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An Improved Method for Calibrating

Purchase Intentions in Stated Preference

Demand Models

Stephen Davies and John Loomis

The Orbit demand model allows the magnitude of the calibration to stated purchase intentions
to vary based on the magnitude of the stated quantities. Using an empirical example of stated
trips, we find that the extent of calibration varies substantially with less correction needed at
small stated trips (–25%) but larger corrections at higher quantities of stated visits (–48%).
We extend the Orbit model to calculate consumer surplus per stated trip of $26. Combining
the calibrations in stated trips and value per trip, the Orbit model provides estimates of annual
benefits from 60% to 111% less than the count data model.

Key Words: hypothetical bias, Orbit, ordered probit model, travel cost model, recreation,
stated preference

JEL Classifications: D12, H44, Q26, Q51

Agricultural and applied economists are frequently

asked to estimate the demand for new consumer

goods or services for which no market data exist.

For example, in response to changing consumer

preferences, firms desire new information on the

demand for nontraditionally raised meat (Fox

et al., 1998), ecolabeled products (Loureiro,

McCluskey, and Mittelhammer, 2003), new

wood products (Donovan and Nicholls, 2003),

and new forms of public transit such as light rail

(Louviere, 1988). Other times, firms or policy-

makers wish to know how consumers will react

to new, higher prices that are outside the current

range such as when large price, tax, or fee in-

creases are planned. For example, industry and

governments may want to know how the mag-

nitude of cigarette sales and related tax revenues

would change with enactment of large increases

in the federal and state excise taxes on cigarettes.

Typically, agricultural economists answer

this challenge by using surveys that ask about

the various margins of consumer decisions.

These surveys include: 1) discrete purchase

intentions regarding whether to buy a new prod-

uct or not (Louviere, Hensher, and Swait, 2000);

2) intended purchase quantities in the face of

price changes (Englin and Cameron, 1996) or

quality variation (Ward, 1987); or 3) willingness

to pay for various price and quality attributes

(Carson et al., 1996). This type of data has be-

come known as ‘‘stated preference’’ data to con-

trast it with traditional economic data based on

actual market purchases, i.e., ‘‘revealed prefer-

ence’’ data.

The first concern that arises in using the

stated preference data is the issue of validity:

Just how accurate are these expressions of

intended purchases? Although hypothetical
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bias is not as rampant as was originally sup-

posed, there is mixed evidence on this point.

Some research (Carlsson and Martinsson,

2001; Grivalva et al., 2002; Whitehead, 2005)

shows good correspondence between stated

preference (SP) and actual behavior. Grivalva

et al. analysis is similar to our analysis be-

cause it deals with intended behavior of vis-

itors. She finds that actual visitation behavior

after closure of one of the rocking climbing

site matches intended behavior elicited be-

fore the closure. One older analysis shows

that not only is there no statistical difference

between revealed and stated preference, but

that stated preference estimates of willingness-

to-pay (WTP) are slightly less than revealed

preference (RP) estimates (Carson et al., 1996).

However, other individual studies show signifi-

cant differences (Azevedo, Herriges, and Kling,

2003; Bishop, Heberlein, and Kealy, 1983;

Loomis, Gonzalez-Caban, and Englin, 2001;

Whitehead et al., 2008) and so do meta-analyses

on hypothetical bias by Murphy et al. (2005).

However, as Murphy et al. note: ‘‘Despite an

abundance of studies, there is no consensus about

the underlying causes of hypothetical bias. . .’’

One solution to the concern over hypothet-

ical bias is to combine SP data on the proposed

policy with RP data on the existing condition

(Adamowicz, Louviere, and Williams, 1994;

Layman, Boyce, and Criddle, 1996; White-

head, Haab and Huang, 2000). However, this is

not always a panacea, as Azevedo, Herriges,

and Kling (2003, pp. 534–35) note: ‘‘Consis-

tency between RP and SP data is not borne out

by (our) data. . .The problem, of course, is

where do we go from here?’’ Although these

authors offer some general suggestions, they

conclude that ‘‘this research agenda has only

begun. . .’’
We agree with Azevedo, Herriges, and

Kling but offer an alternative approach to the

suggestions given in their article, one of which

is in the spirit of the calibration work of Fox

et al. (1998). In particular, we propose a cali-

bration method that allows the extent of the

adjustment to vary with the magnitude of stated

quantities. This method has advantages over

simplistic calibrations that have been used in

past RP–SP recreation demand studies such as

in Loomis, Gonzalez-Caban, and Englin (2001)

and Whitehead et al. (2008). These prior studies

pooled SP and RP recreation demand data on

the number of trips taken by individuals and

then included an intercept shift dummy for the

SP responses. The coefficient on the SP dummy

variable was positive and statistically signifi-

cant, which indicated that stated quantities

were, ceteris paribus, higher than actual quan-

tities. One simple adjustment used by Whitehead

et al. (2008) to improve predictions from SP

responses was to zero out the SP dummy.

However, this assumes the magnitude of hy-

pothetical bias is the same at every price and

quantity level. Additionally, the coefficients

in the Loomis, Gonzalez-Caban, and Englin

study are weighted averages of the SP and

RP data and therefore are affected by the pro-

portions of RP versus SP data used in the

analysis and the presence of influential outliers

(Belsey, Kuh, and Welsch, 1980). The typical

approaches to estimation of these demand func-

tions also implicitly weight outliers highly, be-

cause negative binomial count data and Poisson

models contain factorial terms that raise the

relative influence of values far from the sam-

ple mean.

