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Do Farmers Hedge Optimally or by Habit?

A Bayesian Partial-Adjustment Model

of Farmer Hedging

Jeffrey H. Dorfman and Berna Karali

Hedging is one of the most important risk management decisions that farmers make and has
a potentially large role in the level of profit eventually earned from farming. Using panel data
from a survey of Georgia farmers that recorded their hedging decisions for 4 years on four
crops, we examine the role of habit, demographics, farm characteristics, and information
sources on the hedging decisions made by 57 different farmers. We find that the role of habit
varies widely and that estimation of a single habit effect suffers from aggregation bias. Thus,
modeling farmer-level heterogeneity in the examination of habit and hedging is crucial.

Key Words: Bayesian econometrics, habit formation, hedging decisions, information sources
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Hedging is an important risk management tool

for both farmers and food processors. Farmers

are continually being instructed on how to hedge,

how much to hedge, when to hedge, etc., by

a wide variety of ‘‘experts.’’ Just to name a few,

extension agents and specialists, consultants,

marketing newsletters, and commodities brokers

all bombard farmers with information on optimal

hedging strategies. Yet, even with all this in-

formation, anecdotal evidence is that farmers

still do a poor job of hedging. We suspect that

most extension faculty would say that farmers

hedge too small a percentage of their crops.

Literature on hedging has a long history but

has recently moved into investigating motiva-

tions for and influences on farmers’ hedging

decisions. Pennings and Leuthold (2000) exam-

ine the role of producer attitudes and the varia-

tion involved in how farmers choose whether or

not to hedge. A recent paper by Pannell et al.

(2008) points to factors such as other risk man-

agement tools (e.g., diversification), price ex-

pectations, and low to moderate farmer risk

aversion as fully explaining the level of observed

hedging activity. Also investigating the variation in

observed hedging behavior, Dorfman, Pennings,

and Garcia (2005) and Pennings and Garcia

(2004) both study how different firms (Pennings

and Garcia) and farms (Dorfman, Pennings, and

Garcia) reach hedging decisions in very different

manners, showing that allowing for heteroge-

neity in a model of hedging behavior is an im-

portant component of model specification.

In this article, we examine the role of habit

and information sources in farmers’ choices of

hedging strategies. We use a survey of Georgia

farmers that records the annual percent of four

crops hedged over a 4-year period. In our model,

we want to incorporate habit effects through

use of lagged hedge ratios that we have data

on as a result of our rare panel data set. Habit

effects have been considered in many areas of

economics, particularly in the demand literature
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(Blanciforti and Green, 1983; Holt and Goodwin,

1997; Pope, Green, and Eales, 1980). However,

habit effects have rarely been used in hedging

models (an exception is Dorfman, Pennings, and

Garcia, 2005). This may be because of the rarity

of possessing data on past hedging decisions, but

it also may be because of the heterogeneity of

habit’s role in the decision-making process and

the inability to estimate farmer-specific habit ef-

fects econometrically.

In estimating a model to investigate the role

of habit and information sources in farmers’ hedg-

ing decisions, one would like to allow for dif-

ferent farmers to act differently. Some evidence

of the segmentation of methods for farmers to

arrive at hedging decisions has been found in

Dorfman, Pennings, and Garcia (2005). Because

this article is focused on the relative importance

of factors such as information sources, farm char-

acteristics, and habit in the hedging decision, we

take a somewhat different approach here and do

not estimate a mixture model of different classes

of farmers. Instead, we add flexibility to the esti-

mation of model parameters through the use of

a smooth coefficient model.

Smooth coefficient models are a class of

semiparametric models that do not fully restrict

parameters to be constant over the whole data set

but do not allow for free variation either (Koop

and Tobias, 2006). Instead, such models require

the ‘‘smooth’’ parameters to vary in some pre-

scribed manner. By linking the variation in the

semiparametric coefficient to some ordering of

the data and imposing a Bayesian prior distri-

bution over the amount of variation expected

between adjacent observations, researchers can

control the amount of variation captured by the

‘‘smooth’’ parameter. Because our panel data of

farmers does not have a natural ordering, we use

Bayesian model averaging to form a robust es-

timator that avoids having to choose a single

ordering over which we impose the coefficient

smoothing.

Thus, this article contributes to the literature

by expanding the explanation of farmers’ hedging

decisions beyond market conditions. Additional

factors explaining hedging decisions include

information sources, attitude toward technology

adoption, farmer characteristics, and the role of

habit. This broader look at hedging, particularly

the rare chance to use farm-level panel data,

allows us to search for heterogeneity in the role

of habit and to include other determinants of

the farmer’s decision-making process. This

article is the first to produce farmer-specific

estimates of the habit effect in hedging. Com-

bining this innovation with the other insights

provided by our model, these results add sig-

nificantly to the literature seeking to explain

individual hedging decisions.

