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Implementing Coarse Priority Schemes

Abstract

This thesis shows that coarse priority schemes for rationing random supply

can be implemented without prior knowledge of the distribution of valuations

using the VCG mechanism. Coarse priority rationing schemes are those

with fewer priority classes than individuals. Coarse priority schemes are of

interest because full priority schemes may not be feasible in practice and

because coarse priority schemes achieve large parts of the gains from full

priority schemes. Implementation of the coarser priority schemes without

knowledge of the distribution of valuations is useful when o¤ering priority for

the �rst time, since this information may not be available. I show that with

unit demand, risk neutrality and a known supply distribution, the optimal

priority scheme for a given number of classes can be implemented. I provide

a program to simultaneously solve for the optimal cut-o¤s and VCG prices

given any discrete valuations and any supply distribution.
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1 Introduction

Priority pricing is often used to ration random supplies of a good that cannot be stored. Priority

pricing charges customers a fee for their place in a queue to be served and is used to replicate

spot markets or peak load schemes when they are not feasible (Oren, Smith and Wilson, 1985).

When an unexpected shortage occurs, the highest ranked customers are served �rst so that the

resource is allocated to the highest valuing users (Wilson, 1989).

Full priority schemes have a unique position for each individual (n or more priority classes,

where n is the number of individuals) and serve customers in rank order. If each customer has

unit demand and service is in multiples of non-divisible units, each individual is served only if

supply is equal to or greater than their position in the queue. Coarse priority schemes have

less than n priority classes and serve each class in rank order. Where supply is enough to serve

some but not all members of the same priority group, service is randomly allocated within the

group. Ultimately, a level of priority represents a customer�s probability of service. For full

priority schemes this is a unique probability for each customer, for coarse priority schemes it is a

probability for each class.

Full priority schemes disconnect customers individually depending on the supply realisation

whereas coarse schemes only disconnect groups of customers (Wilson, 1989). Electricity markets,

for example, usually have technology that enables individual customers to be selected for immedi-

ate disconnection (Chao, Oren, Smith and Wilson, 1986) and full priority schemes are favorable.

If it is too costly or not technically feasible to disconnect customers individually a coarse priority

scheme might be preferred. Water rationing, for example, is often achieved by public announce-

ments which ban visible outdoor water use by various users (The Productivity Commission, 2008).

Road rationing is often achieved by public announcements which ban road use by various vehicle

3



licence plate numbers (Colombia Reports, 2009). In each example coarse rationing is more feasible

because only groups of customers are disconnected and contacting customers individually for each

supply realisation is too demanding.

Coarse rationing can in general be introduced provided there is a way to disconnect groups

and to allocate randomly or uniformly1 within groups. In both the road and water applications

the public bans can and do uniformly allocate amongst individuals. Sequential choice of licence

plates numbers to be banned from the roads (Bogotá D.C, 2009) and alternating house numbers to

be banned from outdoor water use (ACTEW Corporation, 2009) allow uniform allocation within

the population. All that is required to introduce a coarse priority scheme in these settings is to

predetermine various groups of users, for example by providing licences for various groups, and

then allow the same public announcements to a¤ect those groups only. For example, cars with

blue licence plates can be given priority, but if supply is very low only blue licences ending in 3

may drive.

In 2008 the Productivity Commission suggested in its report Towards Urban Water reform, the

possibility of introducing a choice of water service probability, where no choice has existed before.

Public bans on outdoor water use are enforced by neighborhood observation and so monitoring

relies on cheating being visibly detected. With this system in place, a two class scheme could allow

for high priority customers to display an exemption on their property so that visible use would be

tolerated. It is not easy to imagine how a third class could be introduced and it is possible that

a shift from two to three classes would require entirely new monitoring technology. Retaining

the current monitoring technology and implementing an extremely coarse priority scheme may

therefore be justi�ed in terms of cost.

1With an assumption of risk neutrality introduced later the two will be equivalent.
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Further, the introduction of such coarse two tiered priority schemes has been shown in theory

to achieve a surprisingly large proportion of the possible gains from full priority schemes.

The thesis extends previous literature on implementing coarse priority schemes to implemen-

tation without prior knowledge of the distribution of valuations within the service population.

Implementation without knowledge of the distribution will be particularly useful where there are

no pre-existing markets for priority and a choice of priority service has never been o¤ered before.

In this case it is unlikely that the planner would initially have reliable estimates of the distribution

to use.

For example, estimates of willingness to pay for various aspects of water service are numer-

ous and include choice modelling surveys (Hensher, 2006 and Gordon et al., 2001), Marshallian

surplus estimation (Quintin and Ward, 2008) and opportunity cost of time estimation (Brennan,

Tapsuwan and Ingram, 2007) to name a few. Since a choice of water reliability has never been

o¤ered before (Productivity Commission, 2008), it is not surprising that none of these surveys

estimate a distribution of preferences; only various measures of average and aggregate social cost.

This thesis shows that the VCG mechanism (Vickrey(1961), Clarke (1971) and Groves (1973)

can be used to implement any coarse priority scheme optimally without the planner�s prior knowl-

edge of the distribution of valuations. That is, subject to the restriction of a given number of

classes, the optimal allocation of individuals to classes can be implemented. The mechanism will

ask individuals to report their valuations for service, solve for the socially e¢ cient allocation of

priority based on those reports and solve for the associated VCG prices which induce truthful

reporting. This process is illustrated using a model for priority service and a program to solve for

e¢ cient allocation of priority and to compute VCG prices.

The remainder of the thesis is structured as follows: Section 2 gives an overview of priority

schemes literature and VCG literature. Section 3 gives the model for priority service. Section
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4 applies the VCG mechanism to the model for priority service. Section 5 gives limitations and

suggestions for further research. Section 6 is the conclusion.

2 Literature review

The �rst part of the literature review demonstrates that the bene�t of full priority schemes and

coarse priority schemes have been shown provided they can be implemented correctly (e¢ ciently).

Implementation has been discussed but knowledge of the distribution of valuations is always

required. The second part of the literature shows that general methods for �nding the valuations

and implementing an e¢ cient social allocation is readily available. This has not yet been applied

to the particular problem of priority pricing.