When hypothetical bias exists, it usually

results in overstating the expected purchases or

trips (Loomis, Gonzalez-Caban, and Englin,

2001; Whitehead et al., 2008) and thus creates

outliers that can have a significant effect on

estimation results when the usual estimators

are used. A recent meta-analysis of hypotheti-

cal bias by Murphy et al. (2005) found the

mean ratio of hypothetical to actual WTP was

2.6. Although some studies cited find no hy-

pothetical bias, a review of the studies used in

Murphy et al.’s meta-analysis suggests some

degree of overstatement is present in many of

the studies. However, Murphy et al. note that

no comprehensive theory of hypothetical bias

has been developed. One of the more plausi-

ble explanations of hypothetical bias is that

of preference uncertainty (Akter, Bennet, and

Akhter, 2008; Champ et al., 1997). This ex-

planation suggests that respondents state their

best, but uncertain, intentions in the hypothet-

ical scenario. However, in the real scenario,

they act more conservatively because real
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money is involved and the opportunity costs of

spending this money on the good looms larger.

Our view is that individuals report their plan-

ned number of trips and then their or family

members health issues, adverse weather, or

other uncontrollable events result in fewer trips

actually being taken.

This article offers an improved solution that

allows the magnitude of the calibration cor-

rection to vary directly with the magnitude of

the stated quantities so that it differentially

corrects for overreporting. The Orbit procedure

of Klein and Sherman (1997) contains elements

of two popular techniques, the two-limit Tobit

model and the ordered probit model. As such,

it represents a unique (but somewhat compli-

cated) merger of estimation approaches used

with ordinal and cardinal data. Our main task in

this article is to present the Orbit procedure,

show its links to these other procedures, and

discuss its advantages. We argue that it sys-

tematically corrects for overreporting resulting

from hypothetical bias, and it is an estimator

that is not sensitive to outliers. In addition, we

give an empirical illustration of the model us-

ing travel cost data from three national forests

in Colorado and compare the Orbit results with

a generalized count data model that is fre-

quently used (Hellerstein, 1991). Finally, we

extend the original work of Klein and Sherman

by developing the consumer surplus estimates

from the Orbit model and then compare these

results with those estimated from a negative

binomial count data model.

Modeling Approaches

Limited dependent and qualitative response

models are often presented together because

they contain a number of similar characteristics

(Madalla, 1983). First, although there is con-

siderable diversity in the types of data used, a

central similarity is that these models are based

on qualitative dependent variables with discrete

data (in the case of dichotomous choice models)

or the range of cardinal data used is limited as

in the case of censored or truncated models.

Moreover, each range, or discrete response, is

attached to a specific probability of occurrence.

Thus, a second commonality is that these models

are estimated from a likelihood function based

on the joint probabilities of occurrence of each

category or range of data.

A third similarity is that the models are of-

ten developed with respect to a latent variable

relationship so that observed data are thought

to be a proxy for the true variable. The Orbit

procedure proposed by Klein and Sherman is

a unique merger of a number of these models

and data types. To set up the discussion of

the Orbit estimator, we first present the likeli-

hood functions of the two related estimators,

the two-limit Tobit model and the Ordered

Probit model. We then present the Orbit model

itself and compare it with these two previous

models.

Related Models and Data Characteristics

The data used in qualitative response models

are usually based on dichotomous or poly-

chotomous variables with the former leading

to well-known logit and probit models and the

latter further separated into models for unor-

dered and ordered variables such as multinomial

versus ordered probit models. Multinomial models

are based on discrete data that is unordered such

as employment categories (where 1 5 blue

collar, 2 5 professional, etc.). However, our

interest is with data that are ordered and ordinal

(and cardinal from selected vantage points).

Respondents to a survey might have three levels

of education: 1 5 less than high school; 2 5

high school; and 3 5 college education. The

data are ordered in terms of increasing educa-

tion, so 1 is logically less than 3, but the distance

between the first value and third value has no

intrinsic interpretation (versus, say, years of

education), so the data are ordinal. Many sur-

veys also provide results from questions based

on a Likert scale, which requires the use of some

kind of ordered response model. Fully cardinal

data, of course, would be seen in a series such as

the number of trips taken by a hiker to some

destination (the case in our example), in which

the data are ordered and distances between

values are meaningful. These data also can be

discrete or continuous.

Given these data types, two approaches are

often developed, and their likelihood functions

Davies and Loomis: Calibrating Stated Preference Demand 681



are constructed by attaching probabilities to

each category or range implied in the data. The

dependent variable in an ordered probit model

might consist of m responses that are ordered

but based on ordinal data, in which each has

a unique probability of occurring so that

P1,P2, . . . ., Pm would represent the proba-

bilities of the m categories. Suppose that yi 5

B9xi 1 ui, where yi is an ordered dependent

variable and ui is a random variable with zero

mean and variance s. A particular individual

will fall into category 1 if ui < B9xi, in category

2 if B9xi < ui < B9xi 1 c, and in category 3 if

ui > B9xi 1 c. In essence, the fitted line y 5 B9x

defines the break between categories 1 and 2,

and the addition of the constant c separates the

latter two categories.

(1)

Log Lðb,s,a j y,xÞ5 y 5 1f g log F
a1 � x9b

s

� �

1 y 5 2f g log F
a2 � x9b

s

� �
�F

a1 � x9b
s

� �� �

1 y 5 3f g log 1�F
a2 � x9b

s

� �� �

For this structure, with three response cate-

gories, the probabilities are defined as P1 5

F(B9x), P2 5 F(B9x 1 c)-F(B9x), and P3 5 1-

F(B9x 1 c), which sum to 1 and thus cover the

full event space. The F(.) is the cumulative

probability function, whereas the resulting log

of the likelihood function (LLF) is shown in

Equation (1). There are three partitions in that

equation, one for each response, where F(.) is

the appropriate CDF. We present the LLF for

this model in Equation (1) with just three values

to facilitate the comparison with the Orbit model,

but an extension to more categories is straight-

forward and is referred to in the later discussion

of possible extensions of the model.1

To estimate an ordered probit model, it is

conventional to have s 5 1 and estimate values

for b and ai. The ai are individual intercepts

for the various categories and are not usually

examined. Indeed, if there are three categories,

then a1 can be set to zero so that just one value

needs to be estimated, an estimate of the value

for c in the previous probability statement.