The remainder of this article is organized as

follows. In section 2, we discuss data used in

our hedging decision model. In section 3, we

present the application and estimation details.

Section 4 presents econometric results and dis-

cusses the implications of our findings. Conclu-

sions follow in section 5.

The Data

The data consist of observations on 57 distinct

farmers, each growing one or more of the four

crops studied: corn, soybeans, wheat, and cotton.

Information was also collected on basic de-

mographic traits, farm characteristics, information

sources for farm management decisions, com-

puter use, and some farm economic characteris-

tics. The survey was conducted as part of a large

research project on farmland preservation with the

hedging questions ‘‘piggybacked’’ onto the survey

along with some questions on e-commerce. The

survey was mailed to a sample of farmers who

owned at least 300 acres of land, so these farmers

are all medium- to large-scale farmers. Georgia

Agricultural Statistics Service constructed the

sample and mailed the surveys. These data on all

such Georgia farmers and the responses received

confirm that in basic demographics and farm

characteristics we have a representative sample.

Hedging questions were asked for the four crops

for the years 1999–2002. The hedge ratio variable

is self-reported by farmers as ‘‘the percent of your

crop hedged’’ with responses given for each year

and for as many of the four crops covered as the

farmer grew or for which the farmer responded.

To study the role of habit in hedging de-

cisions, we extracted observations on farmers

who hedged in at least one of each pair of

consecutive years for each of the four crops.

The earlier year in each pair is used to create
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the lagged hedge ratio variable that will allow

us to measure the habit effect. This results in

an unbalanced panel in which a single farmer

could represent up to 12 observations (four

crops, 3 years [2000–2002]). After removing

observations with missing variables on the

desired set of explanatory variables we were

left with 250 observations. Observations on

corn were 22.4% of the sample, soybeans 9.6%,

wheat 20.8%, and cotton the remaining 47.2%.

Explanatory variables to include in the model,

other than lagged hedge ratio, include: education-

level dummies, income range dummies, per-

cent of income from farming dummies, years

of farming experience, number of commodities

produced, attitude toward technology adoption

dummies (early, mid, or late adopter), profit-

ability of the farm dummies (money making,

breaking even, or money losing), the ratio of

owned acres to farmed acres, and a set of in-

formation source dummies. The farmers were

asked to report all information sources used to

help make hedging decisions from among the

following list of choices: consultants, exten-

sion, magazines, the Internet, field trials, and

the local feed and seed store. Some basic sta-

tistics on the variables are displayed in Table 1.

A Model with Smooth Spatial and

Response Characteristics

In this article, we wish to explain hedging de-

cisions based on a range of explanatory vari-

ables, but with particular emphasis on the role

of habit. We measure the role of habit by the

parameter on the lagged hedge ratio, which will

enter the model as one of the explanatory var-

iables. If we represent the hedge ratio for

farmer i in year t by hit, we can write the model

of the hedging decision as:

(1) hit 5 xitb 1 hi,t�1g iðziÞ1 eit,

where xit is a k-vector of explanatory variables

some of which may vary by year and all of which

vary by farmer, b is a vector of coefficients to

be estimated that do not vary by observation, g i

is the parameter that varies smoothly across

farmers, zi is a variable that determines the or-

dering of the farmers for the smooth coefficient,

and eit is the observation-specific random

stochastic term. Note that because of the panel

data nature of the observations used here, the

model will have n observations, but there are

only nf < n distinct farmers. Thus, there will be

nf different g i parameters.

The semiparametric estimator g i designates

the expected impact of the lagged hedge ratio

on this period’s choice of hedge ratio by farmer

i. Denoting g i as a function of zi is done to

make clear that the variable zi is used to order

the smooth changes allowed across farmers.

Because there is no natural way to order the

farmers (such as time), any ordering chosen

will be somewhat arbitrary. To avoid the choice

of zi having an undue influence on our empir-

ical results, we allow for uncertainty over the

correct ordering. Five different orderings were

considered, each based on a composite variable

created by summing four standardized exoge-

nous variables to create a zi. Bayesian model

averaging is then used to form posterior esti-

mates with the uncertainty over the ordering

integrated out (Dorfman and Lastrapes, 1996).1

Note that although the smoothing does dampen

variation in the habit parameter, the effect of

variable zi on g i is not constrained to be linear

or even continuous. So given enough informa-

tion in the data, the habit parameters can still

vary fairly freely across farmers.