2.1 Priority schemes literature

Wilson (1989) has shown that perfect priority can approximate the �rst best spot market outcome

if each customer is charged for their unique position in a queue. If each customer has unit demand

and the order of customers stays the same over time, priority service with n priority classes can

exactly replicate the spot market outcome.

The pricing of full priority schemes has also been discussed. Oren, Smith and Wilson (1985)

derived the optimal priority pricing for a monopolist. Wilson (1989) derived price schedules to

induce socially optimal priority service. Again, customers pay a price for their position in a queue.

In both cases the pricing relies on the seller knowing the distribution of valuations in order to

o¤er prices that induce the e¢ cient behaviour.

The bene�ts of coarse priority schemes have also been discussed. Because coarse priority

schemes o¤ers fewer priority classes than there are customers, there is naturally some e¢ ciency
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loss as compared with full priority schemes. Wilson (1989) showed that if the optimal pricing

can be found, a coarse scheme with m priority classes incurs a loss of order no more than 1
m2

compared with perfect priority schemes. This gives some justi�cation for introducing coarse

priority schemes, but it relies on being able to know the distribution of valuations because the

losses would be larger if the allocation of individuals to classes were not necessarily optimal.

McAfee (2001) has shown that a two class scheme that uses the mean valuation2 as a cut-o¤

for high and low priority customers must achieve at least half of the gains from in�nitely many

classes for any valuation and supply distributions that satisfy common hazard rate assumptions3.

McAfee suggests that the result will be useful since estimates of the mean might exist. In practice

knowledge of both the mean and the location (or percentile) of the mean would be required to

implement such a scheme4 so again some knowledge of the valuation distribution is required. In

summary, the result does give a strong justi�cation for using very coarse priority schemes but it

does not show how this would be implemented in practice.

The implementation of coarse priority schemes have also been discussed. Wilson (1989) de-

rived price schedules for such coarser schemes as well as the perfect priority schemes discussed

2McAfee�s proof also holds when the mean of the function matching service probability to valuations is used as

a cut-o¤ although this does not help to sort which customers belong to each group.
3The assumptions are that the distribution of valuations f(v) and the function matching service to valuations

g(y) satisfy the following hazard rate assumptions:

F (v)

f(v)
and

G(y)

g(y)
are increasing and;

1� F (v)
f(v)

and
1�G(y)
g(y)

are decreasing.

4With knowledge of the mean and location of the mean, the number of customers in each service group and the

implied probability of service can be found. Without knowledge of the location of the mean it is unknown what

level of service is implied by each class.
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above. The price menus that achieve an e¢ cient allocation for m priority classes select cut-o¤

valuations so that individuals self-select into classes that maximise the social surplus from the

coarse rationing. The pricing again relies on the planner having knowledge of the valuations dis-

tribution. The planner must also know the set of customers that are eligible for service for the

sake of e¢ ciency, so they must be able to exclude some customers. This set may not be prior

knowledge of the planner and it might also not be feasible in terms of monitoring technology.

Therefore, the question of how to implement a coarse priority scheme without knowledge of the

distribution of valuations remains open and this is the practical problem addressed in this thesis.

2.2 VCG literature

VCG mechanisms are a natural starting point for implementing an optimal social outcome without

knowledge of the distribution of valuations because they are dominant strategy implementable

and they are e¢ cient. The components of the VCG mechanism and these fundamental properties

of the VCG mechanism are summarised here.

Groves (1973) and Clarke (1971) showed that any socially e¢ cient outcome can be imple-

mented provided the scheme does not need to be self-funded. This is because the social planner

can simply make transfers to individuals so that maximising total utility is equivalent to maximis-

ing individual utility. Speci�cally, the utility of an individual from the outcome can be reduced

to the total utility with a constant term.

Prior to this, Vickrey (1961) established a payment rule that converted these payments into

externality payments. The payments were equivalent to charging an individual the total utility

of all individuals less the total utility without him/ her, and it was done in the setting of selling

goods. Together, the e¢ cient allocation and the combined payments make up the VCG selling

mechanism.
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Formally, the VCG mechanism is as follows. There is a set N = f1; :::; ng of individuals. An

outcome x = (k; t1;:::; tn) is a choice of an allocation from all feasible allocations k 2 K and a

set of payments ti to each individual. The outcome for individual i is xi = (k; ti).

Individual types are denoted �i; and reported types �̂i: Let the vector of true types be � =

(�1; :::; �n) and the vector if reported types be �̂ = (�̂1; :::; �̂n): The VCG mechanism is a direct

mechanism so individuals will report a type and the mechanism will map reported types to

outcomes according to a social choice function f : � ! X where X is the set of all possible

outcomes and � is the set of all possible types �.

Individuals are assumed to have utility over outcomes that is quasi-linear (linear in transfers)

given by;

ui(xi; �i) = vi(k; �i) + ti:

Assuming for now that individuals report truthfully, the VCG mechanism implements the

e¢ cient allocation:

k�N (�) = argmax
k2K

X
i2N

vi(k; �i) (1)

and makes transfers according to

ti(�) =
X
j 6=i
[vj(k

�
N (�); �j)� vj(k�Nni(��i); �j)] (2)

where ��i is the types of all individuals except i.

The �rst term on the right represents the welfare of all other individuals at the optimal

allocation when i�s report is considered. The second term on the right is the welfare of all

other individuals at the optimal allocation when i�s report is not considered. The payments ti(�)

therefore represent the external e¤ect that i�s report has on the other individuals.
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In showing that the VCG mechanisms are dominant strategy implementable, I follow Milgrom

(ch.2, 2004). If ui(x; �̂i; �i) is the utility for individual i with type �i when reporting �̂i and

ui(xi; �i) is the utility from reporting �i truthfully, then the gains to individual i for misreporting

�̂i instead of �i for any reports of ��i is

ui(x; �̂i; �i)� ui(xi; �i) = vi(k
�
N (�̂i;��i); �i) + ti(�̂)� vi(k�N (�); �i)� ti(�)

= vi(k
�
N (�̂i;��i); �i) +

X
j 6=i
[vj(k

�
N (�̂i; ��i); �j)� vj(k�Nni(��i); �j)]

�[vi(k�N (�); �i) +
X
j 6=i
[vj(k

�
N (�); �j)� vj(k�Nni(��i); �j ]

=
X
j=1

vj(k
�
N (�̂i;��i); �j)�

X
j=1

vj(k
�
N (�); �j)

� 0;

since

k�N (�) = argmax
k2K

X
i2N

vi(k; �i):

In other words, the gains from misreporting under the mechanism would only be positive if

total utility increased due to the misreport. This is not possible since the mechanism implements

the maximum total welfare for truthful reports. As a result reporting �̂i = �i is a dominant

strategy for all individuals.