If the data for the dependent variable are

discrete but cardinal, like in the case of the

number of trips taken or the number of hypo-

thetical purchases of a new product, then count

data models such as the Poisson or negative

binomial are usually used. The latter is more

prevalent because the restriction that the vari-

ance equals the mean is not required (Creel and

Loomis, 1990). The LLF in these models has

a factorial included, and thus the problem of an

accelerating influence of outliers from biased

survey responses is still a potential problem.

If the data are cardinal and continuous but cen-

sored, a Tobit model is often used. In this case,

the model is developed based on the relation-

ship, yi* 5 B9xi 1 ui, where yi* is a latent vari-

able that is only observed within certain ranges.

Thus, upper and lower limits, L1 and L2, exist, as

Yi 5 L1 if yi * £ L1,

Yi 5 yi * if

L1 < yi * < L2,

and Yi 5 L2 if yi *5 > L2.

The probability space is constructed as follows:

P(yi 5 L1) 5 P(yi* £ L1) 5 F([L1 2 B9x]/s) for

observations lying below the lower limit. Then,

P(L1 < yi* < L2) 5 1/s*f ([yi 2 B9xi]/s), where

f(.) is the normal density function and F(.) is

the normal CDF as before. Finally, the proba-

bility of yi* exceeding the upper limit is given

as P(yi 5 L2) 5 P(yi* 5 > L2) 5 1 2 F([L2 2

B9x]/s). The resulting LLF is:

(2)

Log Lðb,s j y, x, L1, L2Þ5 y 5 L1f g

� log F
L1 � x9b

s

� �
1 y 5 y*f g

� log
1

s
F

y� x9b
s

� �� �

1 y 5 L2f g log 1�F
L2 � x9b

s

� �� �

These first and third partitions are similar to the

ordered probit LLF, but the middle term is

1 An interesting parallel approach to our Orbit
correction analysis suggested by a reviewer would be
to use a cheap talk script before asking the stated
number of trips at the new higher price. This would
draw on the approach pioneered by Cummings and
Taylor (1999) in CVM to combat hypothetical bias and
potentially provide an ex ante means of calibration of
the stated trips. An avenue for future research would be
to compare how well the cheap talk design does at
reducing hypothetical bias relative to the Orbit model
ex post calibration.
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based on a continuous variable drawn from

a normal distribution. A second difference is

that the values for the limits are not usually

estimated in the Tobit model, whereas in the

ordered probit, the breaks between partitions

are determined endogenously in the estimation.

The lower limit is usually set to zero, and the

limits for L2 are often evident from the data

construction such as when a respondent is asked

to report whether their income is $100,000 or

above.

The estimation of this model by MLE is

now standard in most software packages along

with functions that permit s to vary by obser-

vation to account for heteroscedasticity.

It should be clear from this discussion that

the two models reviewed here are similar in

several important respects but are based on

different data types. In the next section, the

Orbit model is introduced and compared with

the other approaches reported here.

The Orbit Approach

Klein and Sherman (1997) proposed an im-

proved estimator to correct, or adjust, SP re-

sponses derived from questions about quantity

demanded. Importantly, that new estimator al-

lows the magnitude of the correction to vary

with conditionals such as the price level. They

call their approach the ‘‘Orbit’’ because it uses

elements from both ordered probit and Tobit

models and because its main purpose is to keep

estimated quantities based on SP responses

from going off into space (Orbit!) by correcting

for hypothetical bias.

The Orbit approach first estimates co-

efficients for slopes and variances conditional

on safety points like the L1 and L2 limits in

Equation (2). These safety points, or ‘‘trusted’’

quantities, partition the data into three groups

(those equal to zero, greater than zero but less

than a second safety point, and finally, those

greater than the safety point). Based on the

estimated demand coefficients, a correction is

made for selected, representative quantities

demanded in the second stage. This second step

is essentially a forecasting exercise. The Orbit

model seems to have been overlooked by ag-

ricultural economists despite its main purpose

of estimating new product demand from survey

data.

Our article extends the original Orbit pro-

cedure of Klein and Sherman by:

1. In the second stage, applying the correction

to reported intended purchase quantities at hypo-

thetically higher prices;

2. Incorporating a correction for heteroscedasticity

into the estimated first stage;

3. Adapting a method that allows calculation of

WTP for Orbit model estimates of corrected quan-

tities; and

4. Conducting a simple internal validity test by

comparing the Orbit’s estimate of trips at the

original travel cost to the actual trips taken at this

original travel cost.

The Orbit procedure is a two-step estimation

of the following likelihood function, which is

constructed in a manner similar to the earlier

ordered probit and Tobit models:

(3)

f tðz,l,uÞ5 fQ 5 0g log F ð½�x9B�=sÞ
1 f0 < Q £ tg log ½Fð½l� x9B�=sÞ�
�F ð½�x9B�=sÞ�fQ > tg
� log ½1�Fð½l� x9B�=s�

The likelihood function sums three segments

together that contain portions of the total data

based on ranges of quantities a consumer states

he or she would purchase (Q). The first segment

includes observations where Q 5 0 or when

respondents state they would not buy the good

in question at all; the second partition includes

observations where Q > 0 but less than t, where

t is a second threshold, or safety point, of known

demand. F is a standard normal cumulative

distribution function, the x’s are independent

variables, the B’s are slope parameters to be

estimated, and s is the variance. The third

partition contains all observations from re-

spondents who indicated they would buy

quantities greater than t. In the first stage of

the estimation, t is equated with s, which is the

same as the second safety point, but t takes on

a different role in the second-stage estimation.

Inspection of this LLF suggests that the Orbit

elements are taken from both of the previous

models. The ranges of the three partitions are

similar to the construction of a Tobit model,

because the middle partition captures a range of

Davies and Loomis: Calibrating Stated Preference Demand 683



data that is cardinal (albeit in the examples,

discrete) rather than being a statement of the

probabilities of a series of ordered but ordinal

observations. Additionally, the safety points are

fixed rather than being estimated, like in the

Tobit model. On the other hand, the middle

partition is related to a fixed parameter (l)

rather than a range of possibly continuous data,

which is more suggestive of the ordered probit

LLF.

