace and solution values associated with different configurations, assuming that 0>λ

Configurat
ion

Parameter subspace Solution

Both A 
and B (i)

0>D ( )[ ] ( )[ ]32415341 bbWbbPaaWaaP BA −+−>−+−

( )[ ] ( )[ ]32415341 aaWaaPbbWbbP AB −+−>−+−

( )[ ] ( )[ ]
D

bbWbbPaaWaaP
W BA

A
32415341*

−+−−−+−
=

( )[ ] ( )[ ]
D

aaWaaPbbWbbP
W AB

B
32415341*

−+−−−+−
=

A only (ii) 0>D ( )[ ] ( )[ ]32415341 aaWaaPbbWbbP AB −+−≤−+− WWA =* ; 0* =BW
0<D ( )[ ] ( )[ ]32415341 bbWbbPaaWaaP BA −+−<−+−

( )[ ] ( )[ ]32415341 aaWaaPbbWbbP AB −+−<−+−
( ) ( ) ( ) ( )WbbPWaaPWbbPWaaP BABA 21545421 5.05.05.05.0 +++>+++

( )[ ] ( )[ ]32415341 bbWbbPaaWaaP BA −+−≥−+−
B only (iii) 0>D ( )[ ] ( )[ ]32415341 bbWbbPaaWaaP BA −+−≤−+− WWB =* ; 0* =AW

0<D ( )[ ] ( )[ ]32415341 bbWbbPaaWaaP BA −+−<−+−  

( )[ ] ( )[ ]32415341 aaWaaPbbWbbP AB −+−<−+−
( ) ( ) ( ) ( )WbbPWaaPWbbPWaaP BABA 21545421 5.05.05.05.0 +++<+++

( )[ ] ( )[ ]32415341 aaWaaPbbWbbP AB −+−≥−+−

[ ] [ ]523523 22 bbbPaaaPD BA −−+−−=
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Comparative statics
We can investigate the relationship between the parameters and optimal allocations by taking 

the partial derivatives of *AW  with respect to the parameters. The following equations 

demonstrate that an increase in 1a , 2a , 4b  and 5b  results in a higher *AW  (within the 

interior solution).

0
*

1

>=
∂

∂
D
P

a
W AA  (20)

(assuming 0>AP  and 0>D , the latter being a condition for an interior solution)

0
*

4

>=
∂

∂
D
P

b
W BA (21)

(assuming 0>BP )

0
*

2
2

>=
∂

∂
D

NP
a

W AA (22)

(assuming 0>N , a condition for an interior solution)

0
*

2
5

>=
∂

∂
D

NP
b

W BA (23)

where

( )[ ] ( )[ ]32415341 bbWbbPaaWaaPN BA −+−−−+−= (24)

This is because an increase in 1a , 2a , 4b  or 5b  increases the marginal benefits of applying 

water to ecosystem A at all levels. The relationship between 2a  and *AW  can be illustrated 

graphically for a given hypothetical set of parameters (figure 7; table 2). At values of 

6.02 −<a  the interior solution holds and water is allocated to both ecosystems. As expected, 
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an increase in 2a  increases *AW . The model shifts to a corner solution at 6.02 −=a  beyond 

which only ecosystem A is watered. 

Figure 7: relationship between 2a  and *AW  a

0

2

4

6

8

10

-6 -5 -4 -3 -2 -1 0 1

a2

W
a*

a assumed parameter values given in table 2, 12 −=b

Setting 22 =b  changes the problem substantially (figure 8). In this case, the problem is 

convex and jumps discontinuously between the two corner solutions at 2a  = 0.3. 

Figure 8: relationship between 2a  and *AW  a

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

a2

W
a*

a assumed parameter values given in table 2, 22 =b
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Table 2: hypothetical parameter values used in figures 7 to 12

Parameter Value(s)
AP 1
1a 20
2a -2
3a 0.2
4a 2
5a -0.1
BP 1

1b 10
2b -1 or 2
3b 0
4b 0
5b 0

W 10

An increase in 1b , 2b , 4a  and 5a  increases the marginal benefits of applying water to 

ecosystem B. This increases the opportunity cost of watering ecosystem A, therefore reducing 

*AW  (within the interior solutions). The partial derivatives with respect to these parameters 

are as follows:

0
*

4

<
−

=
∂

∂
D
P

a
W AA  (25)

0
*

1

<
−

=
∂

∂
D
P

b
W BA  (26)

( )
0

*
2

5

<
−

=
∂

∂
D

DWNP
a

W AA  (27)

(assuming W
D
N < , a condition for an interior solution)

( )
0

*
2

2

<
−

=
∂

∂
D

DWNP
b

W BA  (28)
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We now turn to the interaction terms, 3a  and 3b . Within the interior solution, an increase in 

3a  and 3b  increases *AW  when more water is applied to ecosystem B than ecosystem A, 

and decreases *AW  when more water is applied to ecosystem A than ecosystem B. This 

means that increases in 3a  and 3b  result in a more balanced allocation of water among the 

ecosystems. This is shown below. 

( )
2

3

2*
D

NDWP
a

W AA −
=

∂
∂

; 0
*

3

>
∂

∂
a

WA  if 
2

W
D
N < ; 0

*

3

<
∂

∂
a

WA  if 
2

W
D
N > (29)

( )
2

3

2*
D

NDWP
b

W BA −
=

∂
∂

; 0
*

3

>
∂

∂
b

WA  if 
2

W
D
N < ; 0

*

3

<
∂

∂
b

WA  if 
2

W
D
N > (30)

Figure 9 shows that a decrease in 3a  has the effect of increasing watering of the more highly 

watered ecosystem (within the interior solutions), which is ecosystem A in this example. It 

can also result in corner solutions. For example, at 2.12 3 −<<− a  it is optimal to only 

water ecosystem A. By contrast, at the limit as ∞→3a , 5* →AW  (a perfectly balanced 

allocation of water). 

