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The Effect of Increased Energy Prices on
Agriculture: A Differential Supply Approach

Charles B. Moss, Grigorios Livanis, and Andrew Schmitz

The increase in energy prices between 2004 and 2007 has several potential consequences for
aggregate agriculture in the U.S. We estimate the derived input demand elasticities for energy
as well as capital, labor, and materials using the differential supply formulation. Given that
the derived input demand for energy is inelastic, it is more price-responsive than the other
inputs. The results also indicate that the U.S. aggregate agricultural supply function is re-

sponsive to energy prices.
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This study examines the effect of increased
energy prices on agriculture by estimating agri-
culture’s elasticity of demand for energy. During
2004, crude oil prices in the U.S. increased al-
most 14%, from $27.63/barrel on January 2,
2004, to $32.07/barrel on December 31, 2004.
Since that time, crude oil prices have continued
to increase (Figure 1) reaching a maximum of
$69.52/barrel on August 11, 2006. As of July 6,
2007, the crude oil price stood at $67.65/barrel.
Figure 2 shows the effect of the increased oil
prices on gasoline prices in the U.S. Similar to the
increase in oil prices, gasoline prices increased
by 17% in 2004. Given that fuel is an important
input for the agricultural sector, these price in-
creases would appear to bode ill for agriculture
in the U.S. However, some speculate that agri-
culture could benefit from the fact that ethanol
from either corn or cellulose could increase the
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demand for agricultural output in the U.S. For
example, Senator Tom Harkin from Iowa has
recently introduced legislation entitled the
“Farm-to-Fuel Investment Act” which would
“...provide transition assistance for farmers to
grow dedicated energy crops (crops like switch-
grass grown solely for the purpose of producing
energy)” (Harkin, 2007). The net impact of eth-
anol on agriculture in the U.S. is dependent on
its derived demand for energy. Specifically, the
derived demand for energy in agriculture may be
fairly elastic or inelastic. To answer these ques-
tions, we estimate the elasticity of the energy
input demand for agriculture using the differ-
ential approach. Unfortunately, little empirical
estimates exist on the derived demand input
elasticities for U.S. agriculture of which the de-
mand for energy is a key component (Schmitz
and Stevens, 2000). This makes it difficult for
policy analysts who deal with such topics as the
future of biofuels.

The Differential Supply System

Like the familiar Rotterdam (Theil, 1981) for-
mulation of the consumer demand model, the
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differential supply model starts from the choice
of cost-minimizing inputs subject to a given
level of production (In(z) = h(q)). The Lagrange
multiplier is

1) Ligp) = Zn:piqi +p(In(z) — h(q))
i=1

where L(g,p) is the constrained cost of pro-
duction, p; is the price of the input i, g; is the
level of output i, p is the marginal cost of the
constraint p = dL(g,p)/d1n(z), In(z) is the nat-
ural logarithm of the level of output z, and A(q) is
the logarithmic production function. Applying the
differential approach to the optimizing conditions
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for producers, the univariate production function
depicted in Equation (1) can be used to derive
a differential formulation of the input decision

@ fidIn(g) = OidIn(z) —y D 05d In(Pi/ p)
i=1

where f; is the share of cost expended on fac-
tor i, d In(g;) denotes the logarithmic change in
the quantity of input i demand, 6; is the share
of the overall cost expended on factor i as
the logarithm of output increases (d1n(z)), W
is the flexibility of marginal cost with respect
to the overall level of output, 0;; are parameters
that capture the relative change in demand in

10/28/95  07/24/98  04/19/01  01/14/04  10/10/06  07/06/09

Date



Moss, Livanis, and Schmitz: Effect of Increased Energy Prices

response to a change in each input price, and P
is a Frisch price index for inputs (an overview
of the derivation is provided in the Appendix).
The system of derived demand curves presented
in Equation (2) is identical to the demand re-
lationships from the Rotterdam formulation
substituting the level of output in the derived
demand relationship for income in the con-
sumer demand model. In addition, an empir-
ical model for the derived demand curve
can be generated from this differential model
using the same approach. Substituting dis-
crete changes (dIn(x;)= Dln(x;) = In(x;;) —
ln(xi,,_l)) and the average input share
(fiu=fi=1/2(f +fii )) into Equation (2)
yields an empirical counterpart of

(3) fuDIn(q,) = 6:DIn(z) + > wuDIn(p,) + i
i=1

where T is symmetric (m; =), negative

semidefinite, and homogeneous (3" ;=0

for all j), and €;, is the error term for equation i

in period t.