The first stage of the Orbit demand esti-

mator uses the safety points to help ‘‘anchor’’

the estimation of the demand coefficients by

making sure that the estimates of B and s are

consistent with the two known values (0 and

the second safety point, s). To implement the

first stage, l and t are set to the predetermined

safety point, s, and the B and s are estimated

by MLE using the likelihood function in

Equation (3). Like with all models reviewed

here, the data are effectively sorted into three

categories. The first category in the Orbit pro-

cedure treats respondents who indicate they

would not buy any of the good (or take any

trips) at the new higher prices as true zeros.

This first partition, where Q 5 0, is treated as

the first safety point. Zero is a logical safety

point because the typical concern with SP data

are one of overstatement (Murphy et al., 2005).

The second partition uses observations between

zero and the next safety point or when Q takes

on values between 0 and t. Klein and Sherman

(1997) use the median of their data as the

second safety point, whereas we use the mean

for the value of s. This choice of the second

safety point can be subject to a sensitivity

analysis, and we report such an analysis later in

the article to show the robustness of our results

over a reasonable range of safety points. Fi-

nally, the third partition in the Orbit is for

reported quantities above this second safety

point (where Q > t).

The second stage of the Orbit analysis in-

volves changing the value of t to differ from s

so that the data are sorted into two newly de-

fined upper partitions for the second-stage

analysis. For example, by raising t above s, e.g.,

t* 5 s 1 1, the data going into each partition

change in the upper two segments of the like-

lihood function. Thus, more observations are

now in the second, as opposed to the third

partition, because the new t* dictates that pur-

chases need to be higher by one to be in the

third partition. The objective of the second

stage is to estimate l, conditional on the new t*,

with the data regrouped and with b and s fixed

from step one. This estimated value of l is then

used as the unbiased and adjusted quantity of

purchases or trips. The process is repeated for

each reported quantity to be calibrated. (If t* 5

s, the estimated value of l will be the same as

the fixed value from the first stage.)

The second stage appears to be more in

common with the Tobit model and can best be

seen as a forecasting exercise. Because the new

l creates a value for the number of trips, it

therefore is equivalent to forecasting the de-

pendent variable. Although the numbers of

trips are cardinal but discrete, as t becomes

large, the number of possible values that could

be forecasted grows, and the possible values,

taken in aggregate across the simulations, be-

gins to reflect the proportion of the sample in

the middle partition shown in Equation (2). As t

is increased, the number of observations in each

partition changes, and hence even with the

same likelihood function, the estimate of l
varies with each value of t. Klein and Sherman

make mention to the Tobit model in their pre-

sentation of the Orbit approach. The two stages

together show a clear merger of the two types

of models into a unique approach.

One advantage of the Tobit and ordered

probit models in the face of potential hypothet-

ical bias is that previous stated quantities above

the second safety point are treated as ordinal

and have less influence on the coefficient esti-

mates in the first stage than they would in an

Ordinary Least Squares (OLS)-based estimator.

In the count data estimator, in which the stated

quantities enter as a factorial, higher stated

quantities have a strong nonlinear effect on the

estimator. Thus, the third partition of the Orbit

model helps to minimize the influence that

these optimistically stated quantities (e.g., ‘‘this

is the number of trips I would like or ex ante I

plan to take at these prices’’) have on the de-

mand estimates. It should be noted, however, in

the second-stage forecast of the corrected trips

that the third or upper partition is weighted less
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and less as one forecasts higher and higher

stated trips. This occurs because when one

wants to forecast say the corrected number of

trips when the respondent stated five trips, the

five trips is now used as the cutoff between

the second and third partition rather than the

original lower safety point between the second

and third partitions. The data set then gets

resorted at this new higher cutoff between the

second and third partitions. As a result, more of

the data now lie in the second partition, rather

than the third, and as such, data in the third

(upper) has less influence on the forecasted

stated trips.

We additionally correct for heteroscedasticity

by replacing Klein and Sherman’s constant s
with si, which can potentially vary by observa-

tion. Of course, insufficient degrees of freedom

exist to estimate a unique si, for each observa-

tion, so si, is replaced by a function of variables

thought to cause the changing variance. Thus,

si 5 �a Zi, where Zi is a set of variables that may

or may not be in the demand specification itself.

The a is a vector of coefficients that are esti-

mated along with the other parameters in the

Orbit model so that the number of extra esti-

mates is reduced to just the number of variables

in Zi rather than one for each observation. The Zi

usually include a constant term so that a test for

the presence of heteroscedasticity can be done

by a likelihood ratio test asking whether all

slope variables equal zero. This approach is

essentially a Breusch-Pagan correction for het-

eroscedasticity, which has been used in other

relatively elaborate likelihood functions such as

accounting for heteroscedasticity in stochastic

frontier likelihood functions (Caudill, Ford, and

Gropper, 1995).

Asymptotic Properties of the Orbit Estimator

Klein and Sherman demonstrate the asymptotic

properties of the Orbit model in the sixth sec-

tion of their article. After noting several stan-

dard distributional assumptions, they present

the asymptotic distributions for the parameters

of the Orbit model given in Equation (3).

The estimates of the key parameters in the

first stage are asymptotically normal with the

following distribution:

(4)
ffiffiffi
n
p

ûðsÞ � u0� 0 N 0,� Hsðu0Þ½ ��1
� �h

where n is the number of observations, ûðsÞ is

the vector of parameter estimates made in the

first stage, and uo is the true but unknown

vector of parameters (the b and s values in

Equation [3]). The asymptotic covariance ma-

trix, [Hs(uo)]21 is a (k 1 1)� (k 1 1) inverse of

the Hessian matrix of second derivatives with

respect to each parameter in the Orbit LLF.

Therefore, the estimators of the parameters in

the LLF in Equation (3) provide unbiased es-

timates of the true, underlying parameters.