Introducing the Smooth Coefficient Model

To demonstrate the smoothing methodology,

it is easier to work with all the observations

stacked into matrices and to ignore the model

averaging for now. Thus, rewrite the model in

Equation (1) as:

(2) h 5 Xb 1 Hg 1 e 5 Wl 1 e,

1 When performing smoothing across observation-
specific parameters, the order of the observations is
clearly very important. In cross-sectional data such as
we have in this application, there is no natural order to
the observations in the data set. The obvious approach is
to order the observations by the order of an exogenous
variable or set of such variables. We follow this practice
here by sorting the observations according to the value of
a composite sorting index variable created by summing
the normalized values of four of our model regressors.
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where h, X, and e are the usual vertical concat-

enations of the hit, xit, and eit, b are the standard

regression parameters, H is a block-diagonal

nonsquare matrix of the hi,t21 with a column

for each farmer and a row for each observation,

and g is a column vector of the nf values of the

semiparametric habit coefficients.

To accomplish the smoothing of the non-

parametric functions, one must first define what

is meant by ‘‘smooth.’’ In this article, we use the

definition that smooth means coefficient changes

from farmer to farmer are relatively constant,

meaning that the farmer-specific coefficients lie

roughly on a line after the observations have been

Table 1. Summary Statistics

Mean Minimum Maximum Standard Deviation

Hedge ratio 55.152 0 100 33.504

Hedge ratio in previous year 56.072 0 100 32.097

Education

Some high school 0.064 0 1 0.245

High school graduate 0.204 0 1 0.404

Some college 0.260 0 1 0.439

College graduate 0.336 0 1 0.473

Master’s degree 0.088 0 1 0.284

Ph.D. 0.048 0 1 0.214

Income

<$30K 0.076 0 1 0.265

$30K–$60K 0.408 0 1 0.492

$60K–$90K 0.208 0 1 0.407

$90K–$120K 0.132 0 1 0.339

>$120K 0.176 0 1 0.382

Percent of income from farming

<25% 0.088 0 1 0.284

25–50% 0.076 0 1 0.265

50–75% 0.276 0 1 0.448

>75% 0.560 0 1 0.497

Years of experience 27.512 5 56 10.286

Commodity mix 4.428 2 20 3.120

Technology adoption

Early 0.388 0 1 0.488

Average 0.540 0 1 0.499

Late 0.060 0 1 0.238

Information sources

Consultants 0.628 0 1 0.484

Extension 0.968 0 1 0.176

Magazine 0.840 0 1 0.367

Internet 0.372 0 1 0.484

Field trial 0.692 0 1 0.463

Feed store 0.404 0 1 0.492

Profitability

Money making 0.504 0 1 0.501

Breakeven 0.452 0 1 0.499

Money-losing 0.044 0 1 0.205

Proportion of owned acres to total farmed acres 0.882 0 6 1.172

Note: Summary statistics are computed using all 250 observations. Thus, all the variables for a farmer are counted as many times

as the number of observations on that farmer.
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ordered by the variable zi to create an ordering

where imposing some structure on the varying

coefficients makes some sense. Smoothing can

also be used to make observation-specific co-

efficients be approximately equal to a constant

or to make the coefficients lie roughly on a

quadratic equation. Our chosen smoothing pat-

tern of coefficients being roughly on a line is

accomplished by smoothing on second differ-

ences, whereas the two alternatives just mentioned

would have smoothing based on first and third

differences, respectively.

To make this concrete, order the obser-

vations so that zi is increasing from first to

last observation. Then the necessary smooth-

ing matrix is:

(3) D 5

1 0 0 . . . 0

1 �2 1 0 . . . 0
0 1 �2 1 0 . . . 0
..
. . .

. ..
.

0 . . . . . . 1 �2 1
0 . . . . . . 0 1

26666664

37777775.

D is an (nf � nf) second differencing matrix.

Because second differencing requires us to have

two free parameters, we do not impose the same

smoothing on the first and last g i parameters

with this approach. This is accomplished in D by

the ones on the main diagonal in the top left and

bottom right corners. This smoothing matrix is

similar but not identical to those used in Koop

and Poirier (2004) and Koop and Tobias (2006).

The difference in smoothing matrices is the re-

sult of variations in handling the initial condi-

tions. We allow the first and last observations to

be free of smoothing, whereas Koop and Tobias

(2006) leave the first two observations free. This

presentation is more straightforward and in

keeping with the traditional formulas used in

Bayesian estimation.

To write the idea of smooth coefficients

mathematically, define the smoothing matrix, bD
which contains the nf 2 2 middle rows of D; that

is, all but the first and last row. This matrix al-

lows us to write mathematically the smoothness

desired as the linear approximate restriction

(4) bDg � 0.