Estimation Issues

Like in the empirical implementation of the
Rotterdam demand system, the empirical esti-
mates of the system of derived input demand
equations specified in Equation (3) often deviate
from some of the theoretical restrictions (i.e.,
homogeneity, symmetry, and concavity). One is
faced with two alternatives: 1) testing the statis-
tical significance of these failures; or 2) simply
imposing the theoretical restrictions. This anal-
ysis follows the latter approach. Specifically
Laitinen (1978) concludes that the standard test
for homogeneity of demand systems overstates
the level of significance leading to excessive
type II error. Moss and Theil (2003) expand on
this increase in type II error. Similarly, Meisner
(1979) finds that symmetry restrictions are
rejected too often using standard tests, espe-
cially in small samples. In addition to the
well-established problems with symmetry and
homogeneity, the estimation and testing of de-
mand systems raises potential difficulties with
the concavity restrictions. Thus, this study im-
poses concavity using the approach suggested by
Terrell (1996).
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Following Terrell, we first estimate the sys-
tem of factor demands using maximum likeli-
hood imposing homogeneity and symmetry.
Given these estimates, we then test for concavity
by computing the maximum eigenvalue for the
r;; matrix in Equation (3). If the maximum ei-
genvalue is greater than zero, the system is not
concave. Based on this test, we then bootstrap
the estimator 10,000 times retaining the esti-
mates whose r;; matrix is concave. The concave
estimator is then the average 7; matrix. In ad-
dition, the sample of estimated vectors can be
used to construct robust estimates of the pa-
rameters and elasticities along with their re-
spective variances.

The Terrell approach is very different from
either estimating the Cholesky decomposition
of the second moment matrix (Featherstone and
Moss, 1994) or constraining the eigenvalues
of 7r; matrix to be less than zero (Shumway,
Alexander, and Talpaz, 1990). Under both of
these approaches, at least one of the eigenvalues
is constrained to zero at the point of estimation:
thus, the need to impose an additional linearity
into the m; matrix. Thus, instead of rank (’ITU) =
n — 1 as implied by > 7| 7; = 0 the estimated
rank of the system of input, derived demand
equations results in rank (;) = n — 2 using ei-
ther the Cholesky decomposition approach or by
constraining the eigenvalues to be less than zero.

Data

To estimate the derived input demand elastici-
ties, we use the KLEM (K, Capital; L, Labor; E,
Energy; and M, Materials) (Jorgenson, 2010;
Jorgenson and Stiroh, 2000). These data report
the quantity of agricultural output along with
the price received by farmers and price paid by
consumers along with the expenditures on each
input and a price for each input for 1960 through
2006. Following the differential formulation, we
use the quantity of output as z and divide the
expenditure on each input by the price for each
input to yield the quantity of each input used (g;,).

Estimated Demand System

We estimate the derived input demand system
depicted in Equation (3) imposing symmetry
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and homogeneity (by normalizing on the mate-
rials input) conditions (Table 1). The maximum
eigenvalue of these unrestricted estimates is
0.5753, implying that the unrestricted estimates
fail the concavity restriction. Given this result,
we then bootstrap the estimation 10,000 times.
From these results, 55 of the samples obey the
concavity restriction. Averaging across these 55
estimates, we obtain the concavity imposed
estimates (Table 1). The maximum eigenvalue
for the concavity imposed estimates is —0.1454,
implying that the estimated 1r;; matrix is negative
definite as opposed to negative semidefinite.
Imposing concavity improves the fit of the de-
mand system (i.e., in the restricted formulation,
five parameters are statistically significant at the
0.05 level of significance and all of the diagonal
elements are statistically significant). However,
the statistical significance is overstated in that we
only consider variations over solutions that obey
the concavity conditions.