Of most interest are estimators for the

values of l, which are only estimated in the

second stage of the Orbit procedure. The Klein

and Sherman estimator is called L̂ðt;sÞ, which

is a vector of l values, where each estimate of l
is forecasted by changing the value of t so that

observations are sorted into different partitions

(or probability ranges) of the model, as we

mentioned. Re-estimation of the model yields

an individual l associated with each t. The s

refers to the fact that each l is estimated con-

ditional on the estimation of the b and s values

from the first stage.

Again, assuming standard distributional as-

sumptions, the estimates are asymptotically

normal with the following distribution:

(5)
ffiffiffi
n
p

L̂ðt;sÞ � LðtÞ
h i

0 Nð0,VtðLðtÞ,u0;sÞÞ

where L(t) is the true but unknown vector of l
with t varied across relevant values to sort the

data into the three probability ranges shown in

the LLF. The other parts of the equation have

been defined earlier. The covariance matrix,

Vt(L(t),u0;s), is a function of both true but un-

known parameters u0 and l and contains a series

of matrices that include various first and second

derivatives of the Orbit LLF in Equation (3).

Moreover, the covariance matrix includes an ad-

justment factor to reflect the fact that the estimates

of each l are based on estimates of u0, not the true

values (see Klein and Sherman, 1997, p. 72).

In the next section, we illustrate how the

Orbit procedure can be used to calibrate or

adjust stated visitor trip responses at hypo-

thetically higher travel costs. Oftentimes, re-

spondents are asked about these hypothetically
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higher travel costs in a survey to address a

policy issue such as proposed increases in en-

trance fees (i.e., the Federal Fee Demonstration

program). This application shares many simi-

larities to a wide range of issues faced by agri-

cultural economists, including asking consumers

purchase intentions regarding new variations in

agricultural products (e.g., organic products),

whether consumers would pay more for envi-

ronmentally friendly products, or asking farmers

the number of times they would attend co-

operative extension presentations if a fee was

charged. We compare estimated trip quantities

and consumer surplus from the Orbit model with

a standard econometric model of demand, the

generalized count data model (i.e., the negative

binomial model).

Empirical Specification of the Travel Cost

Demand Model

Our application involves the valuation of hiking

in national forests using the hiker’s stated trip

quantities collected in response to hypotheti-

cally higher travel costs. We use the Travel

Cost Model (TCM) as the modeling frame-

work. TCM have are used extensively to value

outdoor recreation not only nationwide, but

also in the south (Arcarya, Hatch, and Clonts,

2003; Bowker, English, and Donovan, 1996;

Casey, Vukina, and Danielson, 1995) and to

value hiking in particular (Arcarya, Hatch, and

Clonts, 2003; Casey, Vukina, and Danielson,

1995; Loomis, Gonzalez-Caban, and Englin,

2001). This model is commonly used to esti-

mate the recreation demand function with only

RP data or combined RP and SP data (Englin

and Cameron, 1996; Loomis, Gonzalez-Caban,

and Englin, 2001). This method’s primary as-

sumption is that even when there is no current

entry fee to a public recreation site, recrea-

tionists pay an ‘‘implicit price’’ for the site’s

attributes, or services, when they incur travel

costs to visit the site. The implicit price in-

cludes vehicle-related costs, which are pri-

marily gasoline costs. To better understand how

visitors would respond to fee increases, we

included a scenario with hypothetical increases

in trip costs. The hiker’s intended trip responses

to these hypothetical price increments yield the

stated number of annual trips, which becomes

the content of our SP data.

The basic form of the travel cost method

demand function is:

(6)
Annual Tripsij 5 fðGascostij, Agei, Incomei,

Elevationj, LodgepolejÞ

Annual Tripsij is the stated or intended

number of trips at the higher cost by individual

i to site j.

Gascostsij are the gasoline costs (i.e., vari-

able costs) of a trip by individual (i) to site (j).

(These costs include the respondents reported

gas cost plus the hypothetical increase.)

Age and Income are the visitor’s age and

income, respectively.

Elevation is the feet above sea level of the

recreation site, which is added to the model to

reflect a variety of amenities associated with

high elevation sites during the summer recrea-

tion season (e.g., cooler, views).

Lodgepole represents lodgepole pine forests,

which is a dummy variable taking on the value of

one if this is the dominant forest type at site j.

Overall Study Design

Visitors to three national forests in Colorado

were interviewed over the course of the sum-

mer of 1998, in which the three sites included

the Arapaho-Roosevelt, Gunnison-Uncompaghre,

and Pike-San Isabel National Forests. We sampled

over 35 days during the main summer recreation

season at a total of 10 sites in the three national

forests. This schedule generally allowed one

sampling rotation of 2 days (1 weekday and

1 weekend day) at nearly all recreation sites

during July and August. The interviewer gave

a survey packet to all individuals in a group who

were 16 years of age or older. The interviewer

indicated that the survey could be completed at

home and returned in a postage-paid return en-

velope enclosed in the packet.

Survey Structure

First, visitors were asked about their travel

costs for the current trip. Then, individuals
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were asked about their annual number of trips

to the site that year. Finally, to assess how

sensitive the quantity of trips were to an addi-

tion of a new entrance fee, we asked how trips

would change if trip costs increased. The

wording of the intended behavior question was:

‘‘The cost of recreation changes with gas pri-

ces, equipment costs, etc. If the cost of visiting

this site had been $X per trip higher tell us how

many trips you would take. . .?’’

As can be seen, this is a typical contingent

behavior, or intended visitation question. The

hypothetical increases in trip costs were $3, $7,

$9, $12, $15, $19, $25, $30, $35, $40, and $70

to elicit how trips to their current site would

change if travel costs (or entrance fees) in-

creased. The increments were randomly assigned

to each respondent so that hypothetically higher

costs faced by visitors could be very high even

when the current trip had a very low actual cost.

These intended trip responses yield the SP data

used in this study, whereas the raw RP data are

not used in the actual estimation of the co-

efficients in Orbit model.