This equation imposes nf 2 2 approximate re-

strictions on the nf parameters in g and no

restriction on the parameters in b. More spe-

cifically, the restrictions take the form (g i11 2

g i) � (g i 2 g i21), for i 5 2, . . ., nf 2 1.

If the restrictions in Equation (4) were im-

posed exactly, the individual effects would fall

on a line and the effect of the lagged hedge ratio

on the current hedging decision would be rep-

resented by a constant part and a ‘‘trend’’ com-

ponent as the composite variable increases through

the data set. By imposing the restrictions em-

bodied in Equation (4) through a Bayesian prior

with a nonzero prior variance, we will allow the

nonparametric function represented by the vec-

tor g to vary from such a line but not be com-

pletely unfettered. Thus, the model will allow

the effect of hi,t21 to vary as zi changes but in

a gradual, more continuous way than without the

smoothness prior.

The simplest way to implement such a pro-

cedure is to rewrite the model in Equation (2)

as:

(5)
h 5 Xb 1 HðD�1DÞg 1 e 5 ½X HD�1�

b
Dg

� �
5 W*l* 1 e.

Treating W* as a data matrix, the model in

Equation (5) is a standard linear model and

given a prior distribution for l* the derivation

of the posterior distribution is straightforward.

A Bayesian Prior Distribution

We need priors for l* and for s2
e. If we use the

natural conjugate prior, this model can actually

be examined analytically. We have no strong

prior beliefs about any of the structural pa-

rameters in b, so an essentially uninformative

prior for b seems reasonable. For Dg we need

an informative prior that imposes the smooth-

ing prior with the desired amount of smoothing.

We assume a normal-Gamma prior of the form

(Koop, 2003):

(6) pðl*,s�2
e Þ; NGðmo,Vo,s�2

o ,voÞ.

The prior mean of the regression model pa-

rameters, mo, is set to a vector of zeros because

we do not claim to have specific prior infor-

mation on the b parameters and a prior mean of

zero is essential on the differenced parameters

Dorfman and Karali: Farmer Hedging 795



(implying no expected change between (g i 2

g i21) and (g i11 2 g i)). The variance of the prior

on l*, Vo, controls how near to mo one believes

the elements of l* to be as well as whether one

believes the parameters to be independent or

correlated in some way. Because there are four

classes of parameters in l* (smoothed, structural,

initial condition, and mean rate of change for g), it

is appropriate to specify this matrix in four parts:

(7) Vo 5

t1Ik

0
0
0

0
t2

0
0

0
0

t3Inf�2

0

0
0
0
t4

2664
3775.

This partition of the prior variance allows

for the researcher to place a loose prior on the

structural parameters in b by setting t1 to a rela-

tively large scalar (in our application t1 5 1,000).

In turn, t3 controls how smooth the changes in the

parameter on the lagged hedge ratio are to be;

smaller values of t3 lead to smoother non-

parametric functions. In the extreme, as t3 goes

to zero, all farmer-specific habit effects will fall

exactly on a line. In our application, t3 is set to

0.0001 to introduce a definite smoothing of g .

Finally, t2 and t4 control the priors on the initial

conditions of the smoothed g i’s. Tightening these

priors will tend to move the mean value of g i

closer to zero and to make the line nearer to hor-

izontal (that is, in the extreme as t2 and t4 ap-

proach zero, the g i would vary around zero with no

trend). In our application, t2 and t4 are set to 0.01.

The Gamma prior on the error variance term

is a standard one. Common choices of values

for s�2
o are on the order of 0.1 or 0.01 or even

zero. The degree of freedom hyperparameter vo

in the Gamma prior is typically set to a small,

positive integer representative of the size of an

imaginary sample of data used to measure the

amount of prior information held about the

variance. We use vo 5 0, so we have an un-

informative prior on the variance of the model

errors, which means s�2
o need not be specified.

These amount to an uninformative prior on the

model error variance (a Jeffreys prior).

The Posterior Distributions

If one assumes that the eit are i.i.d. as normal

random variables with zero mean and constant

variance s2
e , that is equivalent to specifying the

standard normal-Gamma likelihood function for

the observations on hit. With such a likelihood

function and the prior described in the previous

subsection, Bayes’ Theorem leads one to a pos-

terior distribution in the normal-Gamma form:

(8) pðl*,s�2
e Þ; NGðmp,Vp,s�2

p ,vpÞ,

where

(9) Vp 5 ðV�1
o 1 W*9w*Þ�1,

(10) vp 5 vo 1 n,

(11) mp 5 VpðV�1
o mo 1 W*9hÞ,

and

(12)
s2

p 5 v�1
p vos2

o 1 ðh�W*mpÞ0ðh�W*mpÞ
�

1 ðmo � mpÞ0V�1
o ðmo � mpÞ

�
.