If all individuals play this dominant strategy and report truthfully, the true e¢ cient outcome

is implemented by de�nition in equation (1).

This review of the VCGmechanism shows that there is a way to implement an e¢ cient outcome

without knowledge of the distribution of valuations. Any optimal project could be implemented

provided one can de�ne all feasible projects, allow agents to report their preferences over feasible

projects, solve for the optimal project given reports and solve for the externality payments implied

by that allocation. As shown, the requirement for e¢ ciency in VCG is a requirement that the
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�nal outcome be the optimal outcome over the feasible outcomes. The fact that a coarse priority

scheme is naturally inferior to a full priority schemes merely constrains the feasible allocations.

In summary, the literature shows that (1) pricing schemes for perfect and coarse rationing

exist but rely on previous knowledge of the distribution of valuations and (2) there is a general

mechanism that allows us to simultaneously reveal preferences and implement a socially optimal

allocation without knowledge of the distribution of valuations.

The gap to be �lled is to demonstrate how the VCG mechanism can be applied to selling

priority so that a coarse priority scheme can be introduced without this prior knowledge of the

distribution of valuations.

3 The model of coarse priority service

This section provides a model of selling priority service. The key to applying the VCG mechanism

to selling priority service will be to de�ne assumptions on preferences and on service so that we

can describe what is meant by a report and by the set of feasible outcomes. Ultimately this

will tell us how the social choice function for the VCG mechanism maps reports to allocations in

this application. The most important assumptions are transferrable utility, risk neutrality, unit

demand and known supply distribution.

The set up used is similar to that given for a two class scheme in McAfee�s paper (2001).

In this paper the model allows for discrete valuations and for supply to exceed total population

demand. The valuation distribution is discrete for the purpose of applying the set up to a �nite

vector of reports as would be the case in the practical implementation of VCG. If the functional

form of a continuous valuation distribution were eventually known it could be incorporated in all

of the computations that follow. The supply is allowed to exceed total demand for generality.
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3.1 Supply

There is a good to be rationed by a central planner, whose units y are indivisible and y 2 Y

gives the set of all possible supply realisations. It�s known supply density is gy which gives the

probability of a particular level of supply in any period. That is gy = Pr
�
~Y = y

�
, where supply ~Y

is a random variable. The good cannot be stored and each supply realisation is rationed costlessly

by allowing chosen customers to be served.

3.2 Individuals and preferences

There are n individuals. Each customer has unit demand which implies that when served, cus-

tomers consume one service unit. When customers are not served they consume zero units.

Each individual obtains zero utility from zero service, and has a privately known valuation

vi of service of one unit. In the setting where only one or zero service units can be served, and

individuals face a probability of being served one unit, the utility obtained from an outcome,

which is a probability and transfer pair (pi; ti); is as follows:

ui = u (pi; vi; ti) = pivi + ti (3)

That is, utility is assumed to be quasilinear as it was for the VCG derivation and agents are

assumed to be risk neutral. A reported type �̂i is therefore equivalent to reporting a valuation v̂i

for a service unit in the sense that it conveys all of the necessary information as to the individuals

preferences within the scheme to the planner. Once the valuations of individuals are revealed

truthfully, individuals are ordered by v1 � v2 � : : : � vn:
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3.3 Priority rules

The feasible number of priority classes, m; is given by the environment. Once the size of each

priority class is determined, the rules of service are as follows:

1. Each priority class is served in order. A lower priority class is served only if higher priority

classes are entirely served.

2. Following the schemes discussed by both Wilson (1989) and McAfee (2001), service is allo-

cated randomly (or uniformly) within each class when service is enough to serve some but

not all members of a class. If for example there are 20 members in the top class but a

supply realisation is 10, no lower class member would be served and the probability of being

randomly selected for service as a top priority member, conditional on this realisation, is 12 :

3. All individuals in the service population n are assigned to a class. For example, a two class

scheme cannot have a high probability, a low probability, and some customers who are not

served at all (zero probability). In this setup that is in fact a third class, and serving a class

zero probability is certainly feasible, but the existence of a group being served with zero

probability is considered a class.

Given this structure of supply and rules of service, the service probabilities for each individual

can be calculated. Given the preferences, total utility from these service probabilities can be

de�ned. The case of two priority classes is presented �rst and examples throughout focus on this

two class case because it is the practical focus of the thesis and its applications. For completeness,

generalisation to m classes is given in the following section.
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3.4 Service probabilities with 2 priority classes

For a two class rationing scheme there will be high and low priority classes of customers. Let c1

denote the number of customers in the �rst class, the high priority class. In the case of only two

classes this implies n � c1 customers in the low priority class. The probability of service o¤ered

to customer i, pi;y, can take one of only two values, high probability denoted p1;y (c1) and low

probability denoted p2;y (c1). This gives an assignment of probabilities to individuals according

to:

pi;y =

8>><>>:
p1;y (c1) ; i = n� c1 + 1; : : : ; n;

p2;y (c1) ; i = 1; : : : ; n� c1:

The priority rules give service probabilities for each group, conditional on supply realisation y,

according to:

p1;y (c1) =

8>><>>:
y=c1; y � c1

1; y > c1

; p2;y (c1) =

8>>>>>><>>>>>>:

0; y � c1

y�c1
n�c1 ; c1 < y � n

1; y > n:

(4)

That is, if supply is less than su¢ cient for all high priority customers (y � c1) then that supply is

randomly allocated within the group. Therefore if y � c1 the chance of being selected for service

for a high priority group member is y=c1: If y > c1 all high priority customers are served and the

probability of being allocated a unit, conditional on this supply realisation is clearly 1:

Likewise for the low priority group, if y � c1 there is insu¢ cient supply for the high priority

group and so the low group customers are not served at all (the probability of service is zero). For

supply c1 < y � n; supply is exceeds the needs of the high group and so excess supply, y � c1, is

available to be randomly allocated amongst the low group. The probability of service conditional

on this supply realisation is the excess supply divided by the number of low customers, y�c1n�c1 . If

supply exceeds the population (y > n) then all customers are served with probability 1.
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Finally, taking the expectation across all possible realisations of supply we have the following

overall probabilities of service in the �rst (high) and second (low) priority groups:

p1 (c1) =
X
y

gyp1;y (c1) =
X
y�c1

y

c1
gy +

X
y>c1

1 � gy; (5)

p2 (c1) =
X
y

gyp2;y (c1) =
X

c1<y�n

y � c1
n� c1

gy +
X
y�n

gy: (6)

If, in the �nal outcome, an individual were assigned a probability of 0:8, this would imply

that the individual had 80% chance of being selected for service of one unit in any given supply

period. The conditions given by equations (5) and (6) describe the set of feasible outcomes for a

given supply distribution gy, service population n and for the case of two priority classes.