Figure 9: relationship between 3a  and *AW  a

0

2

4

6

8

10

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

a3

W
a*

a assumed parameter values given in table 2, 12 −=b
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The effect of AP  and BP  on *AW  is ambiguous.

( )[ ] [ ]
2

5235341 2*
D

NaaaDaawaa
P

W

A

A −−−−+−
=

∂
∂

;

0
*

>
∂

∂

A

A

P
W

 if the numerator of 
A

A

P
W
∂

∂ *
 is positive;

0
*

<
∂

∂

A

A

P
W

 if the numerator of 
A

A

P
W
∂

∂ *
 is negative (31)

( )[ ] [ ]






 −−+−+−

−=
∂

∂
2

5233241 2*
D

NbbbDbbwbb
P

W

B

A

0
*

<
∂

∂

B

A

P
W

 if the numerator of 
B

A

P
W
∂

∂ *
 is positive;

0
*

>
∂

∂

A

A

P
W

 if the numerator of 
B

A

P
W
∂

∂ *
 is negative (32)

Without the interaction terms, the numerator of 
A

A

P
W
∂

∂ *
 will be positive when 0>D  and 

0>λ , both of which are conditions for the interior solution described in table one. An 

increase in AP  will increase *AW  under these conditions. However, with the interaction 

terms it is possible that an increase in AP  could reduce *AW . This is because an increase in 

AP  could theoretically increase the marginal benefits of watering ecosystem B more than it 

increases the marginal benefits of watering ecosystem A. 
A

A

P
W
∂

∂ *
 happens to be positive in 

figure 10. 
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Figure 10: relationship between AP  and *AW  a

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3

Pa

W
a*

a assumed parameter values given in table 2, 12 −=b

An increase in the volume of water available could have a positive or negative effect on *AW .

( ) ( )
D

bbPaaP
W

W BAA 3253* −−−
=

∂
∂

;

0
*

>
∂

∂
W

WA  if the numerator of 
W

WA

∂
∂ *

 is positive;

0
*

<
∂

∂
W

WA  if the numerator of 
W

WA

∂
∂ *

 is negative (33)

This depends on 
W

WA

∂
∂ *

, the numerator of which is the negative of the slope of the marginal 

benefit curve associated with watering ecosystem B. Figures 11 and 12 illustrate these 

possibilities, with parameter values of 12 −=b  and 22 =b . In figure 11, the corner solution 

A prevails for 6.30 << W , while the interior solution described in table one prevails for 

2.246.3 << W . Since the numerator in (33) is positive, there is also a positive relationship 

between W  and *AW  within the interior solution. 
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Figure 10 also illustrates a corner solution where it is efficient to only water ecosystem A for 

lower values of W , followed by an interior solution. However, the relationship between W  

and *AW  is negative within the interior solution as the benefits at the margin of watering 

ecosystem B increase as more water becomes available (because of its convex production 

function). At values of W  in excess of 4.7 the other corner solution prevails and it is efficient 

to only water ecosystem B. 

Figure 11: relationship between W  and *AW  a
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Figure 12: relationship between W  and *AW  a
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Discussion
The analysis above demonstrates that corner solutions are a genuine theoretical possibility in 

a two ecosystem model. As a result, the responses of optimal water allocation to changes in 

parameters may not be smooth or continuous, even with quadratic environmental production 

functions. What can be reasonably concluded about the possibilities of corner solutions? First, 

corner solutions are possible, even when both environmental production functions are 

concave (as in figure 7). This is because the marginal net benefit of applying the first unit of 

water to one ecosystem could be less than the marginal net benefit associated with the last 

unit of water applied to the other ecosystem, even when the second ecosystem receives all 

available water. Hence, with concave environmental production functions, the interior 

solution only applies over a limited parameter subspace. In this setting, a corner solution is 

more likely the lower the interaction term (figure 9) and the smaller the overall volume of 

water available (figure 11). 

Second, corner solutions are assured when both environmental production functions are 

convex. (If one environmental production function is concave and the other is convex, the 

allocation problem could be either concave or convex depending on the magnitudes 

involved.) Where the problem is convex, the responses to changes in parameters can look 

very different. For example, there could be discontinuous jumps between corner solutions 

(figure 8). 

The model also presents some potentially counter-intuitive insights. For example, an increase 

in the price of output from an ecosystem could decrease the efficient production from that 

ecosystem, while an increase in the overall volume of water available could reduce the 

optimal quantity of water applied to an ecosystem (figure 12). Revealing the possibility of 

these counter-intuitive outcomes and deriving the conditions under which they will occur is 

an advantage of approaching the water allocation problem with a degree of formalism. 

This work has parallels with Kuosmanen and Laukkanen (2009), which employs a dynamic 

model to examine efficient abatement strategies where there are a number of interacting 

pollutants. Applying their model to eutrophication and climate change they conclude that ‘the 

optimal policy is often a corner solution, in which abatement is focused on a single pollutant’ 

and that ‘corner solutions may arise even in well-behaved problems with concave production 

functions’ (p. 1). Although their application is different, their approach and results have 

similarities. This suggests that the general framework outlined above is likely to apply a range 
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of environmental (and other economic) problems, and that the allocation of environmental 

water is one of many potential applications. 

Potential areas for future research include adding dynamics and uncertainty surrounding 

inflows and environmental responses; the ability to carryover water in storage; more than two 

ecosystems; and more realistic environmental production functions (with thresholds, and so 

on). Incorporating empirically-derived on ecological responses and preferences would also be 

worthwhile. 
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