Because the conditional posterior distribu-

tion of l* is normal and the transformation

from l to l* was a linear one, it is simple to

recover the posterior estimates of the elements

of l and those original, structural parameters

will also have conditional posterior distributions

that are normal. In fact, the posterior mean of g
is simply given by:

(13) gp 5 D�1Rmp 5 D�1RVpðV�1
o mo 1 W*9hÞ,

where R is an nf�ðk 1 nf Þ matrix that pulls out

habit parameters from l*,

(14) R 5 0 Inf

� �
.

A similar transformation of the posterior vari-

ance matrix Vp can yield the posterior variance

matrix of the recovered g . Also, note that if

one chooses to work with the marginal distri-

bution of l, integrating out s2
e will yield a

t-distribution for l. Either the conditional or

marginal distribution makes it easy to construct

a variety of probability statements about ele-

ments of l or any linear function of these pa-

rameters, say Al. A common point estimator

based on these posterior distributions is the pos-

terior mean. So point estimates can be obtained

from Equations (11) for b and (13) for g.

Handling a Dynamic Panel Model

Our model of habit in hedging is based on lag-

ged hedging levels affecting the current decision
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on hedging. Thus, we have a lagged dependent

variable on the right-hand side of our regression

equation. Given that our data are in the form of

panel data (multiple observations on each in-

dividual farmer), the lagged dependent variable

causes a serious econometric issue. In such a

framework, the lagged dependent variable is

equivalent to current endogenous variables on

the right-hand side in a simultaneous equations

framework. The manner of addressing the issue

is the same; instrumental variables estimation

(IVE) can be used to address the endogeneity

problem caused by the lagged hedging variable.

To create an instrumental variable estimator

for the lagged hedge ratio, we use as instruments

data on farmers’ age, crop dummies, and the

individual farmer dummies. The R2 for this re-

gression is 0.70, which is good for an in-

strumental step because you do not want the R2

to be too high or too low. The fitted estimates for

the lagged hedge ratios are then used in the

Bayesian smooth coefficient model as regressors

in the place of the actual lagged hedge ratios.

Furthermore, to test the validity of our instru-

ments, we compared the marginal likelihood

ratios from our models with the fitted lagged

hedge ratio with the one from a model excluding

the latter and found that the marginal likelihood

increases by a factor of 106 when fitted lagged

hedge ratio is included.

Bayesian Model Averaging

To allow for uncertainty over the ordering to

impose on the data set before performing the

smoothing, we introduce an ordering index to

our model using superscripted ( j) to represent

one of the j 5 1, . . ., 5 possible orderings con-

sidered. Thus, the model in stacked matrix form

becomes

(15)
hð jÞ 5 Xð jÞbð jÞ1 Hð jÞg ð jÞ1 eð jÞ

5 W ð jÞlð jÞ1 eð jÞ,

where the index is placed on the data matrices

to reflect that the order of the rows would be

changed by the ordering and on the parameter

vectors because once the smoothing is imposed,

different orderings produce different posterior

distributions.

Now, introduce the apparatus for handling

model specification uncertainty. Begin with a

discrete prior weight on each model:

(16) p Mð jÞ
� 	

5 mj,
XM

j 5 1

mj 5 1.

These weights can be uninformative ðmj 5
1
M ,8jÞ or can be weighted to display a prefer-

ence for certain models. We choose to be un-

informative about ordering and choose equal

prior weights in this article. Next, using the

posterior distribution shown in Equation (8),

derive the marginal likelihood function by in-

tegrating out the ordering uncertainty to leave

a conditional likelihood for each model:

(17) pðhð jÞjMð jÞÞ5 cð jÞ jV
ð jÞ
p j

V ð jÞ
o



 


" #1

2

nð jÞ
p s2ð jÞ

p

� 	2nð jÞ
p
2

,

where c( j) is a normalizing constant. See Koop

(2003) for more details. Combining Equations

(16) and (17) allows one to derive the posterior

probability of each model:

(18)
pðMð jÞ jhð jÞÞ} mj

jV ð jÞ
p j

V ð jÞ
o



 


" #1

2

nð jÞ
p s2ð jÞ

p

� 	2nð jÞ
p
2

5 mj pðhð jÞ jMð jÞÞ, j 5 1, . . . , M.

Normalizing the values in Equation (18) by

dividing each value by the sum across all M

models will ensure that the posterior model

probabilities will sum to unity. Denote these

normalized posterior probabilities by:

(19) wð jÞ5
mjpðhð jÞjMð jÞÞPM

j 5 1 mjpðhð jÞjMð jÞÞ
, j 5 1, . . . , M.