The surveys were pretested at two of the

national forests. Individuals were asked to fill

out the survey and provide any comments or

feedback, and minor revisions to the final sur-

vey were made accordingly. In the adminis-

tration of the survey, there were only 14 re-

fusals out of 541 contacts made and a total of

527 surveys handed out. Of these surveys dis-

tributed, 354 were returned after the reminder

postcard and second mailing to nonrespondents

for an overall response rate of 67 percent. Table

1 shows the descriptive statistics for the stated

preference data used in the regression analysis.

The revealed preference data on the number

of trips taken were only used to determine the

second safety point in the first-stage estimation.

On average, respondents actually took 2.78 trips

per year during 1998. The average age of the

respondents was 37 years old, and average in-

come was $64,760. Approximately 20% of the

hikes were taken in areas with lodgepole pine,

which are often so thick as to block much of the

view of scenery and crowd out any wildflowers.

The stated preference data used to estimate

the Orbit model shows the average gas cost of

close to $23 per person so that the travel cost is

tripled in the hypothetical data compared with

the actual revealed preference data. This in-

crease in cost has a fairly sizable impact on the

number of trips taken; as the mean number of

trips drops from 2.78 to 1.66, a decrease of 1.12

trips resulting from higher trip costs, or by

59.7% at the new travel cost of $23. Thus, the

direction of quantity responses in the stated

preference data reflect a negative own price

effect as expected from economic theory. How-

ever, the question remains whether the amount

of reduction in trips with the higher cost in the

stated preference data are correct. To answer this

question, we turn to the results of the Orbit model

estimated using just the stated preference data.

Estimation Results

Like Klein and Sherman, we use zero stated

trips as the first known safety point. Although

Klein and Sherman used the median of their

stated trips for the second safety point, we use

the mean of the actual trips (2.78) as the second

safety point, because in our case, we have these

data. However, no revealed preference data are

actually needed for the second safety point. We

discuss in a later section entitled ‘‘Sensitivity

Analysis’’ that our Orbit estimates are similar

over a wide range of values of the second safety

points, e.g., four trips, five trips, and six trips.

Table 1. Descriptive Statistics of the Stated Preference Data

Variable Units Mean Standard Deviation Minimum Maximum

Stated Antrips Number 1.66 3.14 0 13

Gascost $(1998) 22.69 15.39 2 55

Age Years 37.11 11.49 19 73

Elevation Thousand feet 7.22 1.50 5.4 9.4

Lodgepole Yes 5 1, No 5 0 0.21 0.41 0 1

Income Thousand $ 64.76 43.10 5 175
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In this section we also compare our results from

the Orbit approach with results from a com-

monly used count data model. The first stage of

the Orbit model was estimated with and with-

out the heteroscedasticity function correction

with the results shown in Table 2A. The signs

on the variables are as expected with Gascost

(our travel cost variable) being negative and

significant in both Orbit models. Age is nega-

tive and significant in both Orbit models,

whereas Income is positive and significant in

both Orbit regressions. Elevation is positive,

because for summer recreation, higher elevations

are cooler but the coefficient is not significant in

either Orbit model. In the Orbit heteroscedasticity

correction function, the reciprocal of Age and

Gascost was highly significant.

For comparison with the Orbit model, Table

2B presents the travel cost model on stated quan-

tities of trips based on the typical approach, the

negative binomial count data model (Hellerstein,

1991). Price is also negative and statistically sig-

nificant in this model as well, although only the

age shift variable is significant in the count data

estimation.

Orbit Second-Stage Estimation of the Calibrated

Stated Preference Quantities (l)

In the second stage, the estimated coefficients

from the first stage are fixed and l is re-estimated

at each increased price level for selected stated

quantities of trips. In our analysis, each estimated

l is statistically significant at the 1% level. Table

3 illustrates the estimation of l for stated quan-

tity equal to 4. In this second-stage estimation,

a stated quantity of four trips is corrected to 3.26

trips. From Table 3 it is evident that all slope

parameters have been fixed at values from the

original stage one regression, and the separate

coefficient l is the sole parameter estimated at

each stated quantity. The different estimates of l
reflect the fact that as stated trips rise (t), the

proportion of the sampling going into the second

partition increases, and there is a corresponding

drop in the proportion of the sample in the third

partition. Because the number of observations

in each partition changes with a changing t, this

yields a different forecast of l for each stated

trip (t).

Table 4 reports each estimated l for other

stated quantities along with their corresponding

Table 2A. First-Stage Orbit Estimates with and without Correction for Heteroscedasticity for
Stated Annual Trips at Higher Gas Cost

With Heteroscedasticity Correction Without Heteroscedasticity Correction

Variable Coefficient t-Statistic Probability Coefficient t-Statistic Probability

B1 (Constant) 1.604 1.082 0.279 1.549 1.006 0.315

B2 (Gas Costij) –0.068 –3.217 0.001 –0.046 –3.007 0.003

B3 (Agei) –0.046 –1.910 0.056 –0.049 –2.306 0.021

B4 (Incomei) 0.010 1.957 0.050 0.012 2.018 0.044

B5 (LodgePolej) –1.191 –1.829 0.068 –0.547 –0.721 0.471

B6 (Elevationj) 0.205 1.094 0.274 0.147 0.716 0.474

Heteroscedastic Function

Z1 (Constant) –2.013 –1.643 0.101

Z2 (1/Age) 123.95 2.675 0.008

Z3 (Gas Cost) 0.053 2.401 0.016

Table 2B. Negative Binomial Count Data Re-
gression Results for Stated Annual Trips at
Higher Gas Costs

Negative Binomial

Variable Coefficient t-Statistic Probability

B1 (Constant) 1.167 1.323 0.186

B2 (Gas Costij) –0.031 –3.563 0.000

B3 (Agei) –0.025 –1.957 0.050

B4 (Incomei) 0.003 0.842 0.400

B5 (LodgePolej) –0.205 –0.492 0.623

B6 (Elevationj) 0.094 0.775 0.438

Overdispersion 1.448 4.217 0.000
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t-statistics and the difference between stated

and corrected trips. The table makes clear that

the Orbit correction procedure results in sub-

stantial correction to stated trips when stated

trips are three or more times larger than the mean

stated trips. Note that in contrast with simply

using a SP dummy variable, which would imply

the same magnitude of correction at all levels of

stated trips, the size of the correction gets larger

as the number of stated trips grows larger.