Table 1. Estimated Derived Demand for

Parameters for Aggregate U.S. Agriculture,
1958-2005 (*100)

Without Concavity
Variable Concavity Imposed
0, (Capital) 1.284 3.243%:%%
(1.142)* (0.903)
6,(Labor) -6.316* -3.943
(4.735) (4.040)
03(Energy) 1.601* 2.303%**
(1.034) (0.905)
T 0.289 —0.256%*
(0.320) (0.127)
T2 1.023* 0.806*
(0.682) (0.283)
13 0.427%* 0.190
(0.247) (0.172)
20 —6.806%* —7.992%%**
(3.113) (2.646)
)3 -0.191 -0.507
(0.637) (0.487)
33 —0.540* —0.863%**
(0.408) (0.401)

? Values in parentheses denote standard errors of estimates.

* Denotes statistical significance at the 0.10 level of confidence.
** Denotes statistical significance at the 0.05 level of confidence.
*#** Denotes statistical significance at the 0.01 level of
confidence.
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The estimated elasticities (Table 2) indicate
that the demands for all inputs are inelastic with
respect to price. The derived demand for energy
is less price inelastic than the derived demand
for labor but more elastic than the derived demand
for both capital and materials. Furthermore, al-
though the elasticity is statistically significant at
the 0.05 confidence level for labor and materials,
the elasticity of demand for capital and energy are
only statistically significant at the 0.10 confi-
dence level.

Examining the cross-price elasticities, we
see that increased energy prices lead to a re-
duction in the demand for labor but an increase
in the demand for both capital and materials.
These interactions could be interpreted in a
number of ways. First, we may anticipate that
increased energy prices would reduce the demand
for capital items. Specifically, a large portion
of agriculture’s capital investment is in tractors,
combines, and other mobile equipment. Hence,
we would hypothesize that increased energy
costs would reduce the demand for these energy-
consuming items. However, since World War II,
agriculture has seen a continual trend toward
larger equipment. This trend coincides with a re-
duction in the number of farm operators, which
is evident in the positive but statistically insig-
nificant cross-price elasticities between labor and
capital in our results. A secondary effect may be
that this larger equipment is relatively more fuel-
efficient than older, smaller capital items.

A similar explanation may be possible for
the relationship between materials and energy.
Looking back on row-crop agriculture, numer-
ous row operations were often required to con-
trol weeds in cotton. However, at the same time
larger equipment arrived (e.g., two-row to four-
row and six-row planters), pesticides were in-
troduced that reduced the necessity of some of
these row operations. This replacement ulti-
mately culminated with the introduction of low-
till and no-till technologies for many crops in
which a vast majority of energy-based operations
have been replaced by material applications.

Implications and Conclusions

The empirical results suggest that imposing
concavity on the differential cost system
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Table 2. Compensated Input Elasticities
Elasticity with Respect to
Change in Capital Labor Energy Materials
Demand for Output Level Prices Prices Prices Prices
Capital 0.1589%%* -0.0126* 0.0394* 0.0093 —0.0362
(0.0542)* (0.0067) (0.0228) (0.0087) (0.0220)
Labor -0.1968 0.0402 —0.3989%* —-0.0253 0.3840%%*
(0.2108) (0.0241) (0.1650) (0.0255) (0.1571)
Energy 0.9078* 0.0748 —0.1999 —0.3403* 0.4654*
(0.4501) (0.0732) (0.2061) (0.1896) (0.2687)
Materials 1.7971%%* -0.0135* 0.1405%*%* 0.0216* —0.1486%**
(0.1759) (0.0078) (0.0473) (0.0069) (0.0471)

?Numbers in parentheses denote standard deviations.

* Denotes statistical significance at the 0.10 level of confidence.
** Denotes statistical significance at the 0.05 level of confidence.