Given the normalized posterior model proba-

bilities, the next step is to derive the marginal

posterior distribution by removing the condition-

ing on the ordering. This is done by integrating

over the five models creating a single posterior

distribution for the regression parameters that are

a weighted average of the posteriors for each data

ordering. Thus, the full marginal posterior distri-

bution of the regression parameters, l, accounting

for all the orderings considered, is a mixture dis-

tribution, in this case, a mixture of t-distributions

where the mixing weights are the posterior
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probabilities of each model from Equation (19).

In this particular case, the posterior mean of the

mixture distribution is simply the weighted

average of the individual posterior means from

the five different orderings with the weights

being the normalized posterior model proba-

bilities from Equation (19).

Econometric Results and Implications

For comparison purposes and as a starting point,

we also estimated the model in Equation (1) with

a constant parameter g by IVE (to handle the

dynamic panel data problem). The results of this

estimation are shown in Table 2. We find that

a total of 10 parameters is statistically significant

(at a 0.10 level), including the g parameter on the

lagged hedge ratio. The IVE estimate of g is

0.991 with a t-ratio of 12.93, implying that habit

almost completely determines a farmer’s hedg-

ing decision. Other statistically significant vari-

ables are the farmer’s income level, the percent

of income from farming, the attitude toward

technology adoption, the use of the Internet as an

information source, and the perceived profitabil-

ity of the farm operation. The model has an R2 of

0.486, which is quite acceptable considering the

nature of the panel data (small T, medium N).

Our composite variables z
ð jÞ
i which are used

to sort the farmers for the purposes of the

smoothing are formed from four variables chosen

from a set of seven possible variables: education,

income, percent of income from farming, number

of commodities produced, attitude toward tech-

nology adoption, profitability of the farm, and the

ratio of acres owned to acres farmed. Dorfman,

Pennings, and Garcia (2005) found that percent

of income from farming, profitability of the farm,

and the ratio of acres owned to acres farmed

played important roles in influencing hedge ra-

tios. The number of commodities produced

should also be linked to hedging behavior be-

cause diversification of products is another form

of risk management. Education level and attitude

toward technology adoption are included as

likely indicators of willingness to use hedging.

Each of the variables was scaled to have a mean

of one and then summed to create our com-

posite sorting index variable. The five order-

ings are based on the following sets of variables

to form each composite z
ð jÞ
i {education, num-

ber of commodities produced, attitude toward

technology adoption, ratio of acres owned to

acres farmed}, {income level, percent income

from farming, profitability, ratio of acres owned to

acres farmed}, {percent income from farming,

number of commodities produced, profitability,

ratio of acres owned to acres farmed}, {income,

number of commodities produced, profitability,

Table 2. Instrumental Variable Estimation
Results

Regression

Coefficient

t

Values

Intercept 4.807 0.299

Education

High school graduate –3.586 –0.243

Some college 11.828 0.780

College graduate –3.888 –0.246

Master’s degree 16.568 0.810

Ph.D. 19.092 0.875

Income

$30K–$60K –21.317 –2.237

$60K–$90K –30.230 –2.768

$90K–$120K –26.123 –2.486

>$120K –28.914 –2.450

Percent of income from farming

25–50% –22.391 –2.015

50–75% –25.310 –2.438

>75% –14.035 –1.514

Years of experience 5.004 0.709

Commodity mix 0.079 0.098

Technology adoption

Average 9.532 1.692

Late –8.644 –0.504

Information sources

Consultants 9.148 1.545

Extension 24.554 1.505

Magazine –1.239 –0.147

Internet 8.377 1.735

Field trial –5.216 –0.905

Feed store –3.291 –0.702

Profitability

Breakeven –14.010 –2.658

Money-losing –5.131 –0.358

Proportion of owned acres 1.503 0.673

to total farmed acres

Hedge ratio in previous

year

0.991 12.931

R2 0.486

Adjusted R2 0.423
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ratio of acres owned to acres farmed}, and {ed-

ucation, income, profitability, ratio of acres owned

to acres farmed}. The posterior model probabili-

ties show two models dominating with 13% of the

posterior probability on the fourth ordering and

86% on the fifth ordering (using the previous z
ð jÞ
i

variable listings). The other three orderings es-

sentially drop out of the results based on Bayesian

model averaging because combined they only

have 1% of the posterior weight. We present re-

sults for both model averaging and the ordering

with the highest posterior model probability.

The results of the smooth coefficient model

estimation are shown in Tables 3 and 4. Table 3

contains summary measures and statistics on the

57 farmer-specific, model-averaged and order-

ing-specific, smoothed estimates of g i, whereas

Table 4 contains the Bayesian posterior means

and standard deviations for the structural (non-

smoothed) parameters of the model.