The implied expected total utility for the two class scheme is:

U (c1) = p1 (c1)
nX

i=n�c1+1
vi + p2 (c1)

n�c1X
i=1

vi; (7)

which is found as the valuation vi for each individual weighted by their service probability (p1 (c1)

or p2 (c1) depending on which class they are in) and then aggregated over all n individuals.

3.5 Service probabilities with m priority classes

The model can be extended to the general m class setting for completeness. The allocations of

individuals to the m classes can be represented by a vector c = (c1; : : : ; cm), where cj represents

the number of individuals allocated to the top j classes for each j = 1; : : : ;m. For example c1 is

the number of individuals in the �rst class and c2 is the number of individuals in both the �rst

and second classes. All individuals are allocated to a class so cm = n. The number of individuals

in the jth class is given by cj�cj�1. The jth top group includes individuals n�cj+1; : : : ; n�cj�1.

This notation allows a neat representation of the service probabilities for m classes.
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The priority rules again give the service probability in each group conditional on each supply

realisation. The service probability for the jth class with �xed supply y for given c represented

by pj;y(c) is summarised in the following table:

Amount of supply (y) p1;y (c) p2;y (c) p3;y (c) pm;y (c)

y = 0 0 0 0 . . . 0

0 < y � c1 y
c1

0 0 . . . 0

c1 < y � c2 1 y�c1
c2�c1 0 . . . 0

c2 < y � c3 1 1 y�c2
c3�c2

...
...

cm�1 < y � cm 1 1 1 . . . y�cm�1
cm�cm�1

y > n 1 1 1 . . . 1

For example, consider the row c2 < y � c3. This means supply is su¢ cient to completely serve the

top two groups (hence p1;y (c) = p2;y (c) = 1) and to partially serve the third group. After serving

the top two groups (c2 individuals) there are y � c2 units of supply left to distribute randomly

among the c3 � c2 individuals in the third group, so the third group has service probability

p3;y (c) =
y�c2
c3�c2 . Groups 4; : : : ;m have zero probability of service in this case.

The general formula for the service probabilities is therefore

pj;y (c) =

8>>>>>><>>>>>>:

0; y � cj�1;

y�cj�1
cj�cj�1 ; cj�1 < y � cj ;

1; y > cj ;

(8)

for some �xed supply y 2 Y . When j = 1 we take the value of c0 to be zero in this formula.
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Finally, taking the expectation across all possible realisations of supply we have the following

overall probabilities of service for each class:

pj (c) =
X

cj�1<y�cj

y � cj�1
cj � cj�1

gy +
X
y>cj

gy: (9)

The implied expected total utility for the m class scheme is

U (c) =
mX
j=1

pj (c)

n�cj�1X
i=n�cj+1

vi: (10)

The service probabilities (9) generalisation those in equations (5) and (6) to the case of m classes.

Similarly equation (10) generalises (7). These equations fully characterise the feasible service

probabilities and their implied expected total utility.

4 Applying VCG

With a model for service allocations and preferences the VCG mechanism can now be applied. The

practical steps for applying VCG are given �rst, then the optimal allocation and VCG payments

are derived. The mechanism will ask individuals to report their valuations for service, solve for

the socially e¢ cient allocation of priority based on those reports and solve for the associated VCG

prices to induce this truthful reporting.

To be complete, the practical steps for applying VCG in the sale of priority would be as

follows.

1. The planner will announce all of the rules, the known supply distribution, the length of each

supply period, the �xed service population size and number of priority classes to participants.
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2. Individuals will be asked to report their types, which in this setting are their valuations for

service in any supply period. The planner would advise the individuals that it is an optimal

strategy to report one�s true valuation, independently of the actions of others, and that no

individual can be sure that a misrepresentation wouldn�t adversely a¤ect their outcome.

3. The reported valuations will be collected and the implied socially optimal assignment of

individuals to classes will be solved (see optimal allocation below).

4. Based on the reports and allocation of service probabilities, VCG payments are calculated

for each individual (see VCG payments below).

5. The outcome for each individual will be an allocation to a level of priority, and hence a

service probability, and a VCG payment for that priority, based on the reports.

The ultimate allocation will indeed be the optimal allocation for the given number of pri-

ority classes provided participants� reports are truthful. The process will be assisted by clear

understanding of the process and understanding (or belief) that truthful reporting is optimal.

The optimal allocation and VCG payments are now derived for any number of classes. A

common hurdle in applying the VCG mechanism is �nding a routine to solve for the optimal

allocation and to solve a similar optimisation many times for computing the prices (Krishna,

2002). A Gauss program, provided in the Appendix, was written to solve these optimisation

problems and to illustrate the VCG mechanism with any number of classes. Speci�cally, given a

supply distribution, individual valuations and number of priority classes, the program computes

the optimal allocation, service probabilities and VCG prices. A simple grid search was used to

�nd the optimal cut-o¤s. The grid search is convenient to program, it works for examples with

any numbers of individuals and classes and it can deal with the stepwise nature of the objective
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function. Once the optimal cut-o¤s are found, the service probabilities and VCG payments are

computed from the formulae introduced below.

4.1 Optimal allocation

In order to apply the VCG selling mechanism as outlined above, it is necessary to solve for

the optimal action k�N (�) that satis�es (1). That is, it is necessary to solve for the k
�
N (�) that

maximises total utility of all feasible allocations. In this case, the optimal action consists of

the socially optimal allocation of service probabilities. These service probabilities are themselves

completely determined once the allocations of individuals to classes is chosen. The resulting

service probabilities then constitute the optimal action k�N (�).