In particular, at reported quantities 3.5 times

the mean stated trips, the correction is 25%,

whereas at six times the mean number of stated

trips, the adjustment is 48%. The differential cal-

ibration is likely to be important when attempting

to provide a valid estimate of the quantity of ex-

isting products that might be purchased at higher

prices (e.g., extension presentations attended) or

quantity demanded of new products.

Consumer Surplus Comparisons

Besides estimating the quantity demanded of

new products, estimating the economic bene-

fits associated with the introduction of new

products is often part of economists’ benefit–

cost calculations. Therefore, we calculate the

net WTP (consumer surplus) per trip from the

Orbit empirical demand models in Table 2A.

Then we compare these Orbit estimates of con-

sumer surplus with those calculated from the

negative binomial count data model in Table 2B.

The consumer surplus per trip from the negative

binomial count data model has a convenient

form of 1/2BGasCost. Thus, the consumer sur-

plus is directly derived from the Gascost co-

efficient in Table 2B as $32 per trip with a 90%

confidence interval of $22–60 per trip.

The first stage of the Orbit model is quite

similar to the ordered probit model in its

structure and estimation. As Roe, Boyle, and

Teisl (1996) state, the binary logit is just

a special case of the ordered probit model,

in which there are just two categories in the

former rather than n categories in the latter.

Stevens et al. (2000) note in their comparison

of welfare estimates of conjoint and contingent

valuation, WTP is derived from an ordered

model by increasing the dollar amount until the

point of indifference or until the individual is at

Table 3. Example of Estimation of l (Corrected Trips) in the Second Stage at Stated Trips 5 4

Variable Coefficient Standard Error t-Statistic Probability

B1 (Constant) 1.549 (Fixed parameter from first stage)

B2 (Gas Cost) –.046 (Fixed parameter from first stage)

B3 (Age) –.049 (Fixed parameter from first stage)

B4 (Income) .012 (Fixed parameter from first stage)

B5 (LodgePole) –.547 (Fixed parameter from first stage)

B6 (Elevation) .147 (Fixed parameter from first stage)

l 3.26 .308 10.58 .0000

Table 4A. Stated Trips (SP) and Corrected Number of Trips (l) from the Second-Stage Orbit
Model without Heteroskedasticity Correction at Higher Gas Costs

Stated Trips

Corrected Trips

(l)

Corrected Trips

t-Statistic

Corrected Trips

P Value

Difference in

Trips

1 1.55 6.6 0.0 –0.55

1.66 1.66 7.5 0.0 0.00

3 2.87 10.2 0.0 0.13

4 3.26 10.6 0.0 0.74

6 4.48 10.7 0.0 1.52

8 4.61 10.8 0.0 3.39

10 5.21 10.5 0.0 4.79

12 5.50 10.2 0.0 6.50
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the interval boundary. This is the definition of

WTP as well with a binary model as well.

Therefore, we adopt the WTP expression for

the probit model from Hanemann (1984) to

calculate mean WTP. Following Loomis (1997),

who estimated a probit model by pooling re-

vealed preference trip information at the current

travel costs with intended visitation behavior

at a hypothetical increased travel cost, we in-

terpret the hypothetical increased travel cost

in the Orbit model as the bid variable because

we are only using the SP data. Therefore, mean

WTP is:

(7)
Mean WTP 5 ½bo 1 b2ðXm2Þ 1 b3ðXm3Þ

1 b4ðXm4Þ 1 b5ðXm5Þ�=ð�b1Þ

where Xmn is the mean of the nonprice vari-

ables; and n 5 2, 3, 4, and 5 corresponding to

Age, Income, LodgePole, and Recreation Site

Elevation variables, respectively. B1 is the co-

efficient on the hypothetical increase in gas

cost. Applying the respective formulas to cal-

culate mean WTP using the Orbit model (with

and without correcting for heteroscedasticity)

yields per-trip estimates of $26.10 and $21.39,

respectively. The consumer surplus for the

count data model is $32 per trip. The per-trip

WTP differences between the Negative Bi-

nomial and the Orbit with correction for het-

eroscedasticity is at 23% and 50% for the Orbit

without the adjustment for heteroscedasticity.

However, these substantial differences in av-

erage net WTP per trip between the nega-

tive binomial and the Orbit models are not

statistically different as a result of the wide

confidence interval around the negative bi-

nomial estimate of consumer surplus ($22–60).

The 90% confidence interval overlaps the

mean estimate of the Orbit model heterosce-

dasticity correcting for and is close to the mean

estimate of the Orbit model without correcting

for heteroscedasticity.

Although these differences in per-trip net

WTP are substantial but not significantly dif-

ferent, the primary purpose of the Orbit model

is to correct for overestimation of the number

of stated trips or quantities purchased. To

obtain the full effect of the Orbit correction

involves combining the Orbit net WTP per

trip and the Orbit-corrected number of trips.

Table 5 compares the annual WTP calculated

from the negative count data model to the

Orbit corrected trips and Orbit WTP per trip.

Although the negative binomial model trip

prediction is accurate at estimating the mean

of stated trips, Loomis, Gonzalez-Caban, and

Englin (2001, p. 516) found using the same

stated preference data that we use here that

stated trips were significantly biased up-

ward compared with the corresponding re-

vealed preference number of trips holding

travel cost constant. As can be seen in Table 5,

the overestimation of annual WTP grows

substantially at higher stated trip quantities

as a result of the combined effect of the count

data model’s higher consumer surplus per trip

together with the inflated number of stated

trips. Annual benefits are roughly two times

higher with the count data model than with the

Orbit-corrected model at high levels of stated

trips.