Allowing the habit parameter to vary by

farmer while being smoothed by our Bayesian

estimator to remove some of the effect of noise

appears to have worked reasonably well. Table 3

shows that 49 of the 57 farmer-specific, model-

averaged habit parameters lie in the expected

range of (0, 1) with 37 within (0.5, 1.0). Thus, for

the majority of our farmers, habit plays a sizeable

role in their hedging decisions. Negative habit

parameters imply odd behavior, perhaps reacting

to perceived bad outcomes from the previous

year’s hedging. Thus, we are pleased that none

of the estimated habit parameters are negative.

Eight of the model-averaged g i exceed 1 (see

Figure 1A), which is important, because that

implies nonstationarity. Nonstationarity is not de-

sirable because it implies hedge ratios exceeding

one eventually, which turns hedging into specu-

lation. This is certainly admissible behavior

(some farmers surely do so), but we do not be-

lieve that many farmers should fall into that

category. Many of the model-averaged g i’s are

estimated very precisely with 48 having 90%

highest posterior density regions (HPDRs, the

Bayesian equivalent to confidence intervals) that

do not include zero and 51 having 80% HPDRs

that do not cover zero. Because the marginal

posterior distributions of the g i are in the form of

the Student’s t distribution, having a 90% HPDR

that does not include zero is equivalent to that

particular g i having a 95% posterior probability

of being positive. Thus, for the vast majority of

farmers in our sample, habit plays at least some

role in their hedging decisions.

As an additional result of allowing sample

variation in the habit parameter, it is worth

noting that of the 57 smoothed farmer-specific,

model-averaged g i’s, 36 of them have at least

a 90% posterior probability of being either

greater or smaller than the constant coefficient

estimate of 0.991. That is, 63% of the farmers

have habit effects with high posterior proba-

bilities of being different from the estimate

when the habit effect is constrained to be con-

stant across the whole sample. Also, the mean

of the posterior means of the g i’s is 0.726 and

the median of the posterior means is 0.653.

Both of these values are quite different than the

constant coefficient estimate suggesting that

not only is there considerable variation in these

parameters if it is allowed, but that constraining

it introduces some aggregation bias.

Table 3 shows that the habit parameters ob-

tained from the model with the highest poste-

rior probability have similar characteristics as

the ones obtained from model averaging. All

habit parameters are positive and 47 of the 57

farmer-specific habit parameters lie in the (0, 1)

range and 34 in (0.5, 1.0) range. As can also be

seen in Figure 1B, 10 of the habit parameters

exceed one. Furthermore, 34 of them have at

least a 90% posterior probability of being either

greater or smaller than the IVE estimate.

Table 4 shows that including farmer-spe-

cific habit effects greatly improved the model

fit with the model-averaged R2 now equal to

0.622 when taken at the posterior means of the

Table 3. Habit Parameter Statistics

Model Averaging

Highest Odds

Model

Number of

Observations

Number of

Observations

(out of 57) (out of 57)

g i > 0 57 57

g i < 0 0 0

g i > 1 8 10

0:5 < g i < 1 37 34

Dorfman and Karali: Farmer Hedging 799



parameter distributions. This is a very large

improvement from the 0.486 of the IVE esti-

mates with a single habit parameter. The im-

provement does not all come from the additional

parameters that the farmer-specific effects allow,

because the adjusted R2 also rises from 0.423 to

0.434. The improvement in model fit is greater

when we consider the model with the highest

posterior probability. The R2 and adjusted R2

increase to 0.712 and 0.567, respectively.