When there are two priority classes, recall from section 3.4 that there are c1 high priority

and n� c1 low priority customers with service probabilities p1 (c) and p2 (c) given in (5) and (6)

respectively. The optimal allocation problem is formally expressed as

c�1 2 arg max
c12f1;:::;n�1g

U (c1) ; (11)

where U (c1) is given in (7). The resulting service probabilities p1 (c�1) and p2 (c
�
1) then constitute

the optimal action k�N (�) :

The allocation in the case of m classes is determined by c = (c0; c1; : : : ; cm). To formally

express this optimisation, we de�ne

c� 2 argmax
c2C

U (c) ; (12)

where C = f(c1; : : : ; cm) : cj > cj�1; cm = ng represents the set of feasible allocations and U (c)

is the total expected valuation de�ned in (10). The resulting service probabilities pj (c�), j =

1; : : : ;m, then constitute the optimal action k�N (�). The resulting optimal valuation is U (c
�).
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4.2 Payments

4.2.1 First term

It is clear how to �nd the �rst term,
P
j 6=i vj(k

�
N (�); �j); for ti in equation (2) for the coarse

priority schemes. It is the value of the optimal utility for the scheme when everyone is considered

less the expected value that i receives from the scheme. The �rst term of the VCG payment

formula (2) is therefore X
j 6=i

vj(k
�
N (�); �j) = U (c

�)� vip(i) (c�) ;

where p(i) (c�) = pj (c�) if individual i is optimally allocated to class j.

4.2.2 Second term

For the second term,
P
j 6=i vj(k

�
Nni(��i); �j), it is not immediately clear how we should treat i to

�nd the optimal allocation without i: Is it found by optimising over the set Nni of individuals

or by treating i0s valuation as zero and optimising over the full set N? A review of the VCG

literature gives mixed de�nitions for how this term should be solved. Krishna (2002, p.225) notes

that the payment is the utility that would result if i reports vi = 0, but that in many settings it is

also equivalent to considering utility if i were not present. Milgrom (2004, p.49) also refers to the

possibility of excluding individual i when allocating a good or to treat individuals i0s valuation

as 0 in other circumstances.

In this setting, the two options are not equivalent and the externality payment is correctly

found by treating i0s valuation as zero. The results from the VCG mechanism rely on making

e¢ cient choices from the feasible possibilities. Since all individuals must be assigned to a priority

class, excluding i from the service population and optimising over n� 1 individuals is not within
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the set of feasible outcomes. Therefore the optimal feasible outcome when excluding i0s report is

found by setting i0s report to zero.

Setting i�s valuation to zero ensures that individual would be served the lowest o¤ered priority.

For the purpose of computing this term of ti, it is necessary to set vi = 0; reorder the individuals,

and recalculate the optimal utility over all n individuals being served.

The second term of the payment formula is therefore

X
j 6=i

vj(k
�
Nni(��i); �j) =

X
j 6=i

vjp
(j)
�
c��i
�
;

where c��i satis�es (12) but with vi set to zero.

The VCG payments de�ned in (2) for this application are therefore

ti =
�
U (c�1)� vip(i) (c�)

�
�
X
j 6=i

vjp
(j)
�
c��i
�
: (13)

4.3 Individual rationality

Since it was assumed that the service population is �xed prior to implementation, it is useful to

con�rm that the VCG mechanism is individually rational when applied to these coarse priority

schemes. To see this note that from equations (10) and (13) that:

vi(p
(i) (c�)� p(j)

�
c��i
�
) +

X
j 6=i

vj(p
(j) (c�)� p(j)

�
c��i
�
� 0

for any i; so

vi(p
(i) (c�) +

X
j 6=i

vj [(p
(j) (c�)� p(j)

�
c��i
�
] � vip(j)

�
c��i
�
):

This means that individual utility from the scheme is non negative:

ui = vip
(i) (c�) +

X
j 6=i

vj [(p
(j) (c�)� p(j)

�
c��i
�
] � 0

and the schemes are individually rational.
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4.4 Two class example

The procedure is demonstrated using an example for two priority groups, a population n = 10,

reported valuations

v = f10; 10; 20; 30; 50; 60; 70; 100; 140; 180g;

and a truncated Poisson supply distribution with probabilities gy = fy=
P12
y=0 fy for y = 0; 1; : : : ; 12,

where fy is the probability mass function of the Poisson distribution with parameter � = 8. This

distribution is shown in Figure 1. These choices of population size, valuations and supply distri-

bution are all arbitrary, the program can accept any other choices.

Here the optimal number of high priority individuals is c�1 = 6. Probability of service in the

high and low groups are p1 (6) = 0:938 and p2 (6) = 0:446. Ultimately this gives overall maximised

utility U (c�) = 593:78. By way of comparison, the �rst best allocation with full priority gives

total utility of 614:55 as will be demonstrated later.

To illustrate the calculation of the VCG payments take individual 5, with v5 = 50: This

individual is allocated to the high group and so is allocated a probability p1 (c
�) = 0:938. The

�rst term in the payment for individual 5 is U (c�)�p(i) (c�) vi = 593:78�(0:938):50 = 546:88: For

the calculation of the second term of the payment for individual 5; we �nd the optimal two tiered

scheme where the individual�s utility is set to zero. This achieves total utility 567:40: Combined,

this gives an overall payment for the 5th individual t5 = 546:88 � 567:40 = �20:52: That is they

must pay $20:52; per supply period, for their �nal allocation in the optimal two tiered scheme,

which was probability of service in each period of p1 (c�) = 0:938:

The full list of payments (in absolute value) are given in Table 1.

Ultimately these prices just re�ect each individual�s externality which depends on the partic-

ular valuations and supply distribution. For example, the fact that the low priority customers
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Table 1: Example service probabilities and VCG prices for two classes

Individual Valuation Service Probability VCG Payment

10 180 0.938 16.82

9 140 0.938 17.95

8 100 0.938 19.09

7 70 0.938 19.94

6 60 0.938 20.22

5 50 0.938 20.52

4 30 0.446 0.00

3 20 0.446 0.00

2 10 0.446 0.00

1 10 0.446 0.00

. . . First priority class

. . . Second priority class
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pay nothing here is not always the case; it is just the case for this particular supply and valuation

distributions. An individual�s externality in a coarse priority scheme includes (1) the e¤ect of

occupying a valuable priority position and (2) the impact on the selection of groups. As we will

see later, depending on the distributions, all individuals can potentially a¤ect the outcome and

therefore be required to make a payment for their externality on others.