*#*% Denotes statistical significance at the 0.01 level of confidence.

significantly improves the estimated system of
demand equations for aggregate U.S. agriculture.
After imposing concavity, agriculture’s energy
demand, although inelastic, appears to be more
sensitive to price changes than any other input.
The estimated input demand elasticity for energy
is —0.3403 compared with an own price elasticity
of —0.3989 for labor, —0.1486 for materials, and
—0.0126 for capital inputs. Furthermore, the
largest cross-price effect between input prices
appears to be between energy and labor followed
by a substitution of labor for materials. Thus, we
conclude that increases in energy prices will af-
fect the supply of agricultural products more
significantly than other inputs. Also, that increase
in energy prices will have a significant impact
on agriculture’s labor demand. However, as we
expand the specification in an attempt to estimate
the effect of energy prices on the supply of ag-
ricultural outputs, we are plagued by additional
concavity concerns. Specifically, although the
empirical results in that the estimated parameter
on energy prices is negative but insignificant at
any conventional confidence level, the estimates
suffer anomalies of the output price and other
input prices. Furthermore, these discrepancies
cannot be solved using the procedure outlined by
Terrell.

Given that the empirical results of our anal-
ysis are somewhat mixed, several alternatives
may provide additional insight. One possibility
involves generalizations of the differential supply

system. First, the data set KLEM provides an
aggregate agricultural output, which may average
out the effect of energy prices on crop vs. live-
stock operations. Laitinen and Theil (1978)
provide a multiproduct version of the differ-
ential model of the firm. However, data work
would be required to produce livestock and crop
output indices comparable to the Jorgenson
KLEM data. An alternative extension would be
the incorporation of quasifixed inputs particu-
larly for capital and farmland. A multiproduct
model of the differential model including qua-
sifixed variables is presented in Livanis and
Moss (2006). Finally, Livanis (2004) presents a
more flexible formulation of the effect of changes
in output level on relative input shares.

[Received July 2007; Accepted June 2010.]
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Appendix: Derivation of the Differential
Supply System

Taking the first-order conditions of Equation (1)
with respect to In(g;) yields

aL(q.p) _ ~ dq; oh(q) _
oln(q) ~ "amn(g)  "aln(q)

(A.1)

Substituting for the logarithmic differentiation
in the first term on the right-hand side of Equation
(A.1) yields

aL(q. oh
(qp):quj_p @ _,

a1In(g;) aIn(q;)

Substitution of f; = p;q;/C where C =37 p;q;
gives

(A.2)

IL(q, p) p _9h(q)
A3 — P =f = =0
(A3) aq; 1 C d1n(q;)
Further substituting
_ o _ 1 ac _ ¢
(Ad) p= dln(z) Caln(z) aln(z)
) _ aln(C) _
ainz) !

Substituting this result back into Equation (A.3)
yields
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_ ., 0hg) _
L gy ~°

dL(q, p)

A5 —_—
A Sin(g)

and solving Equation (A.5) yields Theil’s ex-
pression 9h(g)/d ln(qj) =f;/- Next differenti-
ating Equation (A.5) at the point of optimization
gives

aL(g.p)  _ _;
d1ln (qj)ﬂln(qi) d1n(q;)
(A.6) B oh(q)
Yoin(g)a1n(q)

To simplify the derivation, we introduce two
matrix derivatives into Equation (A.6). Focus-
ing on the first term on the right-hand side of
Equation (A.6)

d q;P; .. .
o, () e
d1n(g;) d1n(g;) 0 i#j

Thus, we construct a matrix F whose diagonal
elements are g;p;/C following the results of
Equation (A.7). Next, we define H as the
matrix of second logarithmic derivatives

(A7)

8h(q)
A8) H= |
( ) [aln(qj)aln(%) ij=1,..n

Thus, Equation (A.6) can be rewritten as
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IL(g, p)
d1n(g;)dIn(q;)

Differentiating Equation (A.2) with respect to
the natural logarithm of the level of outputs
(In(z)) yields
9’L(g, p) Gln(qj)
ain(g)omn(z) U amn(z)
dh(q) d1n(p)
B dln(g;) In(z)

(A.9) =F—vH

(A.10) —pi Ph(q)  aln(q)’

<~ d1n(g;)d1In(g;) 9In(z)
g
paln(qj)aln(z)

Imposing the first-order condition from
Equation (A.2) (g;p; — pdh(q)/d1n(q;)
dh(q)/d1n(g;) = q;p;/p) into the second term
on the right-hand side of Equation (A.10) yields