Table 4 reveals that allowing for some sample

variation in the habit parameter across farmers

has not particularly improved the estimation of

the remaining, constant parameters. The model

averaging results have four parameters with 90%

HPDRs that do not include zero, whereas the

Table 4. Bayesian Smoothing Results

Model Averaging Highest Odds Model

Posterior Posterior

Posterior

Mean

Standard

Deviation

Posterior

Mean

Standard

Deviation

Intercept –12.240 22.815 –14.636 23.281

Education

High school graduate 18.607 16.186 23.169 16.509

Some college 37.064 16.664 41.954 16.975

College graduate 29.872 17.939 35.241 18.364

Master’s degree 32.879 20.435 37.811 20.712

Ph.D. 40.672 33.881 39.867 34.866

Income

$30K–$60K 8.680 12.025 9.522 12.088

$60K–$90K 0.022 12.380 1.343 12.237

$90K–$120K 12.003 13.108 13.035 13.100

>$120K 14.722 14.183 16.677 14.208

Percent of income from farming

25–50% 1.023 12.742 4.145 12.697

50–75% –13.267 11.233 –12.147 10.998

>75% –18.452 9.906 –17.731 9.743

Years of experience 5.348 8.674 3.771 8.632

Commodity mix 1.290 0.875 1.392 0.838

Technology adoption

Average –3.717 5.926 –4.708 5.867

Late –15.716 16.281 –14.321 16.109

Information sources

Consultants 1.422 7.215 0.701 7.151

Extension –9.678 19.313 –14.692 19.902

Magazine –1.515 9.416 1.419 9.435

Internet 10.500 4.848 10.277 4.831

Field trial 0.881 5.691 0.469 5.695

Feed store –1.454 5.180 –1.850 5.182

Profitability

Breakeven –0.614 6.240 –0.438 6.361

Money-losing –6.618 17.821 –7.217 18.442

Proportion of owned acres 0.841 3.662 0.898 3.675

to total farmed acres

R2 0.622 0.712

Adjusted R2 0.434 0.567

Note: R2 is measured at posterior means.
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Figure 1. Posterior Means of Farmers’ Habit Parameters (A) Model Averaging (B) Highest

Odds Model
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highest odds model has six such parameters. This

is less than the nine statistically significant pa-

rameters in the IVE model when you do not count

the habit parameter. The new results have high

posterior probabilities for education variables.

However, none of the income variables, technol-

ogy adoption variables, and profitability variables

shows strong posterior support for a particular

sign.

The education-level dummy variables show

that (compared with the base of not graduating

from high school) education tends to lead to

more hedging. However, the effect changes as

education continues. That is, a college graduate

would hedge more than a high school graduate

but less than a farmer with some college edu-

cation. Farmers who earn more than 75% of

their income from farming are found to hedge

less than farmers who earn less than 25% of their

income from farming by an average of 18% of

the crop, which is a large change in hedging

behavior. Commodity mix variable from the

highest odd model shows that farmers who grow

more variety of commodities hedge more.

We included six information sources in the

farmer survey and farmers were asked to select

‘‘all farm-related information sources you use.’’

Thus, these sources may not all be used for

hedging decisions but could represent common

sources of farm management or production

information as well. In the smooth coefficient

model, we find that only one of the six infor-

mation sources has posterior probability of

having a clearly signed effect on hedge ratios

that exceed 95% (the Internet) with expected

change in hedge ratios of 10.5% (in amount of

crop hedged, not as a percent of the mean hedge

ratio). This is very economically significant

amount by which to influence hedge ratios.

Overall, we get less empirical support for

structural variables in the Bayesian smooth co-

efficient models. However, we believe that the

IVE results with a single habit parameter are less

appealing as a result of a particular dichotomy.

The single habit parameter is highly significant

with a value very close to unity, implying that

habit fully explains hedging decisions. Yet, we

find nine other significant structural variables.

We think that this result is contradictory and the

Bayesian results are more dependable.

Conclusions

This article used a panel data set of Georgia

farmers to investigate the role of a variety of fac-

tors on the hedging decisions of farmers on four

major crops: corn, soybeans, wheat, and cotton.

Furthermore, the effect of habit on hedging de-

cisions, measured through a parameter that links

the current hedge ratio to the lagged hedge ratio, is

allowed to vary by farmer in a ‘‘smooth’’ way that

allows for heterogeneity of habit effects while

dampening the impact of sample noise.

We find that habit plays a quite significant

role in hedging decisions for almost all farmers

but that the heterogeneity of the habit effect

is enormous. Even with a Bayesian smoothing

prior in place on the 57 farmer-specific habit

effect parameters, the parameters vary greatly in

magnitude within the range of approximately

(0.2, 1.9). Across the sample, the median model-

averaged habit effect is 0.726, which differs

considerably from the estimate derived from

a simple constant coefficient model of 0.991.

Models without allowances for heterogeneity

would therefore suffer from aggregation bias

and could lead to incorrect policy decisions.

The results provide some interesting in-

sights into the effect of farmer characteristics on

hedging decisions. As educational attainment

increases, farmers hedge more of their crops. In

general, farmers who derive the highest per-

centage of income from farming hedge less. This

last result might be surprising because those

farmers are the most dependent on farm income

for total household income, but perhaps as more

full-time farmers, they feel capable of tracking

the commodity markets and selling at the opti-

mal time. Finally, the use of the Internet as an

information source has some sizeable effect on

hedging decisions.

Overall, the results confirmed those in

Dorfman, Pennings, and Garcia (2005) that habit

effects are important but are heterogeneous

across farmers. The other factors that influence

hedging decisions do not seem to be consistent

across models and are dominated by the habit

effects. The overwhelming percentage of farmers

with high posterior probabilities of habit effects

may explain why extension faculty has a diffi-

cult time convincing farmers to hedge more. Our
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results suggest if they are persistent enough,

eventually they will succeed.

[Received August 2009; Accepted March 2010.]
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