Several properties of the prices are always seen. Firstly, notice that high priority customers

are indeed the customers paying signi�cantly more than the low priority customers and this is

always the case. When we move to more than two classes we will similarly see that higher groups

always pay more than lower groups.

Secondly, notice that each individual does indeed obtain positive utility from the scheme

above. Take individual 5, with the highest payment, valuation 50; probability of service 0:938

and payment $20:52: Expected utility from the scheme is therefore u5 = 50(0:938) � 20:52 > 0:

As seen by looking at individual 10, the expected utility can indeed be substantial.

Often the prices actually increase from the top within a group, as happens in this example

for the top priority customers. Notice above that the 6th ranked member of the high group

pays a higher price than the 1st ranked individual although the 6th ranked individual has a lower

valuation. This seems unusual but it re�ects the fact that including a marginal member to the high

group can impose a relatively large and negative external e¤ect on existing high group members

by lowering the overall service in the group.

Finally, these results con�rm what has been said previously about the relative e¢ ciency of

these coarser schemes. McAfee proved that a simple two class scheme that used the mean as a cut-

o¤would achieve at least 50% of the possible gains from random allocation to full priority. In this

24



particular example, a mean cut-o¤ scheme would actually achieve 76:2% of the improvements5

if it could be implemented6. The optimal two class scheme in this example achieves 82:4% of

the gains from full priority. These coarse two class schemes do achieve surprisingly large gains.

The diminishing returns to increasing the number of classes suggested by Wilson (1989) will be

illustrated as we look at the extension of the example to m priority classes.

4.4.1 m class example

Continuing with the example given for two classes, Table 2 gives utility and VCG prices form = 2;

m = 3; m = 4 classes and for perfect rationing, m = 10 classes (with n = 10).

For m = 3 the optimal allocation in this case is speci�ed by cut-o¤s at c� = (3; 6; 10) implying

a top priority class with 3 individuals, a middle class also with 3 individuals and a low priority

class with 4 individuals. The expected service probabilities are respectively 0.994, 0.881 and 0.446

for these classes. The maximised expected utility with 3 classes is U (c�) = 607:29. For m = 4

classes the optimal allocation in this case is speci�ed by c� = (3; 6; 8; 10). The maximised expected

utility with 4 classes is U (c�) = 611:64.

5 In this setting where supply can exceed total demand, random rationing implies that for given supply y, each

individual is served probability (y=n) if y � n, and 1 if y > n. The expected probability of service is

p =
1

n

X
0�y�n

ygy +
X
y>n

gy:

The expected utility obtained from random rationing is simply U = p
Pn

i=1 vi.
6Notice that it would be di¢ cult to implement McAfee�s mean cut-o¤ scheme using the VCG mechanism because

it is hard to �nd constraints on the feasible projects K that would implement the mean as the socially optimal

outcome. It is straight forward to implement a median cuto¤ using the VCG mechanism; simply by using the

constraint on feasible projects that there is an equal number in each group. Having said that, since we can achieve

the �optimal�two class scheme, why wouldn�t you?
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Table 2: Example service probabilities and VCG prices

2 classes 3 classes 4 classes 10 classes

U (c�) 593.78 607.29 611.64 614.55

% of full priority 82.4% 93.9% 97.5%

i vi pi (c
�) ti pi (c

�) ti pi (c
�) ti pi (c

�) ti

1 180 0.938 16.82 0.994 21.68 0.994 21.01 1.000 21.96

2 140 0.938 17.95 0.994 21.28 0.994 21.01 0.997 21.56

3 100 0.938 19.09 0.994 20.95 0.994 21.18 0.985 20.41

4 70 0.938 19.94 0.881 13.07 0.881 13.13 0.955 18.27

5 60 0.938 20.22 0.881 13.75 0.881 13.56 0.894 14.60

6 50 0.938 20.52 0.881 13.07 0.881 13.99 0.796 9.71

7 30 0.446 0.00 0.446 0.00 0.591 2.93 0.665 5.80

8 20 0.446 0.00 0.446 1.18 0.591 3.67 0.516 2.82

9 10 0.446 0.00 0.446 0.44 0.301 0.00 0.367 1.33

10 10 0.446 0.00 0.446 0.44 0.301 0.00 0.235 0.00

. . . First priority class

. . . Second priority class

. . . Third priority class

. . . Fourth priority class
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Figure 1: Truncated Poisson supply distribution

For m = 10, perfect rationing, each individual has a unique service probability and a unique

VCG payment. Individuals no longer exert pooling externalities so that the VCG payments only

re�ect the fact that each individual occupies a valuable position in a queue. This represents the

maximum obtainable utility and provides a useful point of comparison for the results based on

coarse rationing.

As suggested above, the e¢ ciency improvements as reported in the top section of Table 2

for increasing the number of classes is diminishing rapidly. For example, in this particular case,

rationing with 3 classes provides 93:9% of the gains from random to full priority rationing. Since

fewer classes will make administration and implementation simpler, and since in many circum-

stances only a limited number of classes is feasible, it is extremely useful to know that these coarse

schemes are so e¤ective.
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5 Limitations and further research

VCG prices are commonly volatile and seemingly unfair (Milgrom, 2004). This is evidently an issue

when applying VCG to priority service since we saw prices that could move in any way depending

on the supply and valuation distribution and often decrease for higher valuing customers. Further,

the mechanism might seem complex to participants. In this particular VCG mechanism, reporting

types, a single valuation, is relatively simple. The allocation decision on the other hand is not

simple.

Whilst fewer classes make the mechanism less complex, �nding a more familiar institution

than the VCG mechanism shown here is an important direction for future research. A uniform or

ascending price format that is outcome equivalent would be highly desirable. An extension of the

Ausubel auction, an ascending price auction that is outcome equivalent to the Vickrey auction

(Krishna, 2002, p173), might be feasible in this setting. In any event, a practical format that is

equivalent but more familiar to participants would be a useful extension of this research.