Table 4B. Stated Trips (SP) and Corrected Number of Trips from the Second-Stage Orbit Model
with Heteroscedasticity Correction at Higher Gas Costs

Stated Trips

Corrected Trips

(l)

Corrected Trips

t-Statistic

Corrected Trips

P Value

Difference in

Trips

1 1.60 9.4 0.0 –0.60

1.66 1.66 8.4 0.0 0.00

3 2.60 14.9 0.0 0.40

4 3.02 16.8 0.0 0.98

6 4.58 14.1 0.0 1.42

8 4.66 14.5 0.0 3.34

10 5.22 16.0 0.0 4.78

12 5.40 16.8 0.0 6.60
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Sensitivity Analysis

Our Orbit corrections using the mean of the RP

trips as the second safety point have adjusted

the SP intended trip responses downward sub-

stantially. However, it is also possible that us-

ing the mean number of trips as the second

safety point is too low, so there is an ‘‘over-

correction’’ in the calibration. Therefore, our

first stage of the Orbit model was re-estimated

using trip levels for the second safety point of

up to six trips (more than double the mean

of the RP trips of 2.78). Within this range of

second safety points, there was no perceptible

change in any of the first-stage slope co-

efficients. This suggests that within a reasonable

range of our data, the selection of the specific

second safety point was not an issue. However,

using a second safety point that was greater than

six trips, the mean number of trips did yield

insignificance of key Orbit model coefficients.

Evaluating the Accuracy of the Orbit Estimates

Although the Orbit model systematically cor-

rects stated trips downward, especially at very

high levels of stated trips, the question remains

if this is too much or too little calibration rel-

ative to actual demand. To address this question

of the accuracy of the estimated corrected trips

from the Orbit model, we used the Orbit

model’s function to forecast what trips would

be at the original actual data travel cost. These

results are compared with the distribution of

trips in the actual data that occurred at that same

original actual data travel cost. In particular,

we conduct an observation-by-observation com-

parison of respondents’ reported actual number

of trips and the Orbits-predicted number of

trips at the same original travel costs. The mean

number of trips in the actual trip data2 is 2.78

with a standard error of 0.21. The Orbit model-

estimated mean number of trips is 2.50 with

a standard error of 0.11. A t test of the differ-

ences in respondents’ reported trips and the

Orbit model estimated trips yields a t statistic

of 0.247, which is not statistically significant.

Thus, the trip estimates of the Orbit model at

the original travel cost are not significantly

different than the reported trips at the original

travel costs. This indicates that with our data,

the Orbit model provided a valid estimate of

stated trips and that the corrected number of

stated trips is likely to be an accurate estimate

of stated trips at the higher trip costs.

Possible Extensions

This Orbit procedure should also be useful for

adjusting intended quantities arising from hy-

pothetical changes in demand shifters such as

quality of the product (e.g., meat tenderness,

health attributes, water quality at the recreation

site, etc.). As noted by Ward (1987), estimat-

ing these demand shifts often requires stated

preference responses but the Orbit procedure

offers an avenue for calibrating the increase in

quantity with the demand shifters to be more

Table 5. Comparison Annual Consumer Surplus (CS) of Negative Binomial (NB) and Orbit (with
Heteroscedasticity Correction)

Stated Trips Annual NB CS Orbit Corrected Trips Annual Orbit CS

Percent Difference

in Annual CS

1 $32 1.66 $43 26%

3 $96 2.60 $68 –42%

4 $128 3.02 $79 –63%

6 $192 4.58 $119 –61%

8 $256 4.66 $121 –111%

10 $320 5.22 $136 –136%

2 The sample used in the Orbit analysis was trun-
cated at a maximum of 13 trips to facilitate estimation
of the highly nonlinear Orbit likelihood function.
Thus, for comparison with the actual trip data and
the Orbit predictions, we capped the number of trips in
the actual data at 13 as well. Only 3.7% of the sample
reported more than actual 13 trips.
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consistent with revealed preference data on

existing quality. It may also be that the correction

to SP responses could be moderated by having

more than one nonzero safety point and, con-

sequently, a greater number of partitions in the

likelihood function, because there is nothing

in the ordered probit model that would rule

out this adjustment. Then, some of the higher

values could be seen as correct rather than as

overstatements.

Conclusion

This article extends the original Orbit model of

Klein and Sherman to include correction for

heteroscedasticity and calculation of WTP. The

resulting Orbit model appears to be a promising

approach for calibrating stated preference re-

sponses. In our example, it uses known safety

points such as zero stated quantities as one

anchor and mean quantity of trips from the

revealed preference data as another anchor.

Furthermore, like an ordered probit estimator,

stated quantities, especially those above the

second safety point, are treated in an ordinal

fashion, implicitly giving these points less in-

fluence than would a normal parametric ap-

proach like OLS or count data models. Once the

coefficients in the first stage are estimated, they

are used in a second-stage analysis to estimate

a coefficient (l) that yields the estimated cor-

rected stated quantities. Our results show that at

low stated quantities, there is minimal correction

needed to the stated quantities, but as the stated

quantity grows, the correction factor increases,

but not monotonically. The Orbit model also

yields lower estimates of consumer surplus per

unit than does the count data approach.

When the corrected quantities from the

Orbit model are combined with the Orbit esti-

mates of consumer surplus per trip, the implied

annual consumer surplus can be substantially

smaller than annual benefits derived from a con-

ventional count data model using stated quan-

tities. Comparing the Orbit model-estimated

number of trips at the original gas cost with

respondents’ reported trips at that same original

gas costs indicated that the Orbit model esti-

mates of trips are not statistically different than

actual reported trips. This gives some confidence

that the correction to the stated trips is likely to

be a valid downward calibration.

Thus, the Orbit models appears to be a pro-

mising technique for economists who must es-

timate likely quantities demanded and WTP for

new products or the quantities of existing pro-

ducts or services that would be demanded at

higher prices outside the range of existing prices

or with varying qualities. Nonetheless, there is

certainly room for further refinement in the two

variants of the Orbit model presented here.

[Received September 2009; Accepted March 2010.]
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