203

91n(q;)

d1n(p)
9P n(z)

iPi d1n(z)
- ?h(q)  dln(g,)
pZ:aln (g;)91n(g;) 91n(z)
@h(q)
d1n(g;)d1In(z)

Multiplying Equation (A.11) by 1/C, sub-
stituting Y = p/C, and the definition of input
shares and collecting like terms yields

(A.11)

_ dln(g) . dln(p) _ =«
(A.12) (F—1vH) 3n(2) Fu TG YH
where 1 is a vector of ones and H' = [0%h(q)/

d1n (‘Ij)a ]n(z)}j:l,...n‘
Next, we differentiate Equation (A.2) with
respect to the natural logarithm of input prices

91n(q))

9*L(g, p)
]lquj QJPJ (')l (]7[)

d1n(g;)d anu) B
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where 8;; is the Kronecker delta, which is 1 if
i =j and O otherwise. With this substitution

dln(g) . 9In(p) _

(A.14) aln(p)  ‘aln(p)

(F —vH) —F

It is necessary to solve for changes in endoge-
nous variables (the quantity of the vector of
inputs used and marginal cost of production)
with respect to changes in exogenous variables
(the vector of input prices and level of output).
We first totally differentiate the output con-
straint first with respect to the natural logarithm
of the level of output

" 9h(q) 9In(q;)  9h(q)
(A.15) 1 aln(‘l/)a 13 zngz) d1n(z)

— 0=/ n(g) _

= 0= G

and then with respect to the natural logarithm
with respect to input prices

~ dh(g) oln(g) _ \ _ p910(9)
]zzlzﬂln(qi) d1n(p;) 0 Féln(p’)

Combining Equations (A.12), (A.14), (A.15),
and (A.16) into a matrix equation yields

(A.16)

dln(g)  dln(q)
F—vyH } dln(z) aln(p’)
J 0 dln(p) dln(p)
(A.17) ~9ln(z) aln(p))
_ |y —F
voo0]

We derive our differential demand model for the
supply function by solving the system of equa-
tions implicit in Equation (A.17). We first make
refinements in Equation (A.17) to yield the
supply equivalent to Barten’s fundamental ma-

(A.13) —qp; alln(p) i& trix equations. By taking the component of
dIn(p;) 91n(g;) 9 1n(q;) Equation (A.17) that corresponds to Equation

3 In(q;) _ 0 (A.14) and multiplying both sides of this equa-
ar In(p;) tion by F~! one obtains
e dln(g) dln(P)| _ it L i dln(g)  dln(p) _

(A.18) g [(F YILI)aln(p/) Fbaln(p/) PR FE YH)aln(p’) “aIn(p) !

. i ~1,0In(g)  dln(p) _
F~'(F — yH)F Fame)~ amp) ~ !
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By a similar transformation to Equation (A.12), This last result implies that
the matrix transformation from Equation (A.17)

becomes o= %F(F—yH)"F
—1 —1
[F (F —lyH)F (L)} (A.22) v = JFF —yH) FL
‘ 0= 6L
a In(q) d1n(q)
F
aln(z) aln(p’) . )
(A.19) X aln(p) a1n(p) Thus, taking the results of Equation (A.21)and
aln(z) aln(y) (A.22), we have
sk
] "
- Q) _ o ’
[ - 0 (A.23) Faln(p’) W(O — 60).
Solving Barten’s fundamental equation in )
Equation (A.19) yields To complete the input demand system, we start
by totally differentiating the input level for
d1n(q) r d1n(q) input j
d1In(z) aln(p)
_dln(p)  dln(p) a1n(q;)
aln(z) aln(p) din(gq;) = 2in(2) dln(z)
- _ - A.24
(A.20) _ [F YF — yH)F™! L:| ! (A-24) aIn(g) ()
J 0 aln(p )
YF'H —1
v 0 Substituting the solution from Equations (A.20)
and (A.22) into Equation (A.24) yields
where
_ _ —1
[F Y(F —yH)F™! L} (A.25) fidlIn(g;) = 6;dIn(z) — Ze,,dln p:/p)-
J 0
(A21) ,
O — 00 0
= Wl , ) 1 } . which can be estimated using the standard
0 -/ v Rotterdam empirical assumptions.