Trials of the mechanism in small service districts would help to test the functioning of the

mechanism in each particular case. This would be informative for both participants and the

planner, since the process will be new to both. The trials may be all that is necessary since once

the valuation distribution is revealed there is no need to continue the process. Previously derived

pricing schedules could be used for selling priority or even simpler schemes may become apparent

once the distribution is known, particularly if there is some obvious pooling of individuals.

Although this paper actually makes less assumptions than previous literature, in that it does

not require knowledge of the valuation distribution, the assumptions including known supply

distribution and unit demand will need to be reasonable for the mechanism to be appropriate in

practice. The suitability of these assumptions will depend on each case.
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Completing the application of water rationing, water authorities closely monitor the proba-

bility of various supply shortfalls and an example of a supply distribution for the ACT region is

given by ABARE (2008). Unit demand, or that households consume approximately equivalent

volumes of outdoor water when on the same level of restrictions, is actually assumed often in

current planning (see ACTEW Corporation (2005), and DSE (2007)). This would clearly be an

approximation. However households with extremely large outdoor areas could be asked to pay

a premium for their larger use. For the purpose of planning and managing water supply, these

assumptions of known supply and unit demand appear to be plausible.

Further assumptions were risk neutrality and quasilinear preferences. The assumption of

quasilinear preferences is standard in the literature and is reasonable if individuals do not face

signi�cant budget constraints (Milgrom, 2004, p.46). It is useful to note that in the case of water

rationing, the average household water bill is less than 1% of overall household consumption (ABS,

2004). Especially with the payments for priority ultimately being very small relative to reports, it

is unlikely that budget constraints would be of concern when selling priority for water customers.

Addressing the assumption of risk neutrality could be an avenue for further research, although

it is di¢ cult to imagine de�nitions for optimal allocations of service probability and a practical

way to report types where individuals are not assumed to be risk neutral. A consideration of

bidding behaviour and optimal allocations within these coarse priority schemes when agents are

not risk neutral remains open for future research.

6 Conclusion

The results have shown a theoretical way to implement coarse priority schemes without prior

knowledge of the valuation distribution. Implementation without prior knowledge of the valua-

tion distribution had not been discussed previously in the literature and the VCG mechanism was
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a useful starting point for these problems. The approach demonstrated in this thesis will be par-

ticularly useful where a priority scheme is being introduced for the �rst time and this information

is unknown.

Coarse priority schemes were chosen because in practice only few classes may be feasible.

Previous literature suggests that coarse schemes achieve large parts of the gains from full priority

schemes and my results re�ect this fact.

I have set up a model of coarse rationing schemes for any number of priority classes and for a

�nite population. I have applied the VCG mechanism to the selling of priority for a �xed number

of priority classes and a given supply distribution. I have provided numerical illustration of the

feasibility of the implementation including examples of optimal allocation and VCG prices for 2,

3, 4 and 10 class priority schemes. I have provided a program that can solve the optimal allocation

of priority and the appropriate VCG prices to implement that optimal allocation for any number

of priority classes.

Using this VCG application to selling priority will not only ensure such schemes are imple-

mented optimally, it will reveal information that is extremely useful for future planning decisions.

The bene�ts of increasing the number of priority classes are precisely shown using this machinery.

The willingness to pay for overall supply upgrades can easily be seen and can also be illustrated

using this machinery. Whether such a scheme is used in practice or in trials, implementation

without prior knowledge of the valuation distribution could be extremely useful when considering

introducing a coarse priority scheme.

In 2008 the Productivity Commission suggested introducing a choice of water service proba-

bility, where no choice has existed before. Due to the current monitoring technology, only a two

tiered scheme was likely to succeed at �rst. Not surprisingly previous surveys did not measure

30



the distribution of valuations because a choice of service had not been an important issue. The

procedure for implementing this optimal two class scheme that was emphasised throughout the

paper could readily be used to �nally o¤er urban water customers this choice in their probability

of water service.

31



References

ABS (2004) Water Account Australia 2000-01Cat. no. 4610.0,2005, 2003-2004 Household Ex-

penditure Survey, Canberra. Canberra

ACTEW CORPORATION, A. (2005) Future water options for the ACT region �implementation

plan: a summary of the recommended strategy to increase the ACT�s water supply.

AFACCHE, P. & MENDELSON, H. (2004) Pricing and Priority Auctions in Queueing Systems

with a Generalized Delay Cost Structure. Management Science, 50, 869-882.

ALLEN CONSULTING GROUP, (2007) Saying goodbye to permanent water restrictions in

Australia�s cities: key priorities for achieving water security.

BOGOTAD.C. (2009) Pico y placa 2009 - 2010. Retrieved October 19, 2009 from http://www.bogota-

dc.com/trans/bog-tra.htm

BLAMEY, R., GORDON, J. & CHAPMAN, R. (1999) Choice modelling: assessing the envi-

ronmental values of water supply options. Australian Journal of Agricultural & Resource

Economics, 43, 337.

BRENNAN, D., TAPSUWAN, S. & INGRAM, G. (2007) The welfare costs of outdoor water

restrictions. Australian Journal of Agricultural and Resource Economics, 51, 243-61.

CLARKE, E. H. (1971) Multipart pricing of public goods. Public Choice, 11, 17-33.

COLOMBIA REPORTS (2009) Unrest in Bogotá over "pico y placa". Retrieved October 19,

3009 from http://www.colombiareports.com/colombia-news/news/2958-unrest-in-bogota-over-

pico-y-placa.html

GRAFTON, R., QUENTIN &WARD, M. B. (2008) Prices versus rationing: Marshallian surplus

and mandatory water restrictions. Economic Record, 84, 57-65.

32



GRIFFIN, R. C. & MJELDE, J. W. (2000) VALUINGWATER SUPPLY RELIABILITY. Amer-

ican Journal of Agricultural Economics, 82, 414.

GROVES, T. (1973) Incentives in Teams. Econometrica, 41, 617-631.

HENSHER, D., SHORE, N. & TRAIN, K. (2005) Households�Willingness to Pay for Water

Service Attributes. Environmental and Resource Economics, 32, 509-531.

HENSHER, D., SHORE, N. & TRAIN, K. (2006) Water Supply Security and Willingness to

Pay to Avoid Drought Restrictions. Economic Record, 82, 56-66.

HUNG-PO CHAO, S. O., STEPHEN SMITH AND ROBERT WILSON ((1986)) Multilevel

demand subscription Pricing for Electric Power. Energy Economics, 4, 199-217.

KRISHNA, V. (2002) Auction Theory, California, Academic Press.

MCAFEE, R. P. (2002) Coarse Matching. Econometrica, 70, 2025-2034.

MILGROM, P. (2004) Putting Auction Theory to Work, New York, Cambridge University Press.

OREN, S., SMITH, S. & WILSON, R. (1985) Econometrica. Econometrica, 53.

THE PRODUCTIVITY COMMISSION, (2008) Towards Urban Water Reform: A Discussion

Paper. IN COMMISSION, T. P. (Ed.) Melbourne, The Productivity Commission.

SHIMER, R. A. S., LONES (2001) Matching, Search, and Heterogeneity. Advances in Macro-

economics, 1, 5.

VICKREY, W. (1961) Counterspeculation, Auctions and Competitive Sealed Tenders. Journal

of Finance, 16, 8-37.

VICTORIAN GOVERNMENT, (2003) Securing Our Water Future. IN ENVIRONMENT, D.

O. S. A. (Ed.) Melbourne.

33



VICTORIAN GOVERNMENT, (2007) Our water, our future: the next stage of the government�s

water plan. IN ENVIRONMENT, D. O. S. A.

VICTORIAN WATER INDUSTRY ASSOCIATION INC (2005) Victorian Uniform Drought

Water Restriction Guidelines. IN ENVIRONMENT, D. O. S. A. (Ed.).

WILSON, R. (1989) E¢ cient and Competitive Rationing. Econometrica, 57, 1-40.

34



Appendix

Gauss program for the optimal allocation and VCG prices

new; library pgraph; graphset; rndseed 42; format /rd 10,3; et=hsec;

// Number of individuals and their vector of valuations

N = 10;

vv = {1,1,2,3,5,6,7,10,14,18}; vv = vv*10; vv=rev(vv);

// Poisson supply distribution

U = 12; x = seqa(0,1,U+1); theta = 8;

g = exp(-theta + x.*ln(theta) - lnfact(x));

g = g/sumc(g);

// 1 class

hmax = n;

{EUkmax,pmax} = EUk(hmax,vv);

print; "************************************"; rows(hmax) "classes";

"Umax" EUkmax;

" Class No.indiv. Prob. service";

seqa(1,1,rows(hmax))~hmax~pmax;

// Total maximised utility minus vector of individual utilities

t1 = zeros(n,1); i=1;

for j (1,rows(hmax),1);

for k (1,hmax[j],1);

t1[i] = EUkmax - vv[i]*pmax[j];

i = i + 1;
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endfor;

endfor;

// Re-maximise excluding each individual one at a time

EUiv = zeros(n,1);

for i (1,n,1);

vvi = vv; vvi[i] = 0; vvi = trimr(rev(sortc(vvi,1)),0,0);

{EUiv[i],pmax} = EUk(n,vvi);

endfor;

// Prices, rounded to 10d.p.

price = round((EUiv-t1)*1e10)*1e-10;

print;" Individual Valuation Price";;

seqa(1,1,N)~rev(vv~price);

// 3 classes

EUkmax = 0;

for h1 (1,n-2,1);

for h2 (1,n-h1-1,1);

hv = h1jh2j(n-h1-h2);

{EUh,ph} = EUk(hv,vv);

if EUh > EUkmax; EUkmax = EUh; hmax = hv; pmax=ph; endif;

endfor;

endfor;

print;"************************************"; rows(hmax) "classes";

"Umax" EUkmax;

" Class No.indiv. Prob. service";;
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seqa(1,1,rows(hmax))~hmax~pmax;

// Total maximised utility minus vector of individual utilities

t1 = zeros(n,1); i=1;

for j (1,rows(hmax),1);

for k (1,hmax[j],1);

t1[i] = EUkmax - vv[i]*pmax[j];

i = i + 1;

endfor;

endfor;

// Re-maximise excluding each individual one at a time

EUiv = zeros(n,1);

for i (1,n,1);

vvi = vv; vvi[i] = 0; vvi = rev(sortc(vvi,1));

for h1 (1,n-2,1);

for h2 (1,n-h1-1,1);

hv = h1jh2j(n-h1-h2);

{EUh,ph} = EUk(hv,vvi);

if EUh > EUiv[i]; EUiv[i] = EUh; endif;

endfor;

endfor;

endfor;

// Prices, rounded to 10d.p.

price = round((EUiv-t1)*1e10)*1e-10;

print;" Individual Valuation Price";;

seqa(1,1,N)~rev(vv~price);
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print; "************************************"; "n groups (i.e. perfect)";;

hmax = ones(n,1);

{EUkmax,pmax} = EUk(hmax,vv);

print; rows(hmax) "classes"; "Umax" EUkmax; " Class No.indiv. Prob. service";;

seqa(1,1,rows(hmax))~hmax~pmax;

// Total maximised utility minus vector of individual utilities

t1 = zeros(n,1); i=1;

for j (1,rows(hmax),1);

for k (1,hmax[j],1);

t1[i] = EUkmax - vv[i]*pmax[j];

i = i + 1;

endfor;

endfor;

// Re-maximise excluding each individual one at a time

EUiv = zeros(n,1);

for i (1,n,1);

vvi = vv; vvi[i] = 0; vvi = trimr(rev(sortc(vvi,1)),0,0);

{EUiv[i],pmax} = EUk(ones(n,1),vvi);

endfor;

// Prices, rounded to 10d.p.

price = round((EUiv-t1)*1e10)*1e-10;

print;" Individual Valuation Price";; seqa(1,1,N)~rev(vv~price);

end;

proc 2=EUk(h,vv);
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local p,hh,x,j,EU;

p = zeros(U+1,rows(h)); hh = 0jcumsumc(h);

for x (1,U,1);

for j (1,rows(h),1);

if (x>hh[j]) and (x le hh[j+1]);

p[x+1,j] = (x-hh[j])/h[j];

elseif (x>hh[j]);

p[x+1,j] = 1;

endif;

endfor;

endfor;

p=p�g; EU = 0;

for j (1,rows(h),1);

EU = EU + p[j]*sumc(vv[hh[j]+1:hh[j+1]]);

endfor;

retp(EU,p);

endp